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Abstract

Natural Scene Text Understanding

In a society driven by visual information and with the dras-
tic expansion of low-priced cameras, text recognition is nowadays
a fast changing field. In particular, natural scene text under-
standing aiming at extracting text from daily images is the main
concern of this text.

From text extraction to correction of recognition errors, each
sub-step is deeply studied to enhance versatility for handling most
images, even the most complex ones.

Either in color camera-based images or in low resolution
thumbnails, inherent degradations, such as complex backgrounds,
artistic fonts, uneven lighting or unsatisfactory resolution, must
be taken into account. In order to circumvent or correct them,
studies of image formation and degradation sources challengingly
led to overcome too constrained definitions of color spaces. Hence
the selective metric text extraction attempts to combine mag-
nitude and directional processing of colors in an unsupervised
framework.

Text extraction from background is simultaneously linked to
subsequent steps of character segmentation and recognition. This
intermingled chain mainly aims at combining color, intensity and
spatial information of pixels for robustness and accuracy. Each
of these features addresses different issues; the first one for text
extraction and the two latter ones for recovering initial separation
between characters through log-Gabor filtering.

In order to reach higher quality results, pre- and post-
processing of natural scene text understanding are necessary
and deal with Teager-based super-resolution, assuming a simple
affine motion between frames with the SURETEXT proposition
for the first one and with association of recognition outputs and
linguistic information through lightweight finite state machines
for the second one.

In the final part of each step, results are clearly mentioned
to highlight effectiveness of the methods. Moreover, several
databases, to be independent cg( a particular one, and a public
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and renowned data set, are used to assess results and compare
them with recent and competing algorithms.

Finally a large discussion is opened through presented achieve-
ments of this text and required future extensions in natural scene
text understanding to complete exciting applications, such as
reading tool for visually impaired or innovative web images search
engines in a life-log context!
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— CHAPTER 1 —

Introduction

1.1 Current Document Analysis

Inputs for traditional document analysis systems use scanner-
based acquisition with flatbed, sheet-fed or mounted imaging de-
vices. Recently, handheld scanners such as pen-scanners appeared
to acquire small parts of text on a fairly planar surface such as
that of a business card. Issues having an impact on image pro-
cessing are limited to sensor noise, skewed documents and inherent
degradations to the document itself. Based on this classical acqui-
sition method, optical character recognition (OCR) systems have
been designed for many years to reach a high level of recognition
with constrained documents, meaning those falling into traditional
layout, with relatively clean backgrounds such as regular letters,
forms, faxes, checks and so on and with a sufficient resolution (at
least 300 dots per inch (dpi)).

Research on scanned documents obviously focuses on the doc-
ument, attempting to handle various fonts, curled pages, text and
graphic separation, handwritten recognition and so on. With the
recent explosion of handheld imaging devices (HIDs), i.e digital
cameras, standalone or embedded in cellular phones or personal
digital assistants (PDAs), research on document image analysis
entered a new era where breakthroughs are required: traditional
document analysis systems fail against this new and promising
acquisition mode and main differences and reasons of failures will
be detailed in this introductive chapter. Small, light, and handy,
these devices enable the removal of all constraints and all objects,



2 Céline Mancas-Thillou

such as scenes in different situations in streets, at home or in
planes may be now acquired! Moreover, recent studies [65] an-
nounced a decline in scanner sales while projecting that sales of
HIDs will keep increasing over the next 10 years. Much effort
must be brought to prompt expected and promising applications.
A first workshop on camera-based document analysis and recogni-
tion! even appeared in 2005, in order to focus research on natural
scene image analysis.

1.2 What is Natural Scene Text?

Several definitions are given to identical terms in literature cre-
ating confusion regarding their meaning. In order to understand
the challenges of natural scene (NS) text understanding, it may
help to clear up differences between synthetic or real images, still
images or video frames, caption, scene text or camera-based doc-
uments. Definitions and types of images (Figure 1.1) are listed:

Synthetic versus real images: Properly named, synthetic im-
ages are designed by computers to reproduce real events or
degradations. The main aim is to increase database size and
experiment with new algorithms. Unfortunately, it is rather
difficult to combine and even identify all degradations com-
ing from real images acquired by recent HIDs.

Still images versus video frames: In video frames, temporal
information redundancy, depending on frame rate, brings
additional data enabling statistical methods to work more
efficiently. Still images are snapshots of a scene providing
only their own information for further analysis.

Caption, scene text and camera-based document text:
Caption text is artificial text superimposed on an image or
a video frame such as subtitles or scores in a tennis game.
It is therefore not correlated to degradations present in the
scene. In contrast to that, scene text and camera-based
document text are integral parts of the picture, such as
labels on a bottle, street names and so on. Camera-based
documents are the same documents usually acquired by
a scanner and presenting a particular layout with titles or
paragraphs; those are usually absent in scene text. Research

Thttp://www.m.cs.osakafu-u.ac.jp/chdar
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on camera-based documents focuses more on recognition,
unwarping, layout analysis. Moreover entire document
images are hardly acquired in one image due to the low
resolution of popular HIDs and the required resolution for
OCR. It implies mosaicing techniques to recompose the
document based on several contiguous snapshots or frames
of a video sequence. It is not the case with scene text where
writing density is lower.

This text will mainly consider scene text, parts of real still im-
ages coming from various HIDs and some web images presenting
partially similar issues. Only typewritten text will be processed;
handwritten text in a camera-based document or a natural scene
is analyzed with different methods based on handwriting recog-
nition. Conventional document analysis techniques perform very
poorly on scene text due to the new imaging conditions and newly
considered scenes:

1. Imaging Conditions

Raw sensor image and sensor noise: In low-priced
HIDs, pixels of a raw sensor are interpolated to produce
real colors, which can induce degradations. Demosaic-
ing techniques, viewed more as complex interpolation
techniques, are sometimes required. Moreover, sen-
sor noise of an HID is usually higher than that of a
scanner.

Viewing angle: Scene text and HIDs are not necessarily
parallel creating perspective to correct.

Motion Blur: During acquisition, some motion blur can
appear or be created by a moving object. All other
kinds of blur are included in some other imaging con-
ditions such as focus, for example.

Focus: HIDs are not necessarily equipped with auto-focus
and lens aberration can strongly blur the image.

Lighting: In real images, real (uneven) lighting, shadow-
ing, reflections onto objects, inter-reflections between
objects may make colors vary drastically and decrease
analysis performance.

Resolution and Aliasing: From webcam to professional
cameras, resolution range is large and images with low
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resolution must also be taken into account. Resolution
may be below 50 dpi which causes commercial OCR to
fail. It may lead to aliasing creating fringed artifacts in
the image. It is also the case for WWW (World Wide
Web) images used for fast internet transmission.

2. Considered Scenes

Outdoor/non-paper objects: Different materials cause
different surface reflections leading to various degra-
dations and creating inter-reflections between objects.

Scene text: Backgrounds are not necessarily clean and
white, and more complex ones make text extraction
from background difficult. Moreover scene text such as
that seen in advertisements may include artistic fonts.
Due to the large diversity of backgrounds and text to
handle, it is rather difficult to detect and extract text
in the image.

Non-planar objects: Text embedded in bottles or cans
suffer from deformation.

Unknown layout: There is no a priori information on
structure of text to detect it efficiently.

Objects in distance: Distance between text and HIDs
can vary, and character sizes may vary in a wide range,
leading to a wide range of character sizes in a same
scene.

Moving objects: A moving camera (by its mobile context)
or moving objects may induce unknown motion blur,
which is difficult to model, leading to degraded imaging
conditions, previously detailed.

These definitions are illustrated by some examples in Figure
1.1 and lead to the explanation of NS text images:

NATURAL SCENE TEXT: Textual part of still images or video
frames of a scene with no a priori knowledge of environment,
lighting, objects supporting text, acquisition parameters and fi-
nally text itself. It could easily be viewed as text in real-world
conditions without any constraints or assumptions.
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Figure 1.1: Samples of images of different kinds considered or not
in the text. From left to right and top to bottom: a synthetic im-
age, a video frame with caption text, a web image, a camera-based
document, a real image with raw sensor degradation, a scene text
with uneven lighting, a license plate with blur and low-resolution,
text embedded in a non-planar object, a scene image with differ-
ent character sizes, a scene image with complex backgrounds and
varying colors.

NS text differs from scanner-based document text by the com-
bination of degradations and numerous unknowns to solve indi-
vidually or not. Figure 1.2 shows the area where scientific com-
munity has to contribute to make applications described in the
next section more accessible.

1.3 Numerous Applications

As HIDs become more and more powerful, on-the-fly image pro-
cessing becomes possible, opening up a new range of applications.
Nevertheless, today’s HIDs are easily connected to various net-
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Figure 1.2: Several levels of difficulties for text analysis: NS text
understanding must deal with variations in imaging conditions
and in targets.

works and supplementary computing resources. Starting from
sign recognition for foreigners for the 2008 Olympic Games in
Beijing, navigation with visual tags for surveillance robots, auto-
matic license plate recognition to driver assisted systems with text
projection on windshields, various situations could be handled. A
more useful application for researchers themselves is poster or slide
capturing during a conference... Interesting applications such as
mobile phones operating as fax machines even led to strict sanc-
tions in Japanese bookstores!

In March 2006, a new company, entitled ‘Scene Reader’?, was
launched, whose aim is to recognize NS text in different situa-
tions with a dedicated software. The proposed algorithms of this
text may improve results. Comparatively, a visual search engine
is born is 2005. Its name is Riya® and enables the search of simi-
lar images by directly uploading images or the search of pictures
containing the given text, among many other kinds of searches.
Results are really impressive!

The well-known DjVu format, created by Bottou et al. [10],

2http://www.scenereader.com/
Shttp://www.riya.com/
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compresses digitized images with different algorithms for textual
foreground and background and performs poorly on scene text
embedded in background, leading to low quality. NS text under-
standing may help to properly extract text from backgrounds to
apply a particular compression to scene text, as already forecast
in DjVu. In the same way, the MPEG-7 standard provides infor-
mation to index video sequences, by using image segmentation to
identify objects, people but also caption text. Coding models are
no more pixel-based but object-based and NS text understanding
may extract text from the scene to give additional information for
content-based retrieval.

Visually impaired people are directly affected by such research
and were the initial motivation for this work [34, 44, 45, 117].
With an HID and sufficient resources, scene in daily life may be
analyzed to give them access to text and, coupled with a text-
to-speech algorithm, make them "read" book covers, banknotes,
labels on office doors, medicine labels and so on. For the blind
community, such devices are really expected, proven by the recent
launch of BlindReader* of Kurzweil Technologies! This reading
assistant assumes well-contrasted text on documents and is not
currently designed for NS text.

Applications are very numerous and currently only limited by
imagination. Applications such as "life-log" may one day be pos-
sible with NS text understanding.

1.4 Text Understanding System: Main
Steps

How does one achieve the pre-cited applications? By using a text
understanding system. We prefer this last term to text segmenta-
tion which have several definitions in literature such as text de-
tection, text binarisation/extraction or segmentation of text into
individual components (what we will refer to character segmenta-
tion). Text segmentation is invariably used for each of these steps,
which is inconvenient.

A text understanding system, described in Figure 1.3, encom-
passes three main steps: text detection and localization, text ex-
traction from background, and text recognition.

Text detection and localization: This field finds answers to

4http://www.knfbreader.com/
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Figure 1.3: An overall text understanding system.

the question: '"Is there any text and where is it?". This
part is quite difficult in NS images and has been extensively
studied during previous years. The reader may refer to the
excellent survey of Jung et al. [59].

Text extraction from background: Also named "text extrac-
tion" or "text segmentation', it is the field dealing mainly
with uneven lighting and complex backgrounds. It is a
paramount step to prepare data for OCR. Classical image
segmentation such as separating sky from mountains does
not need as much accuracy as text extraction, which is con-
sidered more as object-driven segmentation. Actually, text
is a meaningful object which has to be extracted properly
to be better recognized afterwards.

Text recognition: This is the final step to convert character im-
ages into ASCII values to understand text and use it for
particular applications.

Other NS text analysis steps such as warping, mosaicing or
text tracking are also part of text understanding systems for dif-
ferent applications and for more details, the reader may refer to
the overall state-of-the-art of Liang et al. [75].
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1.5 Challenges and Overview of Prob-
lem Bounds

The main challenge is to design a system as versatile as possible
to handle all variability in daily life, meaning variable targets with
unknown layout, scene text, several character fonts and sizes and
variability in imaging conditions with uneven lighting, shadowing
and aliasing. Proposed solutions for each text understanding step
must be context independent, meaning independent of scenes, col-
ors, lighting and all various conditions. Nevertheless, structural
context based on neighborhood pixels or neighboring steps is a
rich source of information and needs to be exploited very effi-
ciently. Hence we focus on methods which work reliably across
the broadest possible range of NS images.

It is rather difficult as all degradations could not be corrected
individually because of the high interdependency between some
of them. Moreover, several degradations are irreversible such as
illumination, aliasing or blur. They induce ill-posed problems,
which have no unique solution by definition.

Particular focus is cast on the text extraction step: it is de-
clared as the "most important factor for high performance" by
In-Jung Kim [65], a senior researcher at Inzisoft, which recently
launched Mobile Reader™, a software reading application for
smartphones. Slightly studied since the inception of camera-based
text analysis, text extraction suffers from imaging conditions and,
based on a thorough study on text extraction itself, low resolution
problem is also taken into account. On the other hand, the text
detection step will be only briefly mentioned in this text. S.Lucas,
after the ICDAR (International Conference on Document Analy-
sis and Recognition) 2005 text locating competition [1], was able
to conclude that "in text locating, [...] there has been a signifi-
cant advance in performance [and] most easy-to-read (for humans)
text is now well detected". He also mentioned that variations in
illumination such as reflections cause significant problems for text
understanding. Hence, considerations on uneven lighting and how
to circumvent it for efficient text extraction are particularly high-
lighted as well.
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1.6 Overall Structure

This text falls naturally into two parts, the first one dealing with
background and overview of the whole system, and the second one
with some solutions for main text understanding challenges.

These two parts are decomposed into nine chapters, including
this one:

Chapter 2 describes background information about image for-
mation where image quality is influenced by light on image
quality. The triplet Light, Object and Camera is consid-
ered to understand image formation. In the second part,
several color spaces are described with their advantages and
disadvantages.

Chapter 3 with the previous chapter ends the description of
background on text extraction and additional steps to
achieve an efficient text understanding system such as res-
olution improvement or character segmentation. Literature
survey is also browsed along these lines.

Chapter 4 merely deals with the overview of the whole system
by detailing the proposed feedback-based chain. Material
and databases used for experiments are also sketched out.

Chapter 5 encompasses pre-processing steps for an efficient text
extraction algorithm and describes resolution enhancement
techniques for both still images and video sequences. It high-
lights one of the thesis contributions with the SURETEXT
algorithm using several frames to get a higher-resolution im-
age and assuming a simplified affine motion between frames.

Chapter 6 forms the main body of the text with the selective
metric clustering (SMC) algorithm for text extraction. The
proposed solution is detailed with justifications of each step
and several experiments including comparisons with other
recent techniques to highlight the performance of the whole
method. Instead of using several color spaces to segment
text from background, several agglomerative metrics for
color pixels are preferred based on image formation. To
perfectly complete this step, the following step of character
segmentation is used to add robustness to the solution.
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Chapter 7 is devoted to segmentation of extracted text into indi-
vidual units such as characters to improve recognition after-
wards. Log-Gabor filters, well designed for NS images, are
used here for the first time for character segmentation into
individual components and represent the third contribution
of this text. Parameters of the filter are automatically tuned
with the following step of character recognition. Robustness
against italic characters, strongly joined and broken charac-
ters is also addressed. Segmentations into line and words for
text understanding are mentioned in this chapter as well.

Chapter 8 can be viewed as considerations on character recog-
nition and correction to get an understandable text, espe-
cially to feed into a text-to-speech algorithm. Optimiza-
tion of character recognition is outside the scope of this text
but some clues such as representativeness of the database or
character magnification are detailed. Correction of recog-
nition is a necessary step to get an exploitable recognition
for applications. The previous solution based on bi- or tri-
gram history using linguistic information and the Viterbi
algorithm to find the most relevant path is described and
compared to the fourth contribution of this text: the com-
bination of linguistic information, easily modelled by finite
state machines and the output of character recognition, not
considered here as a closed "black box".

Chapter 9 ends this text with conclusions about text under-
standing for NS images and remaining issues. Contribu-
tions are clearly mentioned before discussing the future of
this work.






— CHAPTER 2 —

Image Formation and Representation

To deeply understand challenges of this text, this chapter de-
scribes firstly all sources of degradations in natural scene images.
Image representation, through color spaces, is then detailed to
mention advantages and drawbacks of some spaces which guided
research.

2.1 Image Formation: Why do Colors
Vary for the same Object?

Perceived illumination can vary drastically depending on the
surrounding environment and these changes induce varying per-
ceived colors. One of the human mechanisms for color consistency
is chromatic adaptation, based on a chromatic behavior. In color
segmentation, research attempts to reproduce the same effect for
computers, which means merging similar colors independent of
viewing conditions and environment. Hence, the trio of, light,
object and camera, must be considered to evaluate all possible
degradations and color variations.

2.1.1 Light

Light can be emitted, absorbed, or reflected by a surface, or simply
pass through it. Emission, transmission and absorption are out of
scope of this text as they do not influence colors or if they do, the
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Figure 2.1: Different reflection types: diffuse, specular and glossy.

influence is minimal, for instance, for transmission surfaces such
as glasses.

Except for pictures of direct light such as photographing the
sun, colors of a scene are viewed with indirect illumination, due to
reflected light onto objects. Reflection is therefore the proportion
of any incident light arriving at a surface and reflected back into
the environment.

To understand all causes of color variation in a scene, it is
convenient to study existing models of light reflection. As stated
in [133], natural light has a diffuse behavior in which rays do
not have a constrained orientation. Nevertheless in NS images,
directional lights sources such as flashes or spots must also be
considered. In further explanations, light is modelled by one ray
coming either from a diffuse or directional light.

2.1.2 Object

Dielectric objects, meaning nonhomogeneous material, are the
most common objects and can induce different reflection types as
illustrated in Figure 2.1:

Diffuse reflection means reflection in all directions equally
while specular surfaces reflect light in a particular direction
with the angle of incidence, 6;, equal to the angle of reflection, 6,.,
following the laws of optical reflection without diffusion as exem-
plified by mirrors. Glossy reflection concerns combination of
diffuse and specular ones to handle natural surface irregularities:
light is reflected in every direction but more in a constrained one
which is the reflection direction of specular surfaces. In reality, all
surfaces are more or less glossy [162].
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To model glossy objects, the Dichromatic Reflection Model
(DRM), introduced by Shafer [132], states that light is reflected
on dielectric materials in diffuse and specular reflection. Light
I, reflected from a colored object surface is a function of pixel
location = and light wavelength A:

I,. = diffuse reflection + specular reflection (2.1)
I = aa(@)SOVEQ) + B, () B (2:2)

where E()) is the spectral power distribution of a light source,
S(A) is the spectral-surface reflectance of an object, ag(x) is the
shading factor and 3,(x) is a coefficient for the specular reflection
term.

Two of the most simple, but representative models, are the
Lambert [4] and Phong [118] models which detail respectively,
diffuse and glossy reflection (sometimes abusively called specular
reflection).

Diffuse reflection: matte surfaces or Lambertian reflectors
are considered in this case under the assumption of a white light
source. The distribution of exiting light can be described by Lam-
bert’s cosine law, which states that the reflected light I, appears
equally bright regardless of viewing conditions. Light perceived
I, by the camera or the observer, which is equal to I, is the prod-
uct of intensity of the light source Iy by the cosine of the angle
0; between I, and the normal direction J_>V to the surface (Equa-
tion 2.3), perturbed by the shading factor, a(z). Hence, as the 6;
increases, the amount of light decreases.

I, = I, x cos(0;) x a(x) (2.3)

Gevers [46] concluded that a uniform colored surface which is
curved returns different intensity values to the camera. Figure
2.2 displays the Lambert’s cosine law for different locations of a
curved surface. This case is quite frequent in NS images.

Glossy reflection: this case refers to shiny objects, present-
ing a globally symmetric reflection to the normal direction N,
hence with reflected intensity I, depending on the viewing con-
ditions. Phong’s model [118] describes the geometry of image
formation for computer generated images and eases the under-
standing of color variations in an image. The camera’s viewing
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Figure 2.3: Glossy reflection defined by Phong’s model. Perceived
intensity is maximum (Ipmqs) when I, = I,.

angle is fixed in NS text extraction but color varies with the sur-
face orientation as well, leading to highlights. Figure 2.3 shows
the orientation of the exiting surface reflection I,.. The perceived
intensity I, is a function of the angle §; between I, and I,., de-
scribed by Equation 2.4.

I, = I, x cos™(0;) x B4(x) (2.4)

where (,(z) defines the glossy coefficient for the point z and
n is the diffusion coefficient around I, attenuating the perceived
light when I, is different from I,..

Moreover, Phong’s model is quite representative of the "flash"
effect on glossy surfaces as described in [120]. This phenomenon
is recurrent in NS images acquired by a camera and a flash or
containing shiny surfaces.

Interreflection between objects is a generalization of previous
cases using a single light source because reflections onto objects
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are considered as another light source. Shadows are present due
to obstacles (other objects) between light and object to be viewed.
Light in the shadowed part results from other attenuated parts of
incident light around.

2.1.3 Camera

The camera sensor may be viewed as the observer’s eye and differ-
ent viewing angles induce different color perception of an object.
An image taken with a linear device such as a digital color camera
is composed of sensor responses that can be described by Equation
2.5:

. / COVQN)AA (2.5)

where p is a 3-vector of sensor responses leading to pixel val-
ues, A is the wavelength of light, C' is the color signal (the light
reflected from an object), and @ is the 3-vector of sensitivity
functions of the device. Integration is performed over the visible
spectrum w (380-780 nm). The 3-vector to represent colors is
born from studying the human visual system with the 3 types
of the eye’s photoreceptors and Maxwell’s color matching experi-
ments [96] to reproduce all colors. It corresponds to Red, Green
and Blue values leading to the well-known RGB color space.

All viewing conditions, matte or shiny surfaces and diffuse or
directional illumination source induce that:

e Two identical (or different) colors in an object may be per-
ceived identically (or differently) by the camera, which is
the usual case with almost no degradations. This case oc-
curs with matte and plane surfaces for example.

e Two different colors in an object may be perceived identi-
cally by the camera. This phenomenon is called illuminant
metamerism where two colors match when viewed under one
light source, but do not match when viewed under another,
and vice versa.

e Two identical colors in an object may be perceived (slightly)
differently due to a curved matte or shiny surface for exam-
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ple. This case is the main issue of object-driven segmenta-
tion where similar colors must be merged even with (slightly)
different perceived colors by the camera.

The color formation in a camera sensor, explained in this sec-
tion, does not handle all unknown sources of variations, present
in NS images but emphasizes the complexity of image formation
and the mandatory challenge to handle varying colors in a scene.

2.2 Image Representation: Why do
Different Color Spaces Exist?

A color space is represented by a multidimensional vector and
pictures acquired by digital cameras use the most popular one,
known as RGB, the physical sensor-based color space. Neverthe-
less, various other color spaces have been designed for different
purposes.

In 1931, the "Commission Internationale de I'Eclairage" (CIE)
adopted different norms to create standard color spaces to use.
To define color spaces for devices, as explained in Section 2.1,
light and observer are of the utmost importance. Hypothetical
standard observers have been set to a viewing angle of 2° or 10°,
inducing that each standardized color space is defined twice, for
each observer. In regards to light, most color spaces are defined
with respect to a white point, being the color reproduced by equal
red, green and blue components. To obtain it, several illuminants
are established and for the daylight, it is the CIE illuminant D65.
Other illuminants, for printing for example, exist but we only
consider D65 in the subsequent explanation.

In color segmentation, and more specifically in text extraction,
independence on changing illumination intensities is expected.
The normalized RGB (rgb) is invariant to illumination variation
and defined by:

___R G ,__ B
" R+G+BY R1G+B’ R+G+B

Nevertheless, it is very noisy at low intensities due to nonlinear
transformation.

(2.6)

RGB space excludes a few visible colors and the CIE defined
the CIE XYZ tristimulus by a linear transformation to solve this
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Figure 2.4: Display of the RGB cube alone (left) and inside the
XYZ color space (right) illustrating the location of visible colors
in XYZ.

problem (cf. Appendix A). For further explanations, its name
will be simplified by XYZ. Nevertheless, a proportion of the XYZ
domain does not correspond to colors visible by humans, contrar-
ily to RGB. Figure 2.4 shows the representation of the RGB cube
inside the XYZ color space. Y corresponds to luminance informa-
tion, what is seen on gray-scale images. To merge similar color
pixels together, a distance is usually determined and has to be
representative of what is actually perceived. For that purpose,
the MacAdam ellipses [162], shown in Figure 2.5 in the normal-
ized XYZ color space (xyz), are such that colors inside the ellipses’
boundaries are indistinguishable by the human eye. It is easily no-
ticeable that using only the well-known Euclidean distance Deq;
between two colors defined by:

3
Deyei(colorl, color2) = Z(colmﬂi — colorl;)? (2.7)
i=1

leads to non-realistic distances. In the bottom left corner of
Figure 2.5, a small Euclidean distance represents large differences
of colors, whereas in the upper left corner, a large Euclidean dis-
tance leads to small differences of colors.

MacAdam ellipses demonstrated that differences in XYZ are a
poor guide to differences in color as colors are better represented
with a context of magnitude (values) and orientation (ellipse’s
major axis). The same conclusion appears in the RGB color space
due to the linear transformation between both color spaces.
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Figure 2.5: MacAdam ellipses denote that colors inside an ellipse’s
boundaries are indistinguishable by a human observer.

CIE L*a*b* and CIE L*u*v* (simplified respectively by Lab
and Luv) are perceptually uniform color spaces, meaning that a
small (and large) Euclidean distance between two colors leads to
a small (and large) perceived color difference. They are converted
from RGB by a non-linear transformation, recreating the logarith-
mic response of the human visual system. These perceptual color
spaces give good results for image segmentation, as studied in a
survey of Skarbek and Koschan [136]. The L*CH® (Lightness,
Chroma and Hue) color space is equivalent to Lab, however the
color is located using cylindrical coordinates. It shall be simplified
by Lch. Roughly speaking, lightness is the perceptual response to
luminance, which is equal to Y in XYZ, chroma is the purity of a
color also called saturation and hue is the dominant wavelength of
a color. These two latter concepts describe together chromaticity
of a color. Figure 2.6 illustrates these concepts. Many CIE sys-
tem users prefer the Lch method of specifying a color, since the
concept of hue and saturation agrees with the visual experience.
These notions are actually more understandable by users.

Another type of color spaces highlights hue, saturation and
luminance of a color such as HSI and HSV, which stand for Hue,
Saturation and Intensity or Value, respectively. Hue is consid-
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Figure 2.6: Tllustration of intensity (lightness) and hue on left and
saturation on right; Lightness is the area under the curve while
saturation is equal to Ed — Fw where Ed is the energy density
of the dominant light and Ew is the contribution of the other
frequencies producing white light.

ered as a good representation of colors, since different colors in
MacAdam ellipses in XYZ or RGB have the same hue. Hence,
the distance between two hues of colors inside one ellipse will be
zero, which is required for image segmentation. Hue is considered
as invariant to certain types of highlights and shadows which is
expected in NS text understanding as well.

Statistical color spaces were recently used to circumvent rigid
CIE definitions with a predefined observer and illuminant. The
most general one is X1 X5 X3 determined dynamically with a prin-
cipal component analysis of image colors, leading to computation
of eigenvectors, forming the basis for a new decorrelated color
space. For more details, see the Karhunen-Loeve transformation
[139]. In order to limit computation time, a fixed approximation
of X1 X5Xj5 created the I; I513 [112] color space. Actually, the first
eigenvector of an image quasi-represents the luminance, whereas
the second and third ones represent a linear combination of R,
G and B components highlighting properties of the human visual
system. I has a low-frequency cutoff to be insensitive to average
luminance while I5 and I3 are sensitive to absolute chromaticity.

The number of existing color spaces keeps increasing and it
is not relevant to mention them all. Nevertheless, other color
spaces have been designed for particular applications such as
printing, which uses the CMYK model (Cyan, Magenta, Yellow,
Key (black)), or television color systems using YIQ (Luminance
(Y) In-phase Quadrature) and YUV (Luminance (Y) and Chromi-
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nance (U,V)), or more generally video systems, which is based
upon YCbCr (Luminance, Chrominance blue and Chrominance
red) but these are out of scope of this text.

Conversions between various color spaces defined in this sec-
tion are detailed in Appendix A.

2.3 To Summarize...

e The number of causes for color variation is large and trying
to correct each issue independently is a utopia. Moreover
some causes combined together may create other problems.
Hence the variation of colors must be taken into account as
an input to a text understanding system and solutions have
to be found in order to handle them.

e Different colors (chromaticities) of an object may be iden-
tical while luminance information may be different or vice
and versa. A solution using luminance information and chro-
maticities independently will be expected, which is rendered
by an algorithm using color and gray-scale values.

e Due to MacAdam ellipses computation, colors have a mag-
nitude and an orientation to consider in a color space.

e It is interesting to understand how color representation and
distance evaluation between pixels interfere with text ex-
traction results.

e Color spaces are historically built assuming a standard ob-
server and standard lighting conditions, which is not versa-
tile at all to handle the diversity of NS images. A solution
which would not be based on conventional color space prop-
erties will be interesting as well.

e Finally, all color spaces are derived from the RGB space,
which implies computationally expensive conversions. As
such, a compromise between quality of text extraction and
computational cost needs to be considered.



— CHAPTER 3 —

Background and Literature Survey of
Text Understanding

Text understanding systems include three main topics: text detec-
tion, text extraction and text recognition. As explained in Chap-
ter 1, we assume images input into the system have previously
detected text if there is any in the image. Most papers describe
independent methods for each of these three tasks and the sys-
tem has been tested against accuracy of the text detection part.
A text extraction system usually assumes that text is the major
input contributor, but also has to be robust against variations
in the detected text’s bounding box size. For a detailed survey
on text localization methods, usually grouped into region-based,
edge-based, connected components-based and texture based, the
reader may refer to the survey of Jung et al. [59]. Hence, this
chapter details state-of-the-art methods of text extraction in the
first section and, in the second section, discusses the usual addi-
tional steps taken to improve text extraction.

3.1 State-of-the-Art of Text Extraction

Text extraction is a critical and essential step as it sets up the
quality of the final recognition result. It aims at segmenting text
from background, meaning isolated text pixels from those of back-
ground. A very efficient text extraction method could enable the
use of commercial OCR without any other modifications. Hence,
we focus on this step in this chapter to better understand where
the system, explained in the coming chapters, fits in.
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Text Extraction Methods
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Figure 3.1: Classification of text extraction methods.

Due to the recent launch of the NS text understanding field,
initial works focused on text detection and localization and the
first NS text extraction algorithms were computed on clean back-
grounds in the gray-scale domain. Following that, more complex
backgrounds were handled using color information. Identical bi-
narization methods were at first used on each color channel of a
predefined color space without real efficiency for complex back-
grounds, and then more sophisticated approaches using 3D color
information, such as clustering, were considered. The classifica-
tion of text extraction methods is displayed in Figure 3.1 and
will be detailed further. Some issues of NS images are present
in color camera-based documents for uneven lighting or low res-
olution, or in non classical documents, such magazines, historical
papers for complex backgrounds, artistic character fonts and sizes,
for example. Hence, some references of these applications will be
mentioned as well.

3.1.1 Thresholding-based methods

Thresholding-based methods, as the name implies, define a thresh-
old globally (for the whole image) or locally (for some given re-
gions) to separate text from background. For example, pixels
below the threshold will be set at 0 (for black) and pixels above,
at 255 (for white).
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e Histogram-based thresholding is one of the most widely
used techniques for monochrome image segmentation. Im-
ages are composed of several homogeneous regions with dif-
ferent pixel values; text is one of these regions. A histogram
counts the number of each pixel value from 0 to 255 in the
image. Peaks (or modes) in histogram (meaning that sev-
eral pixels have this same value) are considered as regions to
segment. The threshold is chosen as the value corresponding
to the valley between two peaks.

The most referenced method is the one described by Otsu
[113], which minimizes the weighted sum of within-class vari-
ances of the foreground and background pixels to get an
optimum threshold as in [30, 143] for a visually impaired-
driven application. Messelodi and Modena [97] chose two
thresholds to strictly isolate the peak corresponding to text.

These methods work well with low computational resources
but are applied mostly on gray-scale images or color chan-
nels independently. Moreover, they fail for images without
any obvious peaks or with broad valleys which appear with
complex backgrounds and slightly varying colors.

e Adaptive or local binarization techniques define sev-
eral thresholds T'(¢,7) for different image parts depending
upon the local image characteristics.

Several papers [74, 164] for video text extraction used the
Niblack’s method [109] where the threshold depends on local
mean p and standard deviation o over a square window of
size to define:

T(i,j) = p(i, ) + k * o (i, j) (3.1)

where 7, 7, are pixel coordinates and k is an additional pa-
rameter which is set depending on the application. An ex-
tension is the method of Sauvola and Pietikéinen [130] where
the threshold is defined by:

16.9) = i)+ Lk (C2D ) 39)

where R is one more parameter to set. Sauvola and Pietikéi-
nen suggested £k = 0.5 and R = 128 for documents and a
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lower threshold for stained and badly illuminated documents
[129]. This adaptive technique is in use in Mobile Reader™™
[64], a mobile phone reading text from Inzisoft.

For color documents, Antani et al.[3] improved the idea of
Kamel and Zhao [60] for gray-scale documents, which is to
compare the average gray value and stroke width of char-
acters. If b is the estimated width of characters, then the
sliding square window over the image will be of size 2b + 1.

For caption text, Gllavata et al. [47] created their own local
thresholding based on beginning and end of text lines. They
assumed fairly horizontal text lines which is not necessarily
the case for NS images.

Adaptive binarizations may handle more degradations (un-
even lighting, varying colors) than global ones but suffer to
be too parametric which is not versatile. Moreover, these
techniques still consider gray-scale images only and were
mainly used for video caption text or documents with clean
backgrounds.

¢ Entropy-based methods, appropriately named, use the
entropy of the gray levels distribution in a scene. Li and
Doermann [74] minimized the cross-entropy between the in-
put video gray-scale frame and the output binary image.
The maximization of the entropy in the thresholded im-
age means that a maximum of information was transferred.
On images including only one character, Yokobayashi and
Wakahara [163] computed entropy on each channel of the
CMY-converted images to select the most informative one,
as the one having the largest peak of histogram. Images are
very constrained with a single character and the choice of the
CMY color space used for printing is not appropriate. Du et
al. [27] compared Otsu’s binarization and different entropy-
based methods such as Pal and Pal [129]’s local entropy,
joint entropy and the joint relative entropy which performs
best on RGB channels independently for video caption text.

Entropy-based techniques have been little referenced in NS
context and applied only on gray-scale images or separate
channels of a particular color space.

Thresholding-based methods are lightweight enough to fit low-

computational resources; that is why they are preferred for par-
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ticular applications with clean backgrounds for their satisfying
results on gray-scale images. Nevertheless, they are not the most
suitable to handle complex backgrounds, varying colors, uneven
lighting and so on.

3.1.2 Grouping-based methods

The following methods group text pixels together according to
certain criteria to extract text from background. Most popular
techniques are clustering-based and are detailed further.

e Region-based approaches include spatial-domain region
growing, splitting and merging, and have been extensively
used in general color image segmentation with unknown con-
tent. These methods may be classified into two groups: top-
down and bottom-up. The first one has been experienced in
Kim et al. [66] by starting with the entire image and going
towards smaller parts with differences between gray values
exceeding a certain value. A merging process followed to
refine results. In video captions, a bottom-up approach has
been used by Lienhart and Wernicke [76]. Based on the as-
sumption that the text contrasts well with its background,
a seed around borders of text bounding box was chosen to
be sure it belonged to background. With the Euclidean dis-
tance between RGB colors in a 4-neighborhood, background
was extended if the distance remained below a particular
value.

In these two methods, a value was pre-defined and as all
parametric methods, it is not versatile and cannot handle
all degradations of NS images. Moreover region-based ap-
proaches are computationally quite expensive. However,
they use spatial information which groups text pixels effi-
ciently.

e Learning-based approaches have initially been designed
to mimic humans by learning a training database to fur-
ther recognize similar patterns. Text has interesting spatial
properties and may be considered as a particular texture.
Several classifiers are widely applied for pattern recogni-
tion and multi-layer perceptrons (MLP) and self-organizing
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maps (SOM) are the most studied in text extraction. Neu-
ral networks, MLP or SOM, composed of linked neurons
such as human brains, may model very general functions
with any degree of non-linearity to separate pixels of text
and non-text into two classes. In Hamza et al. [49], a cas-
caded approach for color historical documents with a SOM
followed by an MLP was used in the training part while the
trained MLP was used for testing alone. It overcame results
of thresholding-based methods. Nevertheless, a training
database is needed and with the wide range of NS images,
this task is difficult to realize but we propose a solution in
Chapter 8. Moreover it implies storage problems and la-
belling of the whole training database before being effective.

Clustering-based approaches group color pixels into sev-
eral classes assuming that colors tend to form clusters in the
chosen color space. They belong to unsupervised segmenta-
tion while learning-based approaches belong to supervised
segmentation. Clustering-based algorithms are the most
renowned and efficient methods for NS images. They are of-
ten considered as the multidimensional extension of thresh-
olding methods.

The most popular method is k-means but its generalization,
Gaussian Mixture Modelling (GMM), is more and more ex-
ploited. The solution in this text uses k-means clustering
but attention on other partitional clustering approaches ex-
ploited in text extraction will be given in the following sub-
sections.

From density-based clustering to Mean-Shift: Ex-
tension of histogram-based thresholding, density-based
clustering is applied on color images and needs the
computation of a 3D histogram to handle color dimen-
sions. Adjacent colors are then merged towards the
nearest highest peak. The algorithm terminates when
the number of desired colors is obtained. It was used
on colored books and journal covers with relatively
clean background and video scene text in Sobottka
et al. [137] and Wong and Chen [160]. Perroud et
al. [116], in one extension of Sobottka et al. [137],
used a 4D-histogram with the RGB color space and
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the channel of luminance Y. Histogram-based cluster-
ing is also used in the DjVu compression and display
format [10]. The Mean-Shift algorithm, first created
by Fukunaga in 1975 and extended by Comaniciu [19],
seeks the "mode"; point of highest density, of the 3D
color histogram. Firstly it defines a window W of
width r, centered randomly at a point, z;. The mean
Zy, = 1/IW[3 ey #j is computed and the Mean-Shift

is Z — 2~ % where f is the density estimate.

The window is then moved to Z;(W) and this loop is
repeated until convergence, which is guaranteed. This
successful technique has not been tested on NS text,
but more generally on color segmentation. As it is
publicized as the best method up-to-date, we tested it
and we shall show some results in Chapter 6.

From graph theory to spectral clustering: In graph
theory concept, color pixels are merged based on the
minimum Euclidean distance (or another one) in a
connected neighborhood to form regions in the color
space. These merged pixels are represented by vertices
in the graph and links between geometrically adjacent
regions have weights that are proportional to the color
distance between the regions they connect. They de-
scribe a hierarchy to solve by graph theory such as
in [82, 125, 156]. The matrix of weights, called the
affinity matrix A, is built over a sliding window W
with A;; = exp_”g“_””juz/g"Y2 if i # j, else equal to
zero, where « is a scaling parameter, and ;. , is the
set of colors to cluster. It may be solved by finding
a minimum of normalized cuts [108] or more gener-
ally by spectral clustering, which makes use of the
spectrum of the affinity matrix. This latter method
computes eigenvectors of the Laplacian matrix to have
representation in the spectral space. The Laplacian
matrix L is equal to L = I — D™Y/24D~Y/2 where I
is the identity matrix, D is the diagonal matrix whose
diagonal elements are the sum of corresponding A’s
row, by then stacking the k eigenvectors in columns in
a matrix which will be normalized, and fed to the k-
means algorithm, described further in this section. k is
the desired number of clusters. The main advantage of
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this technique is the invariance against varying colors.
The system will be further compared with this method,
even if it was never tried on NS text extraction.

From k-means to GMM: k-means is considered the
most used technique in clustering. The procedure
follows a simple approach to classify color pixels in a
defined color space through a certain number of clus-
ters (k) fixed a priori. The main idea is to define k
centroids, one for each cluster and compute a defined
distance between points and centroids. Iteratively, all
pixels belong to a cluster whose centroid is the nearest
one. Another way to deal with clustering issues is to
use a model-based approach, also called probabilistic
clustering. In practice, each cluster can be math-
ematically represented by a parametric distribution
(assumed to be Gaussian). All color pixels are there-
fore modelled by a finite mixture of these distributions
and parameters are automatically computed with the
Expectation-Maximization (EM) algorithm or one of
its variants. More explanations are given in Subsection
3.1.3 and in Appendix B.

There has been little experimentation done on text extrac-
tion using other clustering methods such as fuzzy c-means,
which is the extension of k-means with a degree of belong-
ing to a cluster. As all methods can obviously not be cited
in this text, the reader may refer to the survey of Berkhin
[9] and only ones having a great impact on results are men-
tioned. In the following subsection, we focus on k-means and
GMM, being the most extensively used clustering methods
in text extraction.

3.1.3 Extensively used clustering methods in

text extraction

e K-means is a simple unsupervised learning algorithm and

has been extensively used in color segmentation and more
specifically in text extraction. It aims at minimizing an ob-
jective function, which is the sum-of-squared error criterion
J, to build representative clusters, meaning that points in-
side a cluster are more similar than those inside another
cluster. Equation 3.3 details J with M, the chosen metric
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to compute the similarity between the n points x and the
centroids ¢ of the k clusters:

n

J= ZZM(% —¢j)? (3.3)

j=1i=1

The algorithm is composed of the following steps and illus-
trated in Figure 3.2:

1. Select k points as the initial centroids in a predefined
color space

2. Select a metric M to assign pixels to a cluster

3. Assign each color value in the image to the cluster that
has the closest centroid

4. When all colors have been assigned, recompute the po-
sitions of the k centroids

5. Repeat steps 3 & 4 until the centroids no longer move.

Different variants of k-means exist and the main ones are
based on:

Choice of color space: colors to be clustered have differ-
ent locations in different color spaces. Hence, k-means
clustering in NS text extraction is either performed in
RGB [66, 80, 147], in HST [42, 157], in YCbCr [39] or in
a dynamically decorrelated color space using principal
components analysis [24].

Choice of the metric: initially, k-means computes dis-
tances between points and cluster centroids by using
the traditional Euclidean distance. As far as we know,
we wrote the only papers which deal with other dis-
tances in NS text extraction.

Choice of computation of centroids: as named, k-
means uses the mean of points inside a cluster to
compute the centroid. Other known variants such as
the maximum or the medoid (leading to the k-medoid
algorithm but more used for binary objects) exist and
as far as we know, the mean is the only way of com-
puting centroids, used in NS text understanding.
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Figure 3.2: Illustration of the k-means algorithm in four points. 1:
Choice of k objects and centroids and computation of clusters, 2
and 3: Computation of centroids and clusters, 4: End of algorithm
when clusters no longer move.

e Gaussian Mixture Modelling (GMM) is also an unsuper-
vised classifier and is used to model the probability density
function of a color vector X by the weighted mixture of M
basis functions (components) as:

M
P(X) = Zpigi(X) (3.4)

where the weight (mixing parameter) p; corresponds to the

prior probability that color vector X was generated by each
. . M

component ¢ and satisfies Y ., p; = 1.

The basis functions g; are chosen to be Gaussians whose
probability density can be described as:

1 1 Tsx—1
(X 3) = excp(~ HX =) T (X))
9:(Xlis: 2) = e
(3.5)
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where p; and ¥; are the mean vector and covariance matrices
respectively, det represents the determinant of ¥ and d = 3
for color images in a 3D color space. According to [127],
Gaussian distributions are particularly well suited for NS
images.

The number of clusters is pre-defined and corresponds to
the number of Gaussian distributions, each representing a
color distribution which is attributed to a particular object
in a scene, such as text for example. To know which points
belong to which Gaussians and to estimate the distribution
parameter (u;,%;), EM [21] is used as in [41, 79] for NS im-
ages and more specifically for signs, for the second reference.
A detailed explanation of EM is given in Appendix B.

Similarly to k-means, several variants exist and the main
ones are based on:

Choice of color space: colors represented in various color
spaces lead to different segmentations and HSI is used
in [161], RGB in [41], rgb in [79], and Luv in [105].

Choice of distribution parameter resolution: EM is
the most used, but several extensions are also per-
formed such as Variational EM [105] or Gibbsian EM
[16].

Different ways to code the algorithm: as GMM-based
clustering is computationally quite expensive, several
variants of optimizations, such as [36], have been eval-
uated but not necessarily on text extraction.

As main drawbacks, clustering methods suffer from the need to
previously set up the number of clusters and initialization varia-
tion leading to different segmentations. Problems of initialization
are traditionally solved by multiple computations based on ran-
dom initialization to reduce this effect towards convergent results.
For the number of clusters to set, it is either pre-fixed such as
in [145] or dynamically computed, with 3D histogram analysis in
[66], for example.

Spatial information in clustering-based text extraction is not
embedded in initial algorithms leading to non-accurate segmenta-
tions with missing pixels inside some parts of text or non-sharp
edges of characters. Lopresti and Zhou [82] included local infor-
mation to build the affinity matrix before using graph theory to
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segment text from WWW images. For k-means, few papers pro-
posed solutions. Fu et al. [39] included text geometry property
after clustering to improve results such as in [144] with consider-
ation on how to combine clusters to get sharp and consistent text
components. Regarding GMM, spatiality is usually included by
using the Potts model (also named Markov Random Field (MRF))
as GMM parameter resolution, as in [16, 159]. The main benefit
is the integration of color and spatial information in the same al-
gorithm. Nevertheless, this solution is known for its demanding
resources.

3.1.4 Challenges

With this non-exhaustive literature survey on text extraction,
some challenges and open task domains are raised:

e Issue relating to independence against the number of clusters

e Handling all degradations listed in Chapter 2 with a com-
putationally interesting grouping-based method.

e Integration of spatial information to exploit interesting text
properties such as alignment, similar character sizes and
fonts inside a word...

e Several color spaces have been used in several papers for NS
text understanding. The selection of color space is appli-
cation dependent. There is apparently no color space per-
forming better than another one for unknown NS images
in a general context. Why and how can a solution group
interesting properties and results of several color spaces?

3.2 Required Pre- and Post-Processing
Steps for Efficient Text Under-
standing

Faced with multiple degradations and diversity of situations, text
extraction alone is not sufficient to produce recognizable text for
off-the-shelf OCR. Work on OCR itself may be done to improve
results such as recognition of much degraded characters [111] with-
out any pre-processing. Nevertheless, since the main aim is to
provide a solution having satisfying performance for several kinds
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of NS images, it is better to improve text quality beforehand, and
only if necessary.

3.2.1 Pre-processing steps of text extraction

Low resolution, blur and complex backgrounds are the main issues
relative to text extraction failures and literature is full of tried
and true algorithms of resolution improvement and background
removal.

e For individual still images with no a priori context, few so-
lutions have been proposed and they were mainly based on
interpolation (either bilinear or bicubic) to increase image
sizes by adding interpolated pixels between existing ones
which adds more information. Based on several still images
of different portions of a text area, Mirmehdi et al. [99]
circumvented low resolution text by mosaicing all partial
images to get a higher resolution image with the whole text.
Uchida et al. [150] also used mosaicing with video frames by
interpreting motion speed of the camera to obtain recogniz-
able text. To mimic behavior of presence of multiple frames
in a video sequence, example-based increasing resolution are
methods such as [114] which make regions of low resolution
(LR) image match to higher resolution piecewise patches,
present in a given database.

For multiple frames, Wolf et al. [159] proposed to apply a
bilinear interpolation on each frame of a text sequence and a
higher resolution image is produced by averaging all frames.
This solution has the advantage of increasing resolution and
also circumventing uneven lighting effects with averaging.
Nevertheless it may only work on caption text with no text
motion between successive frames.

When considering motion, super-resolution (SR) field is
involved such as Li and Doermann [74] who assumed a pure
translational model between frames for overlaid text. The
motion estimation was performed using spatial-domain pair
wise correlation minimizing sum of square differences be-
tween interpolated text blocks. In a driver assistance system
[38], Fletcher and Zelinski used feature-based registration
for the recognition of circled road signs, e.g. speed limits.
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The circles were the features to be registered and normal-
ized cross-correlation was performed on them to compute
the translational motion vectors. Donaldson and Myers [23]
also assumed a pure translational model and motion esti-
mation was carried out by pairwise correlation. A Bayesian
framework with a maximum a posteriori (MAP) estimator
was then used for reconstruction of SR text which allowed
the inclusion of a priori information to constrain errors: a
bimodality prior assuming that text is bimodal and a Gibbs
prior with a Huber gradient penalty function assuming that
text images are locally smooth.

A pure translational model is a common assumption in most
papers due to its simplicity and ease of implementation.
Nevertheless, with real-scene data, it can lead to misregistra-
tion and can require a more elaborate reconstruction step.
Capel and Zisserman [12] used a projective transform motion
model for SR text specifically for image sequences in which
the point-to-point image transformation was of enough com-
plexity to demand such consideration. Two methods, a MAP
estimator based on a Huber prior and an estimator regular-
ized by using the Total Variation (T'V) norm were proposed
and compared for SR text. Only visually enhanced results
were reported.

Interestingly, no affine models have been tried on text image
sequences and we will suggest in this text that a simple 3-
parameter affine motion model is a good representation and
compromise between accuracy and overall complexity of a
solution. An extended survey of SR techniques will be given
in Chapter 5.

Background removal mainly aims at reducing uneven light-
ing effects such as the proposition of Seeger and Dance [131]
with their BST (Background Surface Thresholding) algo-
rithm. It computed a surface of background intensities by
identifying regions of LR text and interpolating background
values around these regions. This was followed by an adap-
tive thresholding step. A similar method has been designed
by Chin et al. [18] to remove ring effects of lighting in
camera-based document images. The background surface,
as illustrated in Figure 3.3, was obtained with a median fil-
ter over the image, followed by a histogram equalization to
compute an index image where an adaptive threshold was
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Figure 3.3: Ilustration of the background surface thresholding
algorithm. Left: original image with specular reflection, right:
estimated background surface (Reproduced with kind permission
from [18]).

applied depending on indexes. A wavelet-based method was
proposed in Thillou and Gosselin [146]: after decomposition
into several frequencies, only higher frequency information
added to the lowest one for main content was kept for recon-
struction. Uneven lighting is usually low frequency degra-
dation and may be reduced with this method.

For quite clean images or camera-based documents, back-
ground removal is an efficient method which enables the use
of off-the-shelf text extraction algorithms such as in [146]
where the technique is followed by the global Otsu binariza-
tion. With the large diversity of NS images, we will propose
a text extraction method handling simultaneously uneven
lighting issues.

3.2.2 Post-processing steps of text extraction

Typical OCR fails against medium-quality extracted text having
background portions, misalignment, too many adjoining charac-
ters such as text on a wavy tee-shirt where some characters are
closer than others or totally connected. Hence to provide a very
high quality extracted text, some post-processing is sometimes re-
quired and literature mainly counts rule-based methods and seg-
mentation algorithms of characters into individual components.
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e Rule-based methods are useful to remove spurious parts

of non-textual extracted parts. Gatos et al. [43] defined
several thresholds and global variables such as the maximum
and minimum number of expected characters in a text line
along with the maximum and minimum number of lines in a
paragraph, while Esaki et al. [30] defined a number of rules
about character sizes to remove certain parts after a global
binarization method.

Text properties, such as geometry, alignment, color and
so on, differentiating text from other objects may be used
to improve text extraction algorithms. Nevertheless, strict
rules with thresholds are not exploitable at all for NS im-
ages.

Classical character segmentation for traditional type-
written characters fails for NS images as it assumes clean
conditions and particular kinds of connectedness between
characters such as the projection profile method implying
vertical break lines [87]. An exhaustive survey on classical
character segmentation into individual components may be
found in [14] and will be discussed in Chapter 7.

With the recent emergence of NS image analysis, most pa-
pers focus on text detection and localization. When text
extraction is considered, main tested images include either
clean or complex backgrounds but almost without joined
characters. Text on NS images such as road signs, adver-
tisements, has to be large and easy to view with well-spaced
characters. Nevertheless, more complex images may be con-
sidered with all text present in daily life such as labels on
logos, brand names on clothes and so on. An example of dif-
ficult NS images with strongly joined characters is displayed
in Figure 3.4. As previously mentioned, few papers proposed
solutions. Among them, Karatzas and Antanacopoulos [61]
worked on WWW images with difficult text and suggested
a region-based method to extract text followed by a fuzzy
proximity measure to add topological properties of character
strokes. Chen [16] obtained more individual components by
considering text extraction with spatial information by us-
ing MRF-based text extraction. Thillou and Gosselin [147]
extracted text with a k-means clustering method and com-
bined textual clusters by paying attention to pixels which
connected individual components.
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Figure 3.4: Sample of a word image with very connected charac-
ters on a sweatshirt.

These additional post-processing steps are dependent on qual-
ity of text extraction. Character segmentation is often required
with off-the-shelf OCR to improve recognition results while rule-
based methods are usually needed in addition to medium text
extraction algorithm.

3.2.3 Challenges

With description of pre- and post-processing steps usually added
to a text understanding algorithm, some considerations may be
formulated:

e For very LR images, an increasing resolution technique is
required to improve text extraction quality and consequently
character recognition.

e The reduction of rule-based techniques, which are obstacles,
for post-processing steps is mandatory for a versatile algo-
rithm by definition!

e Text extraction must be of very high quality, and a good
amount of work has to be completed to reduce additional
steps, which are always sources of additional errors. Never-
theless, with the aim of being versatile, the steps of Section
3.2 may need to be included, but only when required, and
without negatively impacting simple, clean, high resolution
images or more generally well extracted text.






— CHAPTER 4 —

Text Understanding System

This chapter provides a global view of the proposed system for
understanding text embedded in still images after text detection
and localization. It is organized in two sections. First, an overview
of the text understanding system is briefly introduced and the
second section mainly presents and discusses the characteristics
of the databases used in this text.

4.1 Text Understanding Chain

When several consecutive steps are useful for a given task, first
works are based on a sequential scheme. It is also true of the text
understanding system with all steps described in Chapter 3. Nev-
ertheless some papers merge some steps such as Kusachi et al. [71]
which recognized Kanji characters directly from the original image
by using a training database with numerous forms of each charac-
ter with large deformations and partial parts of characters. The
image was divided into several squares which are then recognized
as a part of Kanji characters or not. Negishi et al. [106] extracted
and recognized an isolated or a connected character directly from
a scene to circumvent false negative detection of connected char-
acters. They extracted edge or curve features and used voting,
similar to the generalized Hough transform to simultaneously re-
alize the two steps. The main drawback is the consideration of
one character only in each process. In a particular application
for robot navigation in a known environment, room numbers were
also recognized from the whole image with template matching in
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Figure 4.1: From [65], comparison of accumulation of errors along
with a sequential text understanding chain between conventional
systems and camera-based systems (CBDAR, stands for camera-
based document analysis and recognition).

Iwatsuka et al. [56]. Impressive results were presented in Tu et al.
[149] where text was simultaneously detected, extracted and rec-
ognized by combining bottom-up learning-based algorithms and
top-down generative models using the Data Driven Markov Chain
Monte Carlo algorithm to make models fit to pixels.

These algorithms are computationally expensive or driven by
a particular application only. Part of our motivation is to build an
efficient text understanding system with lightweight algorithms
to fit within mobile devices’ resources (such as PDAs) as they will
be intensive future users of these systems.

To circumvent degradations of NS images acquired by cameras
of different qualities, we opt for a feedback-based system. In-Jung
Kim, in [65], described the impact of accumulation of errors in
camera-based systems compared to conventional scanning acqui-
sition as explained in Figure 4.1. Hence, it highlights the necessity
to choose a feedback-based system to dynamically correct errors
and as soon as possible.

Almost all steps of the proposed system are reinforced by
information of the following step to refine results as described in
Figure 4.2 and numbered in the similar way.
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Figure 4.2: Proposed text understanding system: parts in pink
will be detailed in following chapters.

1. Due to computational efficiency, text detection and localiza-
tion must be performed as soon as possible. In many papers
such as [143], text detection is processed on LR images to
decrease computation time, hence the increasing resolution
algorithm can be done afterwards. Note that text detection
and localization are out of scope of this text.

2. The second main step increases resolution of LR images or
LR video frames. The SURETEXT algorithm detailed in
Chapter 5 assumes a simple affine model for motion regis-
tration and uses Teager filtering to enhance high frequency
information before reconstructing the higher resolution im-
age.

3. The text extraction step using selective metric clustering
takes advantage of the subsequent step of character segmen-
tation. This latter step uses spatial information to segment
textual components into individual characters and to refine
text extraction results.

4. To properly segment text into individual characters and to
dynamically choose parameters of log-Gabor filters dedi-
cated to this task, the following recognition step is used to
validate character segmentation.

5. Lastly, the final feedback is performed between recognition
and correction. By adding linguistic information to the best
OCR outputs, correction of recognition errors is carried out
to increase results.
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4.2 Material and Databases

Several databases are used to test the system or to produce re-
sults in order to validate or invalidate a method. The use of several
databases enables us to highlight versatility and robustness of pro-
posed solution and to emphasize independence of algorithms from
a particular set of images.

DB-ICDAR [1]: This database was initially created for a com-
petition of word recognizer in the scientific community. Al-
most no results were provided compared to the ICDAR 2003
text locating competition. Hence recognition algorithms
were obviously not mature enough to be presented in a con-
test. This database of 2266 images has the great advantage
to be public for (future) comparisons with other papers and
has been built with several cameras with different resolu-
tions, unknown a priori. Images are all in color and com-
pressed in JPEG format.

DB-Sypole: Research for this text was partially used in a na-
tional project named Sypole aiming at building a mobile
text recognizer for the visually impaired. This database was
mostly taken by blind people and we keep only images with
text. For most people, it was their first time taking a pic-
ture, and some pictures of hand or walls, for example, do
not contain text. We completed this database to increase
the number of pictures to 500. The single-sensor CMOS
cameras used were of various brands: HP Photosmart Mo-
bile Camera (HP), Pretec Compact Camera or Pocket Loox
Fujitsu Siemens F20 (Loox), and 1.3 Megapixel cameras em-
bedded on top of a personal digital assistant or already in-
tegrated in it. Images were saved in either BMP or JPEG
formats. This database includes images with English and
French text. 300 images with French text were used to test
the correction method.

DB-WWW: Web images have some similar issues as NS images
such as low resolution and complex backgrounds and we
extended tests of the algorithm on LR text of 150 images.
100 images include French text as well to test the final step
of correction.

DB-VideosPDA: Even if this text focuses on still images, we
recorded 16 short gray-scale videos of text with slight mo-
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Figure 4.3: Samples of the various databases used in this text.
From top to bottom, left to right: samples from DB-ICDAR, DB-
WWW, DB-VideosPDA, DB-Sypole.

tion between frames, actually equal to hand shaking when
holding a camera-enabled PDA to test the super-resolution
method and to add information to still images. Video se-
quence duration is about 5 — 7 seconds each. Videos were
taken with either the QVGA HP (288 x 352) or CIF Loox
cameras (288 x 352) with a frame rate of 5 frames per second
which is low and representative of low quality cameras.

Samples of each database are illustrated in Figure 4.3. All
databases include color NS images except DB-WWW where, in-
stead, artificial text is embedded. They are populated with im-
ages taken with different cameras of different resolutions in differ-
ent situations with clean and complex backgrounds of daily life.
Moreover, neither of the databases have simulated data or con-
strained lighting to conform to reality as close as possible and to
give representative results! Some images may be considered as
"easy" with even lighting, clean background, no blur and homoge-
neous character sizes and fonts, whereas others are "very difficult”
with complex backgrounds, specular highlights, artistic fonts and
so on, which enables us to highlight the versatility of the system.
Gray-scale versions of databases are considered in Chapters 5 and
7 to exploit only intensity values y.

The transformation is assumed to be a linear combination of
the red, green and blue intensity values, R, G, and B and given
by:

y =0.299R + 0.587G + 0.114B (4.1)
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Figure 4.4: Differences between a manual text locating system (in
red) and an automatic one (in white): some characters may be cut
such as the word "SALE" and false detections may appear (bus
doors)(Reproduced with kind permission of Springer Science and
Business Media from [84]).

Detection of text areas were either already performed in DB-
ICDAR or manually done in DB-VideosPDA. For DB-Sypole
and DB-WWW, detection was both manually and automatically
performed using A.Chen’s algorithm [83], available on Internet.
By providing test images, users receive evaluation of A. Chen’s
method through a dedicated website in an XML format. We used
this automatic text locator because it was announced as one of
the best entries of the ICDAR 2005 text locating competition
and it is also publicly available for comparison with other works.
Moreover, automatic methods are not as perfect as manual ones
as displayed in Figure 4.4 and the system aims at being robust
against errors in text detection and inaccuracy of the text areas’
bounding boxes.

For easier comparisons with other papers, in some evaluation
part, a commercial OCR is mentioned. Hence, each time an off-
the-shelf OCR is used in tests, it is referred to ABBY'Y FineReader
8.0 Professional Edition Try&Buy !. Similarly, when Matlab is
mentioned, it is related to Matlab version 7 R14 [54].

Ihttp://france.abbyy.com/download/?param=46440
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Resolution Enhancement

The quest for high resolution images or image sequences from a
cheap and small acquisition system is a challenge rooted deeply in
both hardware and software. While hardware advances in leaps
and bounds in terms of more powerful yet smaller footprint pro-
cessors, sensors, and memory, the progress of software and appro-
priate algorithms requires longer-term research and development.
Due to the increased use of embedded low-resolution imaging de-
vices, such as handheld PDAs and mobile phones, coupled with
the need to extract information accurately and quickly, resolution
enhancement techniques are quickly becoming a crucial step in
the field of text recognition.

If the Nyquist criterion is assumed to be respected when an ob-
ject image is sampled by a camera array, it is theoretically possible
to perfectly reconstruct the original light field by an interpolation
function. Nevertheless, in practice, in the presence of noise or
more obviously in single-sensor cameras, the Nyquist criterion is
not satisfied leading to subsampling which causes artifacts. Hence,
the aim is to produce as perfect a high resolution (HR) image as
possible. Section 5.1 will investigate results for still images while
Sections 5.2, 5.3 and 5.4 will be dedicated to algorithms in super-
resolution (SR) field - that is using several frames to reconstruct
the HR image - , the proposed SURETEXT algorithm and finally
evaluation and results.



48 Céline Mancas-Thillou

5.1 Resolution Enhancement for Still
Images

Resolution enhancement of one still image is challenging by defi-
nition as there are no other sources of information. An example
could be to increase resolution of text on an advertisement poster,
acquired by a low-priced camera. Conventional interpolation algo-
rithms, such as nearest neighbor, bilinear (with a linear kernel) or
bicubic (with a cubic kernel), can be classified by basis functions.
Those algorithms have been developed by assuming that there
is no correlation among adjacent pixels in the imaging sensor,
no motion blur, and no aliasing in the process of sub-sampling.
Since these assumptions are not true in general low-resolution
(LR) imaging systems, conventional interpolation algorithms are
not appropriate.

More complicated algorithms such as vector median filtering
[86] which handles multidimensional vectors, like representation
of colors, or the Bimodal-Smoothness-Average [26] which takes
advantage of text image properties, give slightly better results.
Another category called SISO (Single-Input Single-Output) super-
resolution enables to recover HR information missing in a single
LR image by training models to learn piecewise correspondences
between LR and possible HR information to form a SR image.
Nevertheless, improvement is not really significant for text ex-
traction algorithms compared to the additional computation time
of these methods. To circumvent missing high frequency informa-
tion, we chose a method similar to [120], a conventional interpo-
lation by a factor of 2, the bicubic method, followed by an edge
sharpener, as described in Equation 5.1.

Limproved = 1 + AI” (5.1)

To enhance high frequency information, we use unsharp mask-
ing which adds to the original I a portion () of its second deriva-
tive I” computed using a Laplacian filter. A larger factor of inter-
polation may lead to degradations, due to aliasing or compression
artifacts.

Nevertheless, resolution enhancement of still images cannot
achieve the same improvement as when using multiple frames.
Figure 5.1 describes the effects of this solution: on right, the hole
inside the "A" of "JAIN" is recovered and the result is crispier lead-
ing to better text extraction and recognition. However, as shown
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Figure 5.1: Difference between non-enhanced and enhanced ex-
tracted text. From left to right: original image and its extracted
text, resolution-enhanced image and its extracted text: the hole
inside ‘A’ has been recovered after resolution enhancement. Text
extraction is processed with the SMC algorithm described in
Chapter 6.
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Figure 5.2: Impact of resolution enhancement on very LR still
images: original image (top-left), its extracted text (top-right),
resolution-enhanced image (bottom-left) and its extracted text
(bottom-right). Text extraction is processed with the SMC algo-
rithm described in Chapter 6.
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in Figure 5.2, very LR images lead to unsatisfying results. Due to
aliasing effects, unsharp masking may highlight this kind of noise
along with character edges. Hence, the size of the Laplacian op-
erator is dependent on character size. For more versatility, it is
better to increase resolution for small upscaling only. For highly
LR images, dedicated methods may be designed. Nevertheless, if
information from multiple frames is present, results will be drasti-
cally improved. For more details on enhancement of still images,
the reader may refer to the recent survey of Van Ouwerkerk [151].

5.2 Super-Resolution for Video
Frames'

As stated in the previous section, the combination of multiple
frames, which are sources of additional information, may effi-

1Subsections 5.2.1 and 5.2.2 are under the form of a book chapter that we
have written in [95] where the reader may find finer details.
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ciently enhance resolution. This time, a mobile phone camera
may be used to capture one or more lines of the advertisement
poster with several frames obtained manually (inducing shaking)
for only a few seconds. The result is also a LR image sequence.
This could be possibly sent to a server for transformation into
ASCII text or be done on the fly on the phone if (one day) it is
enabled to do so.

5.2.1 Context of super-resolution algorithms

Most SR algorithms deal with the integration of multiple LR
frames to estimate a higher resolution image. The most com-
mon term of reference for multiple frame super-resolution found
in the literature is Multiple-Input Single-Output (MISO) or static
super-resolution. A recent focus of SR research relates to dy-
namic super-resolution which is aimed at reconstructing a high
quality set of images from low quality frames, often referred to as
Multiple-Input Multiple-Output (MIMO) super-resolution. This
approach is also known as video-to-video super-resolution. For ex-
ample, applications can be found in video enhancement captured
by surveillance cameras to increase the general visibility and acu-
ity of a recorded event; but MIMO SR is out of scope of this text.
For more details on general super-resolution and its applications,
the reader is referred to [114].

In this chapter the focus is on the application area of text
analysis: how can SR be used in the generation of higher quality
text images that can be more accurately interpreted by in-house
or off-the-shelf OCR software?

NS text suffers from different degradations and by using mul-
tiple frames of a video sequence and static SR techniques, most
of these degradations can be minimized or even suppressed. For
example, in character recognition, text fonts are assumed to have
sufficient resolution to be reliably recognized by OCR. For doc-
ument images, 300 dpi is plenty for satisfactory recognition and
that means characters can occupy an area as large as 40 x 40
pixels. However, in video frames, a resolution of 320 x 240 is
very common and therefore text may well be rendered no larger
than 10 x 10 pixels, hence the enhancement of spatial resolution
becomes important®.

IThese numbers are based on the assumption that the acquisition device
is at a sensible, realistic distance from the text.
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The SR problem is usually modelled as the reversal of a degra-
dation process. This is an example of an inverse problem where
the source information (SR image) is estimated from the observed
data (LR images). Solving an inverse problem generally requires
first constructing a forward model. Most imaging devices can be
described as a camera lens and aperture which produce blurred
images of the scene contaminated by additional noise from various
sources: quantization errors, sensor measurement or model errors.
For an SR image z of size M x N and a set of K LR images yy,
the observation model can then be expressed as:

yr = DBpyWix + ny (5.2)

where Wy, is a M x N warp matrix which maps the HR image
coordinates to the LR coordinates and represents the motion that
occurs during image acquisition, By is a M x N blur matrix caused
by the optical system, the relative motion during the acquisition
period and the point spread function (PSF) of the LR sensor, D
is the decimation matrix of size (M x N)?/(L x P) where L and
P are the subsampling factors in the horizontal and vertical direc-
tions respectively, and finally ny is the associated noise. Usually
D and y; are known and are inputs in the SR algorithm. Us-
ing columnwise reordering and by stacking the frame equations,
Equation 5.2 can be rewritten as:

y=Hz+n (5.3)

where H represents all the degradations, i.e. H = DB;Wj
for all k. Super-resolution is a computationally intensive prob-
lem which involves several thousand unknowns. For example,
super-resolving a sequence of just 50 x 50 pixel LR frames into
a 200 x 200 SR image by a factor of 4 in each direction involves
40000 unknown pixels. As mentioned, SR is an inverse problem
and is ill-conditioned due to the obvious lack of LR frames and
the additional noise. Hence matrix H is under-determined and
regularization techniques may have to be used to overcome this
problem in the image super-resolution process.

Super-resolution algorithms require several processing stages,
from motion estimation through reconstruction to deblurring, pos-
sibly involving regularization along the way. An overview is shown
in Figure 5.3. These stages can be implemented consecutively or
simultaneously depending on the reconstruction methods chosen
(we will come across examples of these later).
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Figure 5.3: General scheme for super-resolution.

Motion estimation/registration An important key to suc-

cessful super-resolution is the existence of change between
frames, e.g. by motion in the scene or through ego mo-
tion. For example for scene motion, consider a fixed camera
video surveillance scenario monitoring cars for licence plate
recognition; low resolution and low quality image sequences
arising due to weather conditions and changing illumina-
tion can be enhanced to increase the chance of character
recognition. In the context, an example of camera motion
would be a handheld camera-enabled PDA capturing a text
document for a short period. The difference between the
frames arising through hand jitter would result in a suitable
set of frames for super-resolution.

Motion estimation is then the first step in SR techniques
and motion parameters are found through some form of reg-
istration, i.e. the relative translations, rotations and other
transformations that define an accurate point-to-point cor-
respondence between images in the input sequence. Usually,
each frame is registered to a reference one (most commonly
the first) to be able to warp all frames into a single higher
resolution image in the reconstruction stage. An alterna-
tive would be to register each frame against its preceding
frame but consecutive temporal errors can accrue leading to
inaccurate results.

An error in motion estimation induces a direct degradation
of the resulting SR image. The artifacts caused by a mis-
aligned image are visually much more disturbing to the hu-
man eye than the blurring effect from interpolation! Never-
theless, we will see in Section 5.3 how to deal with a limited
number of motion estimation outliers. Clearly, the perfor-
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mance of motion estimation techniques is highly dependent
on the complexity of the actual motion and the model used
to represent it.

The two parameter translational model is often enough to
reasonably represent scene motion in many different appli-
cations, not least one where a handheld device is used for a
short period to capture some text. Indeed according to [32],
the model approximates well the motion contained in image
sequences where the scene is still and the camera is mov-
ing. Moreover, for sufficiently high frame rates most motion
models can, at least locally, be approximated by this sim-
ple and low cost model. However, the assumption of a pure
translational model is not always valid and can result in sig-
nificantly degraded performance. A regularization technique
or a deblurring process must then be applied to constrain or
correct motion estimation errors (or a higher order motion
model employed).

Correlation is the main path to a solution in the transla-
tional model and both frequency and spatial domain based
variations have been applied in text-related applications.
The main advantages in using correlation in the frequency
domain are fast computation and illumination-invariance in
phase space.

Phase correlation is a well-known method in frequency do-
main analysis and was applied by [164] for text SR. The
main steps in phase correlation are based on the shifting
property of the Fourier transform. Hence, if the motion vec-
tor is assumed to be only the translation (Ax, Ay) between
two frames, then

ft+1($,y)zft(l'—A£L',y—Ay) (54)

for frames at times ¢t and ¢t + 1. After applying the Fourier
transform:

Fii1(u,v) = Fy(u,v) exp™ 2™ (wAztvay) (5.5)

Then the cross-power spectrum CPS of F; and F;4q can be
defined as:

CPS — Ft(u’ U)F;il»l(u7 U) ~ exp_27rj(UAﬁL’+UAy) (56)
| Fi(u, 0) Fyy (u, 0)]



54

Céline Mancas-Thillou

where F}", | is the complex conjugate of F} ;. The maximum
of the Fourier inverse of CPS is then at (Az, Ay).

In the spatial domain, Donaldson and Myers [23] used pair-
wise correlation over the whole image with quadratic inter-
polation and a least-squares fit to determine the translation
vector for each observed LR frame. Li and Doermann [74]
performed sub-pixel registration by first bilinearly interpo-
lating frames and then by using correlation minimizing Sum
of Square Difference (SSD) between text blocks.

The affine motion model assumes planar surfaces and an or-
thographic projection. It is clearly more involved than the
pure translational model and requires the computation of
a warp matrix accounting for rotation, scale and shear as
well as a translational vector term. Interestingly no solici-
tation of this model can be found in application to text SR
within a MISO framework. This is rather surprising given
that text capture at a close distance, where images in a se-
quence would mostly differ by translation and rotation, is
an ideal scenario for applying the affine motion model. Li
and Doermann [74] in fact mentioned that the general 6-
parameter affine model should be used in their text analysis
application, but resort to a pure translational model due to
the difficulty in obtaining a sufficient set of corresponding
points to compute the affine parameters. They applied the
translational model to multiple frames to enhance overlaid
movie credits that move up the screen or ticker text that
moves across the screen.

For rigid scenes, the 8-parameter projective model provides
the most precise parameters to account for all possible cam-
era motions. Capel [13] applied this model for text SR. He
first computed interest point features to sub-pixel accuracy
using the Harris corner detection algorithm [50]. Then using
RANSAC [37] to deal with outliers, a Maximum Likelihood
estimator was used to compute the homography matrix be-
tween successive frames. Shimizu et al. [134] computed
motion estimates between each frame pair by assuming that
the consecutive frames exhibit only small pure translational
motion differences. To reconstruct all the frames into a SR
image, motion estimation parameters have to be estimated
against a single reference LR image. Hence, simultaneous
8-parameter projective estimation using an 8D hyperplane
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and parabola fitting was then performed to refine the initial
motion parameter estimates.

Optical flow is another motion estimation approach not yet
applied to text super-resolution. No doubt researchers in
the field will turn their attention to it soon especially as
increasing computational power will be able to deal with
such an intensive technique, particularly for more complex
motion models.

In summary, there are few SR techniques in which motion es-
timation is dealt with in depth and most works concentrate
on reconstruction and regularization. If necessary, motion
registration parameters are assumed to be known or inte-
grated as errors from an additive Gaussian noise process.

At the extreme end, highly complex, non-rigid, non-planar
motions are very difficult to investigate and can occur in
text analysis; an example is for text that appears on a curled
page or on a moving person’s loose t-shirt. Such examples
need very special treatment and are beyond the scope of this
chapter.

Warping and Reconstruction The stage after motion estima-
tion comprises of some way of bringing together all the input
LR images into a coordinate frame that reconstructs a SR
output. There are several methods that divide the recon-
struction process into "grid mapping and interpolation" or
"interpolation and fusion'. There are also other methods
that simultaneously reconstruct and deblur.

Grid Mapping and Interpolation - This is the most intuitive
reconstruction process involving mapping onto a higher reso-
lution grid followed by bilinear or higher order interpolation;
first motion estimation parameters are applied to map LR
pixel values into the SR sampling grid. This is shown in the
left of Figure 5.4 with three LR frames where the second
frame is a translation of the first and the third frame is a
translated and rotated version of the first. For pure transla-
tional motion, this algorithm is often called ‘Shift-and-Add’.
Nevertheless, some pixels are unknown or missing because
of a lack of LR frames and have to be interpolated to build
and refine the reconstruction. The advantage of grid map-
ping and interpolation is in its low computational cost mak-
ing real-time applications possible. On the other hand, only
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Figure 5.4: Schema of two reconstruction techniques. Left: grid
mapping and interpolation, right: interpolation and fusion.

the same blur and noise for all LR frames can be assumed,
which reduces the overall performance.

Interpolation and Fusion - Warping, using the motion es-
timation parameters, is applied between each independent
LR frame and the first one, instead of mapping to a SR
grid as in the previous scheme. Then, linear or non-linear
interpolation methods are performed to increase the resolu-
tion of each LR frame separately. Finally, a fusion between
all the resolved frames results in a SR image at the res-
olution of the interpolated LR frames. This is shown in
the right of Figure 5.4. Depending on the fusion method,
not all frames contribute to reconstruct pixels in the SR
image. In the particular example of median fusion, only
one of the LR frames is used for each reconstructed pixel.
Hence, motion estimation outliers, salt and pepper noise,
etc. are discarded in the reconstruction process. Farsiu et
al. [32] recommended the median for this purpose. For text
enhancement in digital video, Li and Doermann [74] used
bilinear interpolation followed by averaging of the interpo-
lated frames. In order to be invariant against illumination
changes, Chiang and Boult [17] fused only the edges of each
warped text frame into a reference interpolated image with
a median filter. Interpolation and fusion is fast and robust
to outliers but it can result in the appearance of some arti-
ficial effects in the super-resolved image due to the nature
of the fusion process.
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Frequency-domain reconstruction - This particular form of
reconstruction is very often the continuation of frequency-
domain motion estimation in the case of pure translational
model assumption. It was first derived by Tsai and Huang
[148] and was the first implemented SR reconstruction
method, also called alias-removal reconstruction. Assum-
ing that LR images are under-sampled, the translations
between them allows an upsampled SR image to be built
based on the shifting property of the Fourier transform and
the aliasing relationship between the continuous Fourier
transform of an original SR image and the discrete Fourier
transform of observed LR images [114]. Frequency-domain
reconstruction has never been implemented in a SR text
application. The major advantage is its simplicity but only
global translational models can be considered.

Iterative Back-Projection (IBP) - IBP reconstruction was
first introduced by Irani and Peleg [55] and has found much
use in mainstream SR reconstruction. Given knowledge
of the imaging process (PSF model and blur parameters
amongst others) relating the scene to the observed image
sequence, it becomes possible to simulate the output of the
imaging system with the estimate of the original scene. The
simulated images may then be compared with the observed
data and a residual difference error found. Next the process
is repeated iteratively to minimize this error. Thus this
technique comprises two steps: simulation of the observed
images and back-projection of the error using an adequate
kernel to correct the estimate of the original scene. Several
works, such as [12], run comparisons against this method
using text images, however they are for demonstration only
and are not specifically designed for text. IBP methods have
no unique solution due to the ill-posed nature of the inverse
problem. In fact, minimizing the error does not necessarily
imply a reasonable solution and a convergent iteration does
not necessarily converge to a unique solution.

Projection Onto Convex Sets (POCS) - The POCS method
describes an alternative iterative approach but with more
flexibility to include prior knowledge about the solution into
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the reconstruction process. Convex constraint sets have first
to be defined to delimit the feasible solution space for SR
restoration containing all LR images. Constraints can be
various but have to represent data in the best way to yield
desirable characteristics of the solution. For example, one
constraint could be to enable only a range of pixel values.
Other more complex constraints can be defined depending
on the objectives and the application. The solution space
of the SR restoration problem is the intersection of all the
constraint sets. This method was initially proposed by Stark
and Oskoui [138] and then extended by Patti et al. [115].

POCS can be considered as a generalization of the IBP
method and has never been investigated in SR text. It has
several disadvantages such as the non-uniqueness of the so-
lution, slow convergence and high computational cost, but
provides the flexibility to enable the inclusion of a priori
information.

Maximum A Posteriori estimator (MAP) - The MAP ap-
proach provides a flexible and convenient way to model a pri-
ori knowledge to constrain the solution. Usually, Bayesian
methods are used when the probability density function
(pdf) of the original image can be established. Given the
K LR frames y;, and using the Bayes theorem, the MAP
estimator of the SR image x maximizes the a posteriori pdf
P(z|yk), ie.:

P(yy|z)P(x)
P(yx)

The maximum is independent of y; and only the numerator
needs to be considered.

Tpap = argmax P(z|yy) = arg max (5.7)

MAP reconstruction in SR text has been seen in depth inves-
tigation. Capel and Zisserman [12] used an image gradient
penalty defined by the Huber function as a prior model. This
encourages local smoothness while preserving any step edge
sharpness. Donaldson and Myers [23] used the same Huber
gradient penalty function with an additional prior probabil-
ity distribution based on the bimodal characteristic of text.
The MAP estimator with the Huber penalty prior term pro-
vides slightly smoother results. Robustness and flexibility
in degradation model estimation and a priori knowledge of



NATURAL SCENE TEXT UNDERSTANDING 59

the solution are the main benefits of the MAP estimator ap-
proach to the ill-posed SR problem. On the other hand, the
main disadvantages are the high computational costs and
the complexity of implementation.

Assuming that the noise process is Gaussian white noise and
a convex prior model, MAP estimation ensures the unique-
ness of the solution. Elad and Feuer [28] proposed a general
hybrid SR image reconstruction which combines the advan-
tages of MAP and POCS. Hence, all a priori knowledge is
put together and this ensures a single optimal solution (un-
like the POCS only approach).

Regularization Regularization techniques can either be used
during the reconstruction process or the deblurring and de-
noising step as shown in Figure 5.3.

Super-resolution image reconstruction is an ill-posed prob-
lem because of a recurrent lack of LR images and ill-
determined blur operators. To stabilize the problem and
find a relevant solution, it is necessary to incorporate fur-
ther information about the desired solution and this is
the main purpose of regularization. Using Equation 5.3, a
regularization cost function A(z) can be added such that:

K
S iy — Hal| + AA(x) (5.8)

k=1

where A is the regularization parameter for balancing the
first term against the regularization term. The choice of x
is then obtained by minimizing Equation 5.8.

An optimal regularization parameter must be chosen care-
fully and there are various methods for its selection.
Tikhonov regularization (Ar) and Total Variation (TV)
regularization (A7y) are popular techniques for this pur-
pose expressed respectively as Ar(x) = ||I'z||3 where T is
usually a high pass operator and ||.||2 is the Ly norm and
Ary(z) = ||Vz|ly where V is the gradient operator and
I-ll1 is the L; norm. Tikhonov regularization is based on
the assumption of smooth and continuous image regions
while TV is not and preserves the edge information in the
reconstructed image. Hence, TV is recently becoming the
more preferred regularization method for denoising and de-
blurring to reach a stabilized solution in SR reconstruction.
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Regularization methods are very complementary to the
MAP estimator as the cost function can be seen as a priori
information. Capel and Zisserman [12] implemented both
of the cost functions in their MAP reconstruction process.
Farsiu et al. [33] compared various reconstruction tech-
niques, among which were grid mapping and cubic spline
interpolation, Tikhonov regularization, and bilateral TV
regularization (extension of TV regularization).

To obtain acceptable results in complex images, a regular-
ization technique is often required during the reconstruction
process but not all reconstruction methods can include spa-
tial a priori information, e.g. frequency domain reconstruc-
tion methods.

The second main use of regularization techniques is for de-
noising and deblurring and can be applied on still images as
well. The process is the same: for a blurred and noisy image,
a regularization technique can be performed to recover the
original data from the degraded one as an inverse process.
Moreover, if the high pass operator I' in the Tikhonov cost
function is the identity matrix, then the method is the well
known inverse Wiener filtering.

Deblurring and Denoising Causes of blur are the optical sys-

tem, relative motion during the acquisition stage, and the
PSF of the sensor as well as from interpolation and registra-
tion errors. Noise can come from salt and pepper noise in
the LR images as well as from misregistration outliers. SR
algorithms generally include an independent post-processing
step to deblur and denoise the final image. Usually, stan-
dard deconvolution algorithms, such as Wiener deblurring or
blind deconvolution, are applied. Nevertheless, if the PSF
is unknown and the LR images are strongly motion-blurred,
a robust estimation of the PSF and the direction of the mo-
tion blur must first be performed before applying deblurring
methods.

If the blur estimation is accurate enough, efficient deblurring
can occur simultaneously during reconstruction. Recover-
ing an image with an estimated PSF is a mathematically
ill-posed problem; that is why regularization techniques de-
scribed previously are used to solve it. However, knowledge
of the blurring process is the best route to the cure and
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blur identification is sometimes included in the reconstruc-
tion procedure and refined iteratively. Chan and Wong [15]
proposed blind deconvolution based on TV regularization by
iteration. In another example, Chiang and Boult [17] per-
formed local blur estimation by modelling a blurred edge
with a step edge and a Gaussian blur kernel. During the
reconstruction process, the unknown standard deviation of
the kernel was estimated iteratively with the edges extracted
previously. Hence, edge pixels were re-estimated using the
edge model. The purpose was then to fuse the edge in-
formation into a reference interpolated image to overcome
illumination sensitivity.

Denoising can be approached via classical post-processing
routes, for example after all LR frames are warped and inter-
polated separately, image fusion can be applied at each pixel
position across the available frames. Additionally, noise re-
moval can be implemented, e.g. Zhao et al. [166] used a
trimmed mean while Farsiu et al. [32] applied a median
filter.

5.2.2 Color super-resolution text

Color remains a ripe area for investigation in general SR, let alone
for the text SR application. The most common solutions apply
monochrome SR algorithms to each of the color channels inde-
pendently or simply the luminance channel only, such as [55]. An
interesting work in the text SR area is that of Shimizu et al. [134]
who proposed a reconstruction step which took into account color
information by demosaicing. After motion estimation from non-
demosaiced LR frames, extended IBP reconstruction was used, re-
inforced by the evaluation of the difference between the simulated
LR frames and the original LR frames. Hence, Bayer sampling
was used instead of classical downsampling. In the SURETEXT
algorithm detailed next section, only gray-scale LR sequences are
considered due to the high computational cost of color-based al-
gorithms. Nevertheless, for more accurate results and with the
advance in hardware, such considerations will disappear soon.
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5.3 SURETEXT - Super-Resolution
Text

As mentioned earlier in this chapter, recent advances in hardware
and sensor technologies have led to handheld camera-enabled de-
vices such as PDA or smartphones giving rise to new potential
applications, such as handy text OCR. In this section we present
an experimental approach to reconstructing a higher resolution
image, from the low resolution frames obtained from a PDA, by
applying a novel super-resolution technique with the aim of get-
ting a better response from standard off-the-shelf OCR software.
Hence, the primary goal is not to nicely super-resolve text but to
enhance it in order to get higher recognition rates.

The database used for experiments is DB-VideosPDA, intro-
duced in Chapter 4. No a priori knowledge of parameters such
as camera sensor noise, PSF and so on was used. Hence, the
approach is independent of camera models.

The method described here enhances the classical SR approach
by complementing it with high frequency information extracted
from the LR frames using an unsharp masking filter called the
Teager filter. The classical SR approach can be said to consist of
the stages shown in the upper row in Figure 5.5. The lower row
shows the added Teager filtering process. Motion parameters are
estimated for the LR frames using Taylor decomposition, followed
by a simple RANSAC-based step to discard obvious outlier frames.
The frames are then warped onto a high resolution grid and bilin-
early interpolated to obtain a preliminary SR result. The original
frames (except the outliers) are then put through the Teager fil-
ter to generate a high pass set of frames which are also warped
and interpolated for a secondary SR result. The two resulting SR,
images are then fused and median denoising is applied to smooth
artifacts due to the reconstruction process to obtain the final SR
image. We shall call this method SURETEXT (SUper-Resolution
Enhanced TEXT) and the entire process is outlined next.

5.3.1 Motion estimation using the Taylor series

For motion estimation we apply Taylor series decomposition as
presented in [62] who used it to register frames to correct atmo-
spheric blur in images obtained by satellite. This approach fits
very well to text capture with a quivering hand since a shaking
hand can produce slight random motions and the approximation



NATURAL SCENE TEXT UNDERSTANDING 63

Motion Estimation with Grid Mapping
1 Taylor Series Decomposition & Bilinear
and Outlier Removal Interpolation
Aik,Ajk.ek
Teager
Filtering

Figure 5.5: Schema of SURETEXT.
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computed by Taylor series decomposition can be suitable due to
the small motion amplitudes involved. Initially a pure transla-
tional model was used but this led to too many (small) misreg-
istration errors to adequately and reasonably correct afterwards.
A significant improvement was noticed when stepping up to a
3-parameter affine motion model (Aig, Ajg, for horizontal and
vertical translation, and 6 for rotation). Given K frames with
k=1,.., K, the motion between a frame y; and the first frame y
can be written as:

yr(4,7) = y1(icos O — jsin Oy + Aiy, j cos O + isin by + Ajr)(5.9)

Replacing the sin and cos terms respectively by their 15 and 2m9-

order Taylor series expansion:

. ) ) . 02 . . 62
yk(l,])%yl(Z+Azk*]9k77,?]6,]+Ajk+’b9k7]5k) (5.10)

This can be approximated using its own 1%t-order Taylor series
expansion:

. .. . . .9;% oy
uk(i,j) =~ yl(z,y)+(Azk—g0k—15)—8i (5.11)
L 02 Oy
+(Aji + i 7‘7?)781'

The optimum motion parameter set my = (Aix, Ajg, %) can
then be estimated by solving this least-squares problem:

. o . . .62
argmin >, S[y1(4,j) + (Aig — jOk — zy’c)% +  (5.12)
AN TARAN P
2

(Ajy + i), — J%)%l -y (i, 4)]?
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To find my, the minimum can be computed by obtaining the
derivative with respect to Aig, Aji and 0y and setting it to zero.
Neglecting the non-linear terms and the small coefficients, then
the following 3 x 3 system must be resolved:

c Ay 3 (e (i, 5) = ya.(6,9)) 5
E ) ( A]k > = E(yk(%])*yl(lvj))%
F O > (yk (i, 5) — 9106, 5)) (198 — 5 %)
(5.13)
with A = Z%Za B = E%%ujlv C = Z(l%yjl _J%)%a
D= o" B = LGy — )% F = S — )2
After the motion estimation stage in SURETEXT, outlier frames
corresponding to incorrect motion estimates are removed (see sub-
section 5.3.3). This allows the warping and bilinear interpolation
(by a factor of 4) of the remaining N LR images to obtain an
initial SR image S; as:

So

—
Qe
& oW
@

N
S1 =20 W, yr) (5.14)
k=1

where Wy, is the warp matrix for each LR frame ¥, using motion
estimation parameter set my, and Z is the interpolation function.

5.3.2 Unsharp masking using the Teager filter

SURETEXT attempts to recover the high frequencies in the LR
images such that the relevant high frequencies such as charac-
ter /background borders can be highlighted but impulsive pertur-
bations can not. Non-linear quadratic unsharp masking filters
can satisfy these requirements. For example, the 2D Teager fil-
ter which is a class of quadratic Volterra filters [100] can be used
to perform mean-weighted high pass filtering with relatively few
operations. Using the set of N corresponding original frames, Tea-
ger filtering is performed to obtain yJ, (k =1,..., N) as the set of
filtered images. For example, for any image y:

Y7 (i, ) = 3y>(i, §) — Ui+ 1,5+ Dy(i—1,j—1) (5.15)

1
—y(i+1,5)y(i —1,5) =y, 5+ Dy(i,j — 1)
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Figure 5.6: Visualization of the 2D Teager filter (left) and results
on an image (right) with on top the initial LR image and on
bottom the Teager-filtered output.

This filter enables us to highlight character edges and suppress
noise. The shape of the Teager filter is shown in Figure 5.6 along
with an example image and its Teager filtered output. Next, the
frames can be warped using the same corresponding motion pa-
rameters my to reconstruct a secondary SR image S;:

N
Sr =Z() W, i) (5.16)
k=1

This is then normalized to provide:

Sr(i,7) — min(S;)

max(S;) — min(S;)

Sa(i, j) = (5.17)
Also see the lower row in Figure 5.5. The final SR output image
S is then:

S = med(S1 + S2) (5.18)

where med is median denoising applied after fusion of the motion
corrected representation with the motion corrected high frequency
content.
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5.3.3 Outlier frame removal

A few algorithms deal with outlier frame removal, especially those
including MAP-based reconstruction or regularization techniques,
as these methods aim at reducing the presence of outliers. How-
ever, it is argued in [6] that for large magnification factors, reg-
ularization suppresses useful high-frequency information and ul-
timately leads to smooth results. In our method, errors occur
during motion estimation between frames if a text line is incor-
rectly registered with a neighboring one. A frame correspond-
ing to incorrectly estimated parameters in my should therefore
be dropped from further analysis. In this set of experiments, it
was found that Aig or 6 rarely caused any errors, whereas mis-
registrations frequently occurred on the vertical translations Ajy
leading to results such as that shown in Figure 5.7. The left ex-
ample in Figure 5.8 shows a plot of Aj, points in which an outlier
value can be rejected after linear regression. However, there may
be consecutive sets of outlier frames, hence outliers can be de-
tected by fitting a RANSAC-based least squares solution to the
differences between vertical translations (illustrated on the right
of Figure 5.8). Outlier frame rejection not only reduces the num-
ber of frames processed, but most importantly removes the need
to apply regularization techniques during or after the reconstruc-
tion process. Note, this can easily be performed in SURETEXT
on all parameters in myg.

5.3.4 Median denoising

In Figure 5.9 a zoomed view of a text document is presented to
emphasize the importance and effect of (a) Teager filtering and
(b) the median denoising stages. The second image shows a pure
interpolation of the original frame. The third shows the interpo-
lation result of all the frames in the sequence and hence is the
result of med(S1) only. The fourth image is the result of (57 + S2)
illustrating significant improvement when the Teager processing
pipeline shown in Figure 5.5 is employed. Median denoising be-
comes necessary as the reconstruction result (S; +S3) alone is not
smooth enough with errors arising from all the earlier stages of
motion registration, warping, and interpolation. The resulting ar-
tifacts are objectionable to the human eye and would affect OCR.
A 3 x 3 neighborhood median filter was applied in all text images
in this work. The last image in Figure 5.9 shows the final result
obtained from Equation 5.18.
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Figure 5.7: Fusion of two misregistered frames.
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Figure 5.8: Left: an isolated Ajj error, right: consecutive Ajy
errors result in wrong estimation, hence Aji differences must be
examined.

5.4 Experiments and Results

5.4.1 Evaluation of SURETEXT

The impact of Teager filtering can be further emphasized as fol-
lows. The top-left image in Figure 5.10 shows the results of a
classical MISO approach (the same as just the top row of the
diagram in Figure 5.5, i.e. med(S7) only). In comparison, the
top-right image shows Teager filtering of a set of LR frames fused
together and then combined with an interpolated original frame,
similar to the edge enhancement concept suggested in Chiang and
Boult [17]. The bottom image shows the result of SURETEXT
which exhibits more sharpness and readability.

Figures 5.11 and 5.12 present more text images with and with-
out the Teager stage to highlight the usefulness of this filter. In
the zoomed examples in Figure 5.12, while OCR of all the SR
images will recognize the characters in both methods, however
note the difference in quality after Otsu binarization where the
SURETEXT produces a much sharper and better defined set of
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Figure 5.9: Results of each step of SURETEXT. From left to
right: original LR frame, bilinear interpolation applied on one
LR frame, SR output without using Teager-filtered frames (S7),
SURETEXT without the denoising stage (S1 + S2) and the com-
plete SURETEXT method.
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Figure 5.10: Results highlighting the importance of order of
each step of SURETEXT. First row: left: classical approach
(med(Sh)), right: Teager-filtered frames after median fusion with
an interpolated original frame. Second row: the result from
SURETEXT.
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characters with Teager filtering than without. The Teager filter is
very good as a quadratic, unsharp masking filter. Other similar
filters such as the rational filter of Ramponi [126] may also be
capable of achieving similar results.

T Character becomes

the main information

Systémes P
d’exploitation in picture, once text

Sﬂhmei rontrolises - Syitemes distribues i.S dﬂtﬂflt‘d.

Character becomes
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Systemes controlises - Systomes distribues | z
1 is detected.

Figure 5.11: SR using the classical approach on top and the pro-
posed method on bottom.
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Figure 5.12: Two zoomed in SR results comparing the classical
approach (on left of each result) and the proposed method (on
right of each result) and their binarized images (bottom row).

Moreover, Figure 5.13 specifies the importance of enhancing
high frequencies before reconstruction. Comparison is done with
the SURETEXT framework and a classical approach in general
super-resolution with unsharp masking applied after denoising.
Unsharp masking code of Matlab was used for this comparison.
Results are crispier when edges are enhanced before reconstruc-
tion than after reconstruction, concluding that reconstruction is
performed more easily on sharp edges.
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Figure 5.13: Importance of Teager filtering before reconstruction.
Left: unsharp masking applied after a classical approach without
Teager filtering, right: SURETEXT result.
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For all results, previously mentioned in this section, a number
of 15-20 frames were used to compute the enhancement. A smaller
number may be considered but obviously with lower performance,
while a larger number may lead to motion estimation errors. It
is important to note that the motion estimation is based on the
first frame and larger motion may be observed after a long time.
In that case, a pyramidal decomposition is needed to use this
SURETEXT algorithm.

Finally, percentage recognition rates based on several natu-
ral scene text video sequences are shown in Table 5.1 for com-
parison of the classical approach (C), a framework the same as
SURETEXT but with a standard Laplacian unsharp masking fil-
ter (L) and SURETEXT, as proposed here, with the Teager filter
(S). The results demonstrate much better performance by SURE-
TEXT at 86.5% accuracy on average, computed on the number of
correctly recognized characters, showing unsharp masking to be
clearly an important additional step to generating an SR image
while also being less sensitive to noise than a standard unsharp
masking filter such as the Laplacian. FExamples where SURE-
TEXT results are lower than with the Laplacian masking is mainly
due to the commercial OCR, used in experiments. Results looked
similar but for any reasons, recognition results were slightly dif-
ferent. On these cases, an home-made OCR similarly performs.

As illustrated in [94], SURETEXT may be performed on other
sets on video sequences and not necessarily with text. Effectively,
some tests have been done on faces presenting enhanced results.
Nevertheless, as SURETEXT is based on emphasizing high fre-
quency information and especially edges, results are more appro-
priate for data with strong edges required such as text. On faces,
some edges may appear on cheeks, which may be not expected
after improving resolution.
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Table 5.1: Comparative OCR accuracy rates (%). Indexes of

methods C, L and S represent the name of each sequence.

Sequence | C1_g | Co_16 | L1_g | Lg_16 | S1—8 | So—16
1/9 48.1 2.7 78.8 81.8 78.8 | 90.9
2/10 75.2 72.5 94.3 88.8 929 | 93.8
3/11 65.2 84.4 56.5 93.8 78.3 | 93.9
4/12 7.7 13.0 84.4 56.5 86.0 | 60.9
5/13 95.1 81.5 | 100.0 | 88.8 | 100.0 | 81.5
6/14 66.6 90.5 83.3 100.0 | 91.6 | 100.0
7/15 75.0 | 45.5 79.4 54.5 86.4 | 90.9
8/16 79.3 63.2 79.3 78.9 79.3 78.9

[ Avg. | 691 [ 812 [ 865 |

Figure 5.14: Left: SR image obtained with the algorithm of Li
and Doermann [74], right: our method.

5.4.2 Comparison with state-of-the-art SR al-
gorithms

In Figure 5.14 the result of SURETEXT is compared to the
method in Li and Doermann [74] in which a simple translational
model was used for text enhancement. Bearing in mind that Li
and Doermann’s method was developed for text primarily moving
in vertical and horizontal directions, nevertheless this comparison
shows that the use of an affine model is minimally necessary in the
type of applications referred to in this chapter. The registration
errors in the left image of Figure 5.14 make it very difficult for
interpretation by OCR analysis.

Farsiu et al. [32, 33] developed a Matlab software, named
MDSP [98] standing for Multi-Dimensional Signal Processing,
with several algorithms and their variants to compare results with
in-house methods. Figure 5.15 details visual performances be-
tween the four best MDSP methods for SR text and SURETEXT.
Among the list of algorithms, for comparison, we chose the ‘Shift-
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Figure 5.15: Comparison of SURETEXT and four best algorithms
of the MDSP toolbox [98] for SR text. From left to right: ‘Shift-
And-Add’ method (SA), Bilateral SA method, Median Gradient
method with Lo regularization, IBP with L; regularization and
the SURETEXT result.

and-Add’ method described in Subsection 5.2.1, the same method
with the additional step of outliers removal using bilateral frame
rejection, IBP method with a median operator and Lo norm regu-
larization, and IBP method with L; norm regularization. Motion
estimation is identical for all algorithms and uses a pyramid regis-
tration on gradient images. Details of algorithms may be found in
[98]. To be independent of our data set, we compared results with
a video sequence provided in the software. All parameters were
set to default to get an automatic method. Figure 5.15 shows that
SURETEXT presents more contrasted characters with less noise
and artifacts.

5.4.3 Computation cost

SR algorithms are known to be quite computationally expensive
and SURETEXT is not really an exception. Its computation time
is much lower than very sophisticated methods including Bayesian
framework and regularization techniques and to compare with the
MDSP software developed also in Matlab, computation time of
SURETEXT is similar, even slightly lower.

It has no sense to give computation time references in Mat-
lab as code is not optimized at all especially for an embedded
purpose. Nevertheless, 78% of SURETEXT is spent during the
reconstruction procedure as detailed in Table 5.2. Note that me-
dian denoising is run using the appropriate function (medfilt2) of
Matlab.

Incremental motion estimation may be performed to decrease
computation time of motion estimation. Motion parameters are
not initialized for each frame and benefits from motion estimation
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Table 5.2: Occupation time for each step of SURETEXT(%).

Steps Occupation time
Motion Estimation/Registration 17%
Teager Filtering 1.5%
Outlier Frame Removal 3%
Reconstruction 78%
Median Denoising 0.5%

of the previous frame, assuming that motion dynamics is smaller
than frame rate. Following that, motion parameters may be up-
dated for each frame. About reconstruction, a detailed study
is required to interpolate missing pixels efficiently. A pyramidal
structure in several levels to reconstruct HR images may be useful.
For example an enhancement factor of 4 may be divided into two
factors of 2. Code optimization for this part is extremely needed.

5.5 Conclusions

Resolution enhancement for still images represents a challenging
issue compared to results obtained with multiple frame integra-
tion:

e Interpolation or SISO methods, except for those based on of-
fline patches learning from a set of frames, lead to resolution-
increased images but need an edge sharpening technique
to circumvent smooth outputs of conventional interpolation
methods.

e These basic functions are inherently lightweight and fast to
perform, hence preferred for this reason.

The SURETEXT method in Section 5.3 is typical of a general
approach to SR text in which frame sequences must at first be
adequately registered and subsequently enhanced to increase the
rate of character recognition:

e A simplified affine model is preferred and compared with
methods which assume a pure translational model, the re-
sults are improved.

e A Teager-based filtering is used as an edge sharpener to en-
hance results and makes reconstruction steps more efficient.
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An outlier frame removal step is added in order to make ba-
sic reconstruction methods efficient without regularization
techniques and to also be independent of camera sensors.

A median denoising enables the smoothing of artifacts com-
ing from different sources and also alleviates uneven lighting
or poor outdoor conditions effects.

Detailed experiments and results enable the conclusion of
the efficiency of our method. Each step has been carefully
validated, leading to OCR rates increase and positive com-
parisons with recent state-of-the-art SR algorithms.

Methods such as SURETEXT must not be computationally
expensive in order to fit into PDA and mobile-phone devices;
however, such limitations are expected to be overcome as
advances in hardware and software continue to surpass ex-
pectations. Nevertheless, for the short-term, computation
optimizations are required and still need to be sent to a
remote server.

Sophisticated methods touched upon in Section 5.2 may lead
to better results, but such results are obtained at the cost
of assuming the camera’s point-spread-functions or circum-
venting approximate assumptions with more steps and a
higher computation time.

SURETEXT is not completely dedicated to text enhance-
ment but instead, to enhancing objects-with-edges. More
consideration on text may be added with spatial information
for example. Nevertheless, the difficult compromise between
fast SR techniques and high-level processing on text must
be noted.
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Text Extraction

In this chapter, we aim at giving solutions to issues stated in Chap-
ter 2 and discussed briefly in Section 2.3: how to handle varying
colors? how to efliciently combine luminance and chromaticity
properties for text extraction and how to be independent of color
spaces while simultaneously using magnitude and orientations of
colors?

6.1 Impact of Color Spaces and Clus-
tering Algorithms

6.1.1 Is there a better color space for NS text
extraction?

Based on the impractical and non versatile definition of color
spaces, the main goal is to circumvent effects of a predefined ob-
server at either 2° or 10° and to assess the behavior of several
color spaces in text extraction.

Until recently, only transformations from RGB to YUV or
YCbCr were computationally interesting. More conversions can
now be considered with efficient algorithms and powerful hard-
ware. Nevertheless, one keeps in mind that a compromise has to
be done on text extraction quality and conversion resources re-
quired, meaning that if a result is just perceptibly better but very
heavy to compute, the choice will be towards the fastest solution
with almost similar results.
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The RGB color space has a Riemannian nature, meaning that
it is not a uniform space and perceived differences among colors
cannot be assessed directly from a classical Euclidean distance
between colors. As digital camera sensors displayed images in
RGB, the color space will be one of the tested arenas. For its
invariance to uneven illumination, the normalized rgb space will
also be considered.

The XYZ color space defined specifically for standardization
is not perceptual as well, not even realistic considering image for-
mation such as described in Section 2.2. Hence, we will not use
this color representation.

On the contrary, Lab and Lch are two perceptual color spaces
defined in different ways, respectively by Cartesian and polar co-
ordinates. These two color spaces will be tested in the context of
NS images in this text. Moreover, Lch already gave satisfying re-
sults in text extraction in Mancas-Thillou and Gosselin [88]. Luv,
which is often compared to Lab for its similar results, will also be
considered, since as Wesolkowski [158] stated that it is invariant
to viewing and illumination directions and surface orientation.

Ruderman et al. [127] have shown that for natural image en-
sembles, the resulting axes have simple forms and interpretation,
forming a new color space, introduced in Chapter 2 as I71I>13. It
will also be interesting to compute results with this color space.

The last type of color spaces using hue, invariant to certain
highlights and shadows, such as HSV, is a controversial category of
color spaces. It is apparently very efficient for NS images as main
problems are about specular surfaces and interreflections, and has
already been used in text extraction by Garcia and Apostolidis
[42]. Nevertheless, Poynton [122] stated, among others, that this
type does not match the same lightness perception as Lab for
example, and introduces visible discontinuities in color space due
to different computations around 60° segments of the hue circle.
The behavior of HSV on a large NS data set will become apparent
in this section.

Combinations of color spaces by reducing or increasing the 3D
color representation is sometimes performed to take advantage of
several color spaces as in [2, 153]. To be invariant against illu-
mination changes, HS, ab, uv, ch color spaces from respectively,
HSV, Lab, Luv and Lch will be considered after removing the
lightness component, along with RGBHS, RGBab, RGBuv, RG-
Bch, abch, and uvch to include perceptual meaning inside RGB
or to combine Cartesian and polar coordinates.
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Other exotic color spaces such as SCT, a spherical color trans-
form [121], have also been tested but results are not relevant
enough to be mentioned. Results presented in Subsection 6.1.3
attempt to show there is no better color space for NS images and
RGB is a sufficient color representation for realistic text extrac-
tion, as tested on a large data set.

6.1.2 Considerations on different clustering al-
gorithms

To assess the behavior of all chosen color spaces, several cluster-
ing methods, such as k-means, GMM, Mean-Shift, and spectral
clustering, will be tested based on either their massive use in text
extraction or their promising properties.

1. K-means has the main advantage to be easy to implement
and fast to compute with the triangle inequality [29] for a
chosen metric equal to the Euclidean distance, for instance.

One major drawback is to fix the number of clusters to build.
As mentioned by Berkhin [9], there is no way to find a good
number of clusters, with respect to a particular application.
In this case, the logical number of clusters is 2 for text and
non-text color values. Nevertheless, with the large variety
of NS images, it is better to define 3 clusters, one for back-
ground, one for textual foreground and another one for noise,
which may be useful to handle complex backgrounds with
varying colors or text of different colors. For "clean" docu-
ments with monochrome text on a uniform background, the
third cluster represents text edges, always slightly different
from main text due to image formation, subsampling effects
around the edges and so on.

The number of clusters may be dynamically declared such as
in [66] or iteratively using Message Minimum Length (MML)
or Bayesian Information Criterion (BIC) measures as ex-
plained, among others, in the large survey of Berkhin [9]. In
this case, as text is already detected and text is an object
that has to be easily readable for humans, three clusters lead
to very satisfactory results. Some previous tests have been
done using the elbow criterion, which is an experimental
measure to choose the right number of clusters for a given
data set. It is achieved by plotting the percentage of vari-
ance explained by the clusters against the number of clus-
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ters, where the first clusters add more information than the
subsequent ones, and drawing a specific angle in the graph,
corresponding to the best number of clusters. Results on a
large portion of DB-ICDAR show that the best number of
clusters was three. This conclusion is only true for already
detected text areas.

For non-detected text areas, the number has to be chosen
dynamically. Nevertheless, the algorithm of Figueiredo and
Jain (FJ) [36], briefly summed up by the following lines, may
be used as it computes a variant of MML to find the correct
number of clusters.

. GMM, often considered as a generalization of k-means, is

a technique solved by the likelihood of the data given the
clusters and EM enables to find a local maximum of the
likelihood within a similar iterative procedure:

(a) Calculate cluster probability for each instance (expec-
tation step)

(b) Estimate distribution parameters based on the cluster
probabilities (maximization step)

The detail of EM algorithm may be found in Appendix B.

For evaluation, we will use the FJ algorithm [36], which
overcomes several major weaknesses of the EM algorithm:
firstly, the number of Gaussians is dynamically obtained
during the estimation process, where components becoming
singular are annihilated and secondly, it starts with a large
number of components to tackle the initialization issue of the
EM algorithm. Components are iteratively reduced by the
bottom, meaning that components which are less probable
and "closer" to each other are merged.

. Extensively used in color segmentation, the Mean-Shift al-

gorithm finds the point of highest density in a 3D color his-
togram. Several parameters need to be defined such as the
window size (here, 20 pixels: this value was chosen experi-
mentally on the data set as the best one) to compute Mean-
Shift and the minimum area to consider (here, 20 pixels).

. Spectral clustering has emerged recently as a popular clus-

tering method that uses eigenvectors of the affinity matrix
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derived from the data. It has one major advantage over k-
means, which is robustness against clusters not correspond-
ing to convex regions. K-means is known to create elliptical
clusters and it is similar to GMM, which assumes that the
density of each cluster is Gaussian. In Subsection 6.1.3 we
evaluate the algorithm of Ng et al. [108], briefly introduced
in Chapter 3. To compute the affinity matrix, a neighbor-
hood of 40 pixels is considered with the Euclidean distance
to build 3 clusters among the numerous steps of the algo-
rithm. The scaling parameter, which controls how rapidly
the affinity matrix falls off with the distance between two
colors, is set at 0.04. These parameters have been set exper-
imentally on our data set as the best ones.

For each clustering algorithm, parameters are fixed to equally
compare all encountered algorithms based on versatility.

6.1.3 Evaluation of color representation with
state-of-the-art clustering algorithms

In this subsection, results of text extraction using several color
spaces and clustering algorithms are stated to highlight the prop-
erties and impact of each color space and clustering method be-
havior. For each table of results, DB-ICDAR, DB-WWW, and
DB-Sypole are considered to appreciate the different results if any.
Color spaces were either developed with Matlab or already built-in
in the software. About k-means, a particular code in C language
was developed for computation time explanation.

To assess the usefulness of a color representation, Precision
and Recall are defined enabling the evaluation of the text extrac-
tion quality:

Correctly extracted characters

Precision =
Total extracted characters

Correctly extracted characters
Recall =

Total number of characters

Taking the (weighted) harmonic average of Precision and Re-
call leads to the F-score [152]:
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Precision x Recall
Recall 4 32Precision

F=(1+p3% (6.3)
where [ is a weight to balance the importance of either Preci-
sion or Recall.

Precision measures the quality of extraction while Recall mea-
sures the quantity of high quality extraction. "Correctly extracted
characters" means characters which are extracted without noise or
missing parts of the character. The F-score is often chosen for an
understanding purpose. It is actually easier to compare single
values than a couple of values to know which ones are best. We
choose 3 =1 to give an equal weight to Precision and Recall. In
NS text extraction, both have an important impact as the aim is
to properly extract a large number of characters. As no ground
truth is available, visual inspection is performed and results are
given in Table 6.1.

An ROC ("Receiver Operating Characteristics") curve, plot-
ting true positive rates (equal to Recall) against the false positive
rates (equal to the ratio between the number of incorrectly ex-
tracted characters and the total number of non-characters) may
also be used for evaluation. ROC curves and Precision and
Recall computations have been proven to be intimately linked
[20]. Nevertheless, the total number of non-characters is difficult
to assess as the the whole background has to be considered as
non-characters and false positive rates have less meaning in text
extraction than Precision and Recall. If several components are
incorrectly labeled as text, they could be discarded in the fol-
lowing steps of character recognition and correction. Moreover,
as evaluations and text extraction are based on colors and are
applied on constrained textual areas, this case is quite rare.

Better results are obviously obtained with natural scenes with
more colors, such as the ones in DB-ICDAR and DB-WWW. Sev-
eral characters of DB-WWW were not correctly extracted due
to very low resolution of some images. It is important to note
that recognition may compensate those approximate extractions.
About color spaces, the RGB color space with k-means performs
better in terms of F-score. RGB has already been proven its
global efficiency in several papers for different applications using
large data sets [88, 135]. Nevertheless, some interesting results
are obtained with the hybrid color spaces, RGBch and RGBHS.
Hue information is integrated either with polar coordinates (ch)
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Table 6.1: Precision, Recall and F-score measures for several color
spaces in a k-means clustering framework.

DB-ICDAR DB-WWW
P R F P R F
RGB 0.90 | 0.88 | 0.89 | 0.81 | 0.78 | 0.79

rgh 0.66 | 0.57 | 0.61 | 0.60 | 0.52 | 0.56
Lab 0.70 | 0.22 | 0.33 | 0.67 | 0.20 | 0.31
Luv 0.61 | 0.24 | 0.34 | 0.60 | 0.24 | 0.34
Lch 0.85 | 0.26 | 0.40 | 0.80 | 0.24 | 0.37

I 113 0.62 | 0.54 | 0.58 | 0.60 | 0.52 | 0.56
HSV 0.66 | 0.57 | 0.61 | 0.60 | 0.52 | 0.56

HS 0.37 | 0.13 | 0.19 | 0.40 | 0.14 | 0.21
ab 0.81 | 0.39 | 0.53 | 0.82 | 0.39 | 0.53
uv 0.64 | 0.56 | 0.60 | 0.62 | 0.54 | 0.58
ch 0.87 | 0.84 | 0.85 | 0.82 | 0.79 | 0.80

RGBHS | 0.74 | 0.64 | 0.69 | 0.68 | 0.59 | 0.63
RGBab | 0.82 | 0.79 | 0.80 | 0.72 | 0.69 | 0.70
RGBuv | 0.31 | 0.13 | 0.18 | 0.36 | 0.15 | 0.21
RGBch | 0.72 | 0.62 | 0.67 | 0.70 | 0.60 | 0.65

abch 0.58 | 0.42 | 0.49 | 0.55 | 0.40 | 0.46
uvch 0.65 | 0.49 | 0.56 | 0.60 | 0.45 | 0.51
DB-Sypole Average
P R F F
RGB 0.91 | 0.89 | 0.90 0.86
rgh 0.58 | 0.50 | 0.54 0.57
Lab 0.68 | 0.20 | 0.31 0.32
Luv 0.56 | 0.22 | 0.32 0.33
Lch 0.84 | 0.26 | 0.40 0.39
IERLYE) 0.58 | 0.50 | 0.54 0.56
HSV 0.62 | 0.54 | 0.58 0.58
HS 0.35 | 0.12 | 0.18 0.19
ab 0.77 | 0.36 | 0.49 0.52
uv 0.60 | 0.52 | 0.56 0.58
ch 0.82 | 0.79 | 0.80 0.82
RGBHS | 0.67 | 0.58 | 0.62 0.65
RGBab | 0.74 | 0.71 | 0.72 0.74
RGBuv | 0.30 | 0.13 | 0.18 0.19
RGBch | 0.71 | 0.61 | 0.66 0.66
abch 0.51 | 0.37 | 0.43 0.46

uvch 0.60 | 0.45 | 0.51 0.53
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Figure 6.1: Some improved results with inclusion of hue informa-
tion. From left to right: original image, result inside RGB, result
inside RGBHS. The three clusters are displayed with black, white
and gray colors.

Figure 6.2: Segmentation conflict inside the RGBch color space.
From left to right: original image, result inside RGB and result
inside RGBch.

or with the H information. Figure 6.1 shows examples of color
clustering which fail inside the RGB color space and work bet-
ter inside the RGBHS one. Similar results are obtained with the
RGBch color space. Meanwhile, some conflicts between pixel val-
ues and difficulty to properly cluster in the case of divergent in-
formation may be observed in the RGBch color space for other
DB-ICDAR images in Figure 6.2.

For other clustering algorithms, detailed results are not rele-
vant enough, moreover several issues such as noise and non versa-
tility prevents them to be used.

Figure 6.3 shows the behavior of Mean-Shift with two different
images and two different window size values, meaning that this lat-
ter value has to be set dynamically according to each image. This
is the same conclusion for spectral clustering with neighborhood
size must vary depending on characters size to extract.

GMM presents too noisy results (Figure 6.4). This may be
reduced with post-processing techniques. This method may also
be coupled, as stated in Chapter 3, with spatial information using
Potts model, to circumvent noisy results as well. In addition,
GMM and Potts model are computationally expensive compared
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Figure 6.3: Impact of window size in the Mean-Shift algorithm.
From left to right, first row: original image, result with window
size of 50 and 20, second row: original image, result with window
size of 5 and 20.

Figure 6.4: Noisy results (on right) for GMM-based clustering.

to k-means. Nevertheless, GMM may be a very efficient tool for
text detection, and can be refined afterwards with more accurate
techniques such as what is proposed in Section 6.3.

6.2 Role of Metrics in K-means

In a previous evaluation of color spaces (Subsection 6.1.3), RGB
yielded satisfying results in terms of F-score but still presented
problems in terms of handling varying colors such as shown in
Figure 6.5, which are better handled by perceptual color spaces
or hue-based ones as illustrated in the same figure, shown on the
right. In order to handle more NS images in RGB, we investigate
the role of metrics in the k-means clustering algorithm.

6.2.1 Definition of some metrics, either dis-
tances or similarities

Several metrics, either distances or similarities, have been de-
signed to be used in k-means in different fields requiring unsuper-
vised classification, such as the Minkowski metric, generalization
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P72

Figure 6.5: Example of failures of text extraction with RGB com-
pared to HSV. From left to right: original image with varying
colors and uneven lighting, extraction result inside RGB with k-
means and extraction result inside HSV with k-means.

of the traditional Euclidean distance, the Canberra distance or
the normalized correlation for example. Several other measures
exist and the reader is referred to [119].

To understand which ones to test and use, it is first more rel-
evant to define differences between distance and similarity. Dis-
tance gives results in the range [0; co[ with 0 indicating no differ-
ence between colors while similarity is in the range of [0;1] with
1 indicating that colors are identical. Nevertheless, one may note
that distances may be converted in similarities such as the Eu-
clidean distance D, leading to the "Euclidean similarity" Seyer:

3

Deyer(w,y) = Z(xz —yi)? and Seyer(z,y) = eXpiDCMl(w’y)rz/2
i=1

(6.4)
with x and y representing two different 3D color vectors.

To include hue information inside the RGB color space and
to fill one of the issues stated in Chapter 2 to take advantage of
color orientation as suggested in MacAdam ellipses, angle-based
similarities will be considered as:

e ={ 77 i (65)
- 1 (R-G)+(R—-B)
oo (S ap A BeByE) 9

where hue is represented by an angle ranging in value from 0
to 2.
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The angle-based similarity has been previously used for edge
detection or color segmentation by Wesolkowski [158] by exploit-
ing the sine of the angle instead of cosine as the dynamic range
for the latter’s small angles is small compared to the former’s, for
color classification by Hild [52], and for vector directional filtering
by Lukac et al. [86], for example. The k-means using the Cosine
similarity (named S; in the following lines) is also called spherical
k-means and has been extensively used in another field related to
text, called text clustering where each document is represented as
a vector of word occurrences [140]. Two documents with the same
proportions of occurrences but different lengths are often consid-
ered identical and may be grouped in the same cluster using the
Cosine similarity.

In a very large survey, Hild [52] detailed properties on several
color similarity measures and five of them, those having particular
expected behaviors for text extraction, will be considered, among
other similarities. Note that 6 shall represent the angle between
two colors vectors = and y:

e 57 also called "Cosine similarity", "Vector Angle" or "Nor-
malized correlation" is the most popular angle-based simi-
larity and is defined by:

=Y cos .
SV = gy = ) (07

Sy is sometimes defined by 1—cos(6) but to match the given
similarity definition, we preferred this description.

e S5, which was not tested by Hild, is the suggestion of
Wesolkowski [158]:

oy 1/2
— Y = sin .
e (1 (eier) ) O 68

e 53 is defined by:
Jal| cos(®) + [1y] cos(6)
Ss(z,y) =

3 9) = T+ [0 + 2l ] cos(8)) 172
e S, is defined by:

cos(O) ((llz[1* + llyll* + 2[l[llyll cos(6))"*/?
]l + vl

(6.9)

S4($, y) =
(6.10)
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S1, S3 and S4 have been chosen for their insensitivity to bright-
ness changes in the image.

e S5, which has been tested in [91] for its compact support, is
defined by:

Ss(x,y) = cos(f) <1 — ||x||||y||) (6.11)

maz([|z[], [[y[])

e Sg is characterized by ellipsoidal constant-similarity sur-
faces, remembering the behavior of D, and comparative
results may be interesting. Sg is defined by:

()2 + gl = 2l Iyl cos(®))/2
Se(z,y)=1-— 6.12
o) =1 T wE T 2lelyeos@yz &2

In all definitions, ||.|| means the Euclidean norm.

Strehl [140] put forward the behavior of the Jaccard similar-
ity compared to the Euclidean distance and the Cosine similarity,
which combines advantages of both as illustrated in Figure 6.6.
According to that, the Euclidean distance is expected to group
similar colors in a circled neighborhood while the Cosine similar-
ity in line directions and the Jaccard similarity simultaneously in
both. To handle absolute color differences, the Euclidean distance
may be preferred and to handle varying colors (by definition of the
RGB cube) the Cosine similarity may be, in contrast, better. The
Jaccard similarity defined in Equation 6.13 may be expected to
handle both cases.

zy
@l + [yl — 2y

S7($,y> = SJac(x»y) = | (613)

Similarities named in this text from Sy to S7, with Dy, will
be tested in Subsection 6.2.3 to understand the behavior of each
metric and how to handle the aforementioned issues.

6.2.2 Noteworthy properties of angle-based
similarities and complementarity with the
Euclidean distance

Angle-based similarities and the Euclidean distance are comple-
mentary in various ways for color segmentation:
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Figure 6.6: From [140], representation of iso-similarity surfaces
for different metrics: the Euclidean distance (a), the Vector An-
gle similarity (b) and the Jaccard similarity (c). Two points are
considered and three similarities values (0.25,0.5,0.75).

Hue representation Inside the RGB color space, a reliable and
simple method to obtain hue information is through an
angle-based similarity, which enables to dispose intensity
and hue information in the same color space without com-
plicated conversion.

Varying color characterization Similar colors have parallel
orientations even when degraded with uneven lighting or by
shiny material. In natural scene images, (slight) variations
are a frequent occurrence within the same object of same
color due to all sources of variations described in Chap-
ter 2. Color can gradually change and by definition, an
angle-based similarity can circumvent this issue.

Complementarity with the Euclidean distance An angle-
based similarity represents chromaticity difference informa-
tion whereas the Euclidean distance computes the intensity
difference information. Their combination enables one to
perform intensity-dependent segmentation directly from the
RGB image in areas of different colors, and the other to per-
form intensity-invariant segmentation in regions of similar
but not identical colors. Moreover, in a clustering process as
displayed in Figure 6.7, we show the cluster definition done
by both metrics for some natural scene images. From the
RGB color space, the Euclidean distance separates pixels
in the (R-G-B) view mostly in a horizontal (or radial) way
with groups presenting quite the same volumes while an
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Figure 6.7: (R-G-B) view of clustering results done by the Eu-
clidean distance and by an angle-based similarity (right) on initial
images (left).

angle-based similarity does the same operation in a more
vertical (or angular) way with groups presenting different
sizes. These observations are quite logical due to the def-
inition of each metric but really show a complementarity
depending on colors in the image.

Both metrics enable one to handle a large number of degrada-
tions in a complementary fashion. Images presenting a strong con-
trast between text information and background are usually better
segmented with the Euclidean distance. For the opposite case
where images are corrupted by uneven lighting, shiny or curved
surfaces, an angle-based similarity performs better. Due to the
material, the angle of acquisition and the lighting, text colors
vary gradually and can present strong differences inside a char-
acter. Since initially, colors inside the text were similar, it will
be efficient to use an angle-based similarity because the angle of
two colors remains small compared to the value of the Euclidean
distance.

6.2.3 Evaluation of several metrics

This evaluation aims at proving that using only the RGB color
space but with dedicated particular metrics, one can handle degra-
dations of NS images without the need to design any new color
spaces or combinations of existing ones. All metrics were devel-
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Table 6.2: Precision, Recall and F-score measures for several met-
rics in a RGB-based k-means clustering framework.

DB-ICDAR DB-WWW

P R F P R F

Deyer | 090 | 0.88 | 0.89 | 0.81 | 0.78 | 0.79
S1 0.90 | 0.35 | 0.50 | 0.86 | 0.33 | 0.48
So 0.62 | 0.26 | 0.37 | 0.62 | 0.24 | 0.35
Ss 0.86 | 0.26 | 0.40 | 0.87 | 0.26 | 0.40
Sy 0.88 | 0.34 | 0.49 | 0.85 | 0.33 | 0.48
Ss 0.93 | 0.36 | 0.52 | 0.94 | 0.39 | 0.55
Se 0.91 | 0.34 | 0.50 | 0.90 | 0.35 | 0.50
S7 0.68 | 0.29 | 0.41 | 0.71 | 0.27 | 0.39

DB-Sypole Average
P R F F
Deyer | 091 | 0.89 | 0.90 0.86
S1 0.84 | 0.21 | 0.34 0.45
So 0.63 | 0.24 | 0.35 0.36
Ss 0.84 | 0.19 | 0.31 0.38
Sy 0.82 | 0.20 | 0.32 0.43
Ss 0.90 | 0.19 | 0.31 0.46
Se 0.90 | 0.22 | 0.35 0.45
S7 0.68 | 0.19 | 0.30 0.37

oped using Matlab or in C' language for computation time, de-
tailed in some sections.

Table 6.2 details results of the eight tested metrics (from S; to
S7 added to D.y) inside a RGB-based k-means using the same
measures as in Subsection 6.1.3, in terms of Precision, Recall and
F'-score.

Results are quite similar except for Sy and S7 where results
are noisier and the number of correctly extracted characters de-
creases. S; is hence not convenient for text extraction, contrar-
ily to the suggestion of Wesolkowski [158]. The accent must be
put on cosine-based similarities for inclusion of hue information.
Se, whose aim was to combine advantages of the Euclidean dis-
tance and an angle-based similarity, gives satisfying results but
the increase is not the one expected. Except Sy and Sy, results
of other similarities are quite consistent, with a small decrease for
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DB-SYPOLE. Images of this database contain less uneven light-
ing, less shiny material and the use of angle-based similarities is
therefore less relevant to handle varying colors. Based on the last
column of Table 6.2, S5 seems performing slightly better than
other angle-based similarities.

As best metrics are very close in terms of results with F-score
measures, the Hotelling Trace Criterion (HTC) [22] is used.

The HTC is a measure of class separability used in pattern
recognition to find a set of linear features that optimally separate
two classes of objects. Several scatter matrix-based metrics [153]
may have been performed but we choose this one based simul-
taneously on cluster compactness and separability, respectively
defined as §,, for the intra-cluster scatterness and as S for the
inter-cluster scatterness.

The data set contains 3-dimensional samples x = [z1, 22, Z3],
as the RGB color space is used, to build C clusters (fixed to 3 for
k-means). A combination between textual clusters may be useful
and manual combination is performed to insure that results are
independent of this point.

Each cluster ¢; of the C' clusters contains n; samples with the
total of n samples. The mean vector of each cluster is called p;
and the total mean vector is 4. The scatter matrix, S; for the 7"
normalized cluster is:

Si= ni Z (2 — i) (x — pg)* (6.14)

v xrec;

with (z — p;)! meaning the transpose of the color vector minus
the local mean ;.

The normalized intra-cluster scatter matrix (S,,) and the nor-
malized inter-cluster scatter matrix (Sp) are computed as:

c c
1 1
Sw = C § Si; Sp = C E (ki = 1) (pi — )’ (6.15)
i=1 i=1

Tighter clusters (with smaller S,,) that are far apart (with
larger Sp) are preferred. The HTC, tr[S,'S;] computes the in-
variant measurements as it is also defined as:
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Table 6.3: Scatter-based measures (S,;,) using the HTC measure
for several metrics in a RGB-based k-means clustering framework.

Deucl Sl S4 S5 SG
S | 11.55 | 27.02 | 26.73 | 24.42 | 20.77

d
Sy Sl = > A (6.16)

=1

where )\; are the eigenvalues of S 'S,.

Separability computation is a theoretical measure for cluster-
ing quality taking no particular goal into account, such as object-
driven segmentation.

Table 6.3 details results using scatter-based measures S, for
best metrics. Si, S4 and S are the best discriminant metrics
for NS images, meaning that intra-cluster similarity is small and
inter-cluster one is large. However, it is interesting to note the
weak discriminant power of Dg,., which gives more satisfying
results in terms of Precision, Recall and F-score. Hence, among
angle-based similarities, we choose S5 as the best one, because
it has a satisfying discriminant measure and simultaneously gives
the best F-score.

Best metrics, Sy, Si, S5 and Sg, have been tested in other
color spaces. Nevertheless, results were not improved, showing
the sufficiency of RGB. For color spaces using already polar coor-
dinates to exploit hue information, an angle-based similarity was
less relevant.

To add arguments to complementarity between the Euclidean
distance and the best angle-based similarity for NS text extrac-
tion and simultaneously on all databases, D¢, handles around
56% of images with poor results for S5 while the inverse is true
for 12%. It exists an overlap of similarly extracted text for 32%
images only. These results are clearly dependent on databases.
If images are clean, with good discrimination between foreground
and background, angle-based similarities are useless.

It looks very necessary to efficiently combine the Euclidean
distance and S5, in another way of a single measure due to their
very different definitions. A solution is proposed with the SMC
algorithm, presented in Section 6.3.



92 Céline Mancas-Thillou

Deuck-based
Clustering

Scos-based
Clustering

— Color inverson
Reduction o

DemsioE taking

Extraction-by-
Segmentation
using Log -Gabor }’
-

Global Otsu
grayscale
Thresholding

Figure 6.8: Steps of the SMC algorithm.

6.3 SMC - Selective Metric Clustering
for Text Extraction

Text extraction is a challenging issue, made even more difficult in
a NS context. Classical binarization algorithms on gray-scale im-
ages showed their limitations to handle NS degradations. Colors
have to be taken into account and based on the preliminary stud-
ies of Chapter 6, we propose an algorithm that we call Selective
Metric Clustering or SMC. We perform a 3-means cluster-
ing algorithm using two metrics, the Euclidean distance and an
angle-based similarity, equal to 1 — S5 in order to use the same
k-means algorithm for both metrics. D¢, is normalized between
0 and 1 like the angle-based similarity: ‘0’ means colors are iden-
tical and ‘1’ that they are totally different. The similarity will be
called S.,s in the subsequent explanations. Moreover as stated
in Chapter 2, intensity is paramount information to distinguish
similar pixels of the same color but different intensities and SMC
includes a gray-scale image, thresholded with a traditional global
binarization to build a multi-hypothesis text extraction. Finally,
as text is a meaningful object and as the chosen k-means clus-
tering does not integrate spatial information, SMC opts for the
proper text extraction by using clues of spatiality.

Figure 6.8 details steps of the SMC algorithm for text extrac-
tion and the following subsections detail each of these steps.

6.3.1 Color reduction and color inversion

First of all, the number of colors is drastically reduced in order
to lower computational time. Considering properties of human
vision and based on the interesting study of Pujol et al. [124], who
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Figure 6.9: Larger angle between dark colors DC1 and DC2 than
between bright colors BC1 and BC2, even if d(BC2, BC1) equals
to d(DC2, DC1) with d, the Euclidean distance.
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Figure 6.10: SMC extraction result without inversion (middle)
and with inversion (right) on an initial image (left).

highlighted the short dynamic range of digital cameras compared
to the human eye in some regions, we decided to represent each
RGB channel with only 4 bits. It introduces very few perceptible
visual degradation and does not affect the results. Hence the
dimensionality of the color space is 16¥16%16 and it represents
the maximum number of colors.

Following this quick step, a color inversion is applied to make
text always darker than background. The use of S.,s means ex-
ploitation of the angle between two color vectors relative to the
origin of the RGB color space. This origin point corresponds to
no illumination with R = 0, G = 0, B = 0. Hence, as illustrated
in Figure 6.9, dark text on bright background is more appropriate
to segment as angles with colors close to the origin have wider dy-
namics. Angle-based similarities add hue information inside RGB
and similar to the hue drawbacks, it becomes unstable for small
angles. Figure 6.10 shows the extraction result for an image with
strong uneven lighting before and after inversion.

The choice of inversion is done after applying a quick global
image thresholding with the well-known Otsu method [113], lead-
ing to the binarized image Ip; the maximum between black and
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white pixels on the image Io edges implies that text is brighter
or darker than the background, assuming text is not mainly con-
nected to edges. Equation 6.17 details the inversion decision. This
assumption is right with off-the-shelf text detection algorithms.

Inversion = true if (W+H) inferior to (6.17)
H-1 W—1
D 10(6,0) + Io(i, W = 1)+ > 10(0,5) + Io(H — 1,5)
=0 J=0

where W and H are the width and height of Ip. In Equation
6.17, convention is taken with background pixels equal to 1 and
text ones equal to 0.

6.3.2 Utilization of a multi-hypothesis text ex-
traction

SMC performs two clustering algorithms on the initial image with
two metrics, Deyer and Sgos, shown to be complementary in Sec-
tion 6.2. Moreover, to alleviate effects of achromatic images and
improve results of text extraction, we add intensity information
with the thresholded (inverted) gray-scale image in the previous
step. For pure achromatic images (meaning R = G = B), Scos
cannot build 3 clusters efficiently as all pixels are on the same
diagonal in the RGB cube. The same phenomenon appears for
non-pure achromatic images where it is rather difficult to sep-
arate colors efficiently. This drawback is also true in hue-based
color spaces where hue is even not defined! As this third binarized
image was already computed for another task, it does not add
computational time. We obtain also three possible text extrac-
tion results of both metrics and the already-binarized gray-scale
image. Before choosing the proper extraction, additional details
on combination of clusters must be cleared out.

K-means clustering (with k& = 3) applied on NS color images
with two metrics forms 3 clusters for each one and one cluster is
obviously a part of the background, another one is a part of the
text and the third one is either text or background. For sharper re-
sults and hence better character recognition, it may be interesting
to combine both textual clusters. In Wang et al. [156], combi-
nation was based on some texture features, to remove irrelevant
clusters, and on a linear discriminant analysis. While in Thillou
and Gosselin [144], the most probable textual cluster was defined
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with a means of skeletonization by computing a global binariza-
tion on the initial image beforehand and the possible combination
was finally based on differences of colors between the most textual
cluster and the possible one.

In SMC, first of all, the background color is selected very easily
and efficiently as being the color with the biggest rate of occur-
rences on the image edges. Next, we propose a new text validation
measure R to find the most textual foreground cluster over the
two remaining clusters. Based on properties of connected compo-
nents of each cluster, spatial information is already added at this
point to find the main textual cluster. R is based on the largest
regularity of connected components of text compared to those of
noise and background and is defined in Equation 6.18:

N | &
R= Z larea; — N(Z area;)| (6.18)
i i

where N is the number of connected components and area;
refers to the area of component 7. This measure enables the com-
putation of the variation in candidate areas. The main textual
cluster is identified as the one having the smallest R. If the third
unknown cluster belongs to text, both textual clusters need to be
merged. A new computation of R is performed considering the
merging of both clusters. If R decreases, the fusion is processed.
This method enables the merging of text of different colors in the
same word for instance as regularity becomes better. Neverthe-
less, a text with each letter in a different color, for instance, could
be only handled by increasing the number of clusters.

Finally, text extraction for each clustering metric is done. Fig-
ure 6.11 displays some results of this SMC step where text ex-
traction is sometimes better using Dey¢;, Scos Or the global bina-
rization and hence showing the complementarity between the two
metrics and the additional globally thresholded result.

With this multi-hypothesis text extraction, we may handle a
very large range of NS images. The use of S.,s is preponderant,
as illustrated in Figure 6.12 with some complex NS images which
can not be better handled in a k-means framework. Some compar-
isons were done with the Euclidean distance and by increasing the
number of clusters or with other color spaces. Angle-based sim-
ilarities can extract text of very challenging NS images without
additional effort and by keeping versatility for other NS images.
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Figure 6.11: Display of complementarity between the three ex-
traction hypotheses. From left to right: initial images, clustering
result using Dg,c, clustering result using S.,s, globally thresh-
olded result.
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Figure 6.12: More extraction results using S.,s in a RGB-based
k-means framework.

6.3.3 Extraction-by-segmentation

After computation of k-means with two different metrics, the
choice between the three text extraction methods has to be done.
A multi-hypothesis method has been shown by Chen [16] by vary-
ing the number of clusters in a GMM-based clustering and choos-
ing the right segmentation with the final step of recognition. One
drawback to this method is to keep several segmentations to pro-
cess during subsequent steps and to increase the number of text
areas to recognize. Moreover, recognition is logically an efficient
step to choose the right segmentation, but in complex NS images,
character segmentation or even denoising steps must be added,
and no decision could be done before the final step of recognition;
otherwise, recognition results may be erroneously considered bad.
In SMC, we choose to intermingle consecutive steps to avoid this
disadvantage and to add as much information as possible.

Color information is a very consistent clue for NS images.
However the segmentation process, previously described in this
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Figure 6.13: Same examples of Figure 6.11. From left to right:
result of the absolute phase of the vertical log-Gabor filtering, after
applying mask obtained by D, -based extraction, after applying
mask obtained by S.,s-based extraction and after applying mask
obtained by global thresholding. More explanations about the use
of log-Gabor filtering are given in Chapter 7.

chapter, does not make use of spatial information, which is quite
necessary for object-driven segmentation and specifically text ex-
traction. In order to extract characters properly, we exploit the
same tool for character segmentation, detailed in depth in Chap-
ter 7. We need to have spatial information to locate characters in
the image, as well as needing the frequency information to use il-
lumination variation to detect character edges. Hence, log-Gabor
filters proposed by Field [35] are chosen for decision making, be-
cause they particularly fit well to NS images as explained in Sec-
tion 7.2 and overviewed in Mancas-Thillou and Gosselin [91].

One important parameter for log-Gabor filters is the filter fre-
quency. As we used them to enhance characters in a gray-scale
image, we choose a frequency equal to the inverse of the rough
thickness of characters, determined by the number of pixels of the
extracted result and its skeleton. A simple ratio between these
two latter values are computed and the inverse is the frequency of
log-Gabor filters.

Figure 6.13 shows the result of the same three examples of Fig-
ure 6.11 after applying the mask of each segmentation performed
previously. Results of log-Gabor filters present globally high re-
sponses to characters with this set frequency. High responses are
illustrated by warmer colors, meaning that red characterizes high-
est responses and blue, lowest ones. Hence in order to efficiently
choose the best extracted text result, we perform an average of
pixel values inside each mask. The segmentation having the high-
est average is chosen as the final segmentation.
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Table 6.4: Precision, Recall and F-score measures of text extrac-
tion performed by D, -based k-means, S.,s-based k-means and
the global Otsu thresholding [113].

DB-ICDAR DB-WWW
P R F P R F
Deyel 0.90 | 0.88 | 0.89 | 0.81 | 0.78 | 0.79
Scos 0.93 | 0.36 | 0.52 | 0.94 | 0.39 | 0.55
Otsu [113] | 0.88 | 0.76 | 0.82 | 0.89 | 0.80 | 0.84
DB-Sypole Average
P R F F
Deyel 0.91 | 0.89 | 0.90 0.86
Secos 0.90 | 0.19 | 0.31 0.46
Otsu [113] | 0.94 | 0.92 | 0.93 0.86

6.3.4 SMC evaluation and results

Based on the evaluation part of Section 6.2 showing complemen-
tarity between the Euclidean distance and an angle-based simi-
larity, Table 6.4 extends Precision and Recall results by adding
the third hypothesis of text extraction with the thresholded gray-
scale image. Moreover, one may note the insensitivity of the SMC
method to inaccuracy of constrained textual areas. DB-ICDAR
are manually segmented while the two other databases are auto-
matically segmented using the publicly available algorithm of A.
Chen [83]. To add more arguments to complementarity between
these three extracted results, D, performs better in 5 % images,
while S.os in 12% and the global thresholding in 9%. There is a
larger overlap between D.,. and the global thresholding which
performs quite equally in 69% images.

To choose the right text extraction, we opt for log-Gabor filters
by adding spatial information. In [90], we compared the perfor-
mance of this method with the Silhouette technique, a measure of
how well clusters are separated, to choose between the two metrics
only. It can be logical to think that best text extraction results
present the best separation between clusters. However, it is not
always true because Silhouette performs well in 77.7 % images
and the proposed method using spatial information performs well
in 93.2 %, yielding an improvement of 19.9 %.

A few works deal with NS text extraction and we compare
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Table 6.5: Comparison of Precision, Recall and F-score mea-
sures between Wolf’s method [159] (W) , Garcia and Apostolidis’s
method [42] (G&A) and the proposed SMC method.

DB-ICDAR DB-WWW
P R F P R F
W 0.35 | 0.19 | 0.25 | 0.32 | 0.16 | 0.21

G&A 0.66 | 0.57 | 0.61 | 0.60 | 0.52 | 0.56
SMC 0.95 1091 | 0.93 | 0.91 | 0.86 | 0.88

DB-Sypole Average
P R F F
W 0.52 | 0.38 | 0.44 0.30
G&A | 0.62 | 0.54 | 0.58 0.58
SMC 0.93 | 0.89 | 0.91 0.91

SMC, firstly, with solutions of Wolf [159] which designed an ex-
tended method of Sauvola and Pietikédinen [130] to extract text
from NS images or videos, and then, with solutions of Garcia and
Apostolidis [42] which used a k-means clustering in the HSV space
with the Euclidean distance only. Combination of clusters in this
last method has not been implemented and a perfect combination
is assumed while the method is tested including our combination
method. Algorithms were developed in Matlab for this compari-
son purpose. Results are presented in terms of Precision, Recall
and F-score in Table 6.5.

The combination of two metrics in a clustering framework and
a global thresholding has proven its efficiency compared to two
recent and competing algorithms. Main errors of the method are
due to low resolution still images and choice of the best result
between the three hypotheses.

Finally, due to the explosion of use of camera phones or digital
cameras and huge amount of images to process for text extraction,
the algorithm needs to be relatively fast in order to provide sat-
isfying results for frequent use. The text extraction algorithm
runs in 0.61 seconds on average for databases on a PC with a
Pentium M-1,7 GHz micro-processor. The source code for text
extraction was developed in C language but could be optimized
further such as with the triangle inequality technique [29] for k-
means to reduce the number of distances to compute. Another
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Figure 6.14: Error example of the selective metric-based cluster-
ing: initial color embossed image on left and the SMC result on
right.

optimization method could be to compute Dy and S, simul-
taneously by taking advantage of some calculations between both.

6.4 Conclusion of the Selective Metric
Clustering Technique

In this chapter, the SMC algorithm has been proposed based on a
multi-hypothesis text extraction by selecting either the right clus-
tering metric or the dual information between color and illumina-
tion, using log-Gabor filters. Several points have been detailed:

e Superiority of metrics over color spaces in a clustering frame-
work inside a general NS context. Angle-based similarities
have overcome any other color spaces to handle complex NS
images, meaning mainly images with complex backgrounds
and uneven lighting.

e Complementarity between the Euclidean distance and angle-
based similarities in a k-means method to handle a very large
set of NS images with respect to image formation issues.

e Addition of spatial and luminance information to choose the
best text extraction to provide to recognition. To circum-
vent NS challenges, text extraction was intermingled with
the subsequent step of character segmentation.

e Very encouraging results detailed in Subsection 6.3.4 in
terms of Precision, Recall and F-score, comparison with
other state-of-the-art algorithms, and while keeping a rea-
sonable computation time.

The selective metric-based clustering is aimed at being versa-
tile and results we have provided show that it is. Nevertheless,
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SMC mainly uses color information and one drawback of the sys-
tem is for natural scene images having embossed characters. In
this case, the foreground and background have the same color
imparting partial shadows around characters due to the relief but
not enough to discriminately separate the textual foreground from
the background as displayed in Figure 6.14. Gray-level informa-
tion with the simultaneous use of a priori information on shadows
and character properties could be a solution to handle these cases.
Nevertheless, it may be relevant to note that a robust OCR may
also give satisfying results without any modifications of the algo-
rithm.






— CHAPTER 7 —

Unit-based Segmentation

This chapter deals with segmentation of text areas into specific
units, such as lines, words and characters. In commercial OCR
systems, this process is usually included and is quite successful ex-
cept for severely degraded characters, strongly broken or tightly
connected ones where recognition rates drastically drop. Incorrect
segmentations due to perspective, for example, may even lead to
no recognition at all. Usually, NS text, handled in literature, is
well separated due to their reading goal. However, complex NS
images with low resolution, perspective or wavy surfaces present
challenges and unit-based segmentation has recently become a
point-of-interest to circumvent recognition errors. Hence, we de-
scribe a fast and simple line and word segmentation method in
Section 7.1 and an innovative and robust character segmentation
method using log-Gabor filters in Section 7.2.

7.1 Line and Word Segmentation

NS images may present several words but usually only a few lines
if we cite street names or book titles. Nevertheless, colorful mag-
azine headlines or abstracts on book covers or even camera-based
documents such as restaurant menus may have several lines. Line
and word segmentation are usually not considered as difficult for
NS images but present interesting challenges for skewed text areas;
as such we present very fast and intuitive algorithms.

To perform a low-level segmentation into lines, words and char-
acters, contrarily to high-level meaning structure layout and anal-
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ysis such as paragraphs, titles and so on, the system may be top-
down or bottom-up. For the top-down analysis, a page is seg-
mented from large components to smaller subcomponents, also
from lines to characters. For bottom-up analysis, connected com-
ponents are merged into characters, then words and finally, text
lines. Both methods may also be combined for a hybrid analysis,
which is more robust due to the use of more information about
text on each sub-step. To describe the hybrid process, we segment
text into characters, then into lines, back into refined characters
with supplementary information and finally into words.

7.1.1 Line segmentation

Segmentation into lines is an old topic and the two main and
successful methods are either the vertical projection profile or the
Hough transform [53]. The first one is a histogram of the number
of text pixels accumulated along text lines and projected vertically.
The projection profile has maximum-height peaks for text and
valleys for inter-line spacing. It is quite sensitive to noise and
skewed lines. The second method maps each point in the original
(z,y) plane to all points in the (r,0) Hough plane of possible lines
through (z,y) plane with slope 6 and distance from origin r. This
method performs well on skewed text and may also simultaneously
deskew it with the knowledge of 8 value but it is on the other side
computationally quite expensive. Deeper explanations of the two
algorithms may be found in [110].

Connected components coming from the text extraction step to
perform the deviation measure R in Subsection 6.3.2 are already
computed with general properties, such as height of characters
hehar- On the strict bounding box of the text area, we define the
approximate number of lines N; by:

(htea:t — ,U'(hchar)/2)>
p(hehar) * 3/2

where hyepe is the height of the text area, u(z) is the average
of x on all characters and floor(x) is the largest integral value
less or equal to x.

N; = floor (1 + (7.1)

All y-coordinates of character centroids are then clustered with
the k-means algorithm, k being equal to NV;. Figure 7.1 explains
the concept of line segmentation. For databases, no error occurs
in line segmentation.
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Figure 7.1: Illustration of line segmentation for skewed text: three
clusters based on the y-coordinates of connected components.

For strongly skewed lines, a fast deskewing is required based
on the height of the text bounding box. The first text pixel of the
first row of the tightest bounding box is detected and if its position
is before the middle of the image width, the skew angle is negative;
otherwise it is positive. A first rotation of 1° is computed in the
determined direction. If the bounding box is shorter in height
than the previous one, successive rotations are performed until
the bounding box becomes higher meaning that the skew angle
was larger than 1°.

More complex algorithms, such as detection of horizontal or
vertical writing for multi-language documents, may be designed
but are not necessary for NS images and out of scope of this text.

7.1.2 Word segmentation

Word segmentation, contrarily to line segmentation useful for
better character recognition, is a crucial step for text understand-
ing after recognition, such as by speech synthesis. A natural
linguistic parser is always part of a text-to-speech algorithm and
it is important to identify words for a proper pronunciation as
explained in the example:

Ex: in French, the phonetic transcription can be different,
depending on word segmentations:

"lestas "= [leta]
"lestas "= [lest a]
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In Latin alphabets, the inter-words distance Dy is larger
than the one of inter-characters D;c. We compute word segmen-
tation by identifying word separations by all distances superior to
std(Drc)+mean(Djyc) with std(.) and mean(.), respectively stan-
dard deviation and mean of inter-character distances in a given
line.

This step occurs after the refined character segmentation in
order to have more correct calculations based on characters and
spaces between characters.

For this step, we use a simple statistic method. Some errors
may occur when a few words are present with distances between
words varying due to different fonts or perspective. Nevertheless,
this algorithm is robust when run against text areas presenting
only one word, which is quite frequent in NS images or after text
detection algorithms, which usually oversegment lines.

Finally, this rule basically bends to oversegmentation more
than subsegmentation, which may be more easily handled by the
recognition correction step using linguistic information and finite
state machines as described in Chapter 8. Complex word seg-
menters are, in any case, based on addition of linguistic informa-
tion such as Wang’s one [155], which is designed for Latin alphabet
as well and uses word entropy in order to segment them properly.

7.2 Character Segmentation using Log-
Gabor Filters

7.2.1 Is character segmentation still useful?

The first character segmentation algorithms, developed for type-
written characters, appeared more than forty years ago to sepa-
rate each character individually, in order to subsequently feed into
OCR. Later, these techniques have been extended to segmentation
of cursive writing for handwritten text.

Main techniques for typewritten characters are categorized
into three groups:

e Image-based methods are mainly issued from projection
analysis, either vertical projection of text pixels leading to
a histogram with valleys representing vertical separation
between characters, or differencing measure after column
ANDing (relative to the logical AND operation), or the
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"Caliper" distance, which is the distance between the up-
permost and bottommost pixels in each column meaning
that smallest distances are tentative segmentation places,
as experienced in camera-based document processing [143].
These methods imply vertical separation only, which is not
convenient at all for strongly joined characters or skewed
and italic ones where parts of a character infringe on the
space occupied by the next one. Moreover projection anal-
ysis is very sensitive to noise and hence to text extraction
errors.

e Recognition-based methods use a sliding window of variable
width to provide sequences of hypothetical segmentation lo-
cations which are confirmed or refuted by character recog-
nition. These techniques also give only vertical separations
and need robust OCR to reject or accept all possible segmen-
tations, which are quite numerous, even for a single word!
Markov approaches, used most often for handwritten text,
represent letter-to-letter variations of the language to vali-
date tentative segmentations after dissection into individual
characters. Segmentation cuts can also be determined by a
particular recognizer, as in Bae et al. [5], where all possible
cuts have been previously learnt. It is obvious that this lat-
ter method can not fit NS images regarding the diversity of
images and ways of character connect.

e Hybrid methods mainly encompass oversegmentation meth-
ods. A word is dissected into its smallest possible compo-
nents and recognition is based on these units to individually
recompose the characters one at a time. Droettboom [25],
for historical printed documents, used graph theory to re-
join components together. Another perfect example is the
oversegmentation of Lecun et al. [72] which builds a seg-
mentation graph associated with a convolutional network,
which is a robust recognizer, and provides very impressive
results. They are particularly well suited for joined and bro-
ken characters and segmentation results are not only vertical
as based on small components. Nevertheless, oversegmen-
tation techniques need a dedicated recognizer based on unit
features.

Details of all classical typewritten character segmentation are
out of scope of this text and enlightening surveys may be found
in Casey et al. [14] and Fujisawa et al. [40].
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Recently, recognition algorithms, free of segmentation, have
appeared to circumvent errors and difficulties of this step. But
they all needed to assume a priori information on text such as
Fang [31] and Kim [63], which is not in favor of versatility. They
based their methods on the presence of several occurrences of the
same character in a text area and by adding linguistic information,
they deciphered the text area with characters similar to others.
A consistent font over the text area is needed in this case. The
largest category of recognizers, free of segmentation, is the word
recognizers one, extensively used in handwritten documents. Nev-
ertheless in NS images where words are totally unknown and even
not in a dictionary like numbers, brands and so on, these solutions
are implausible.

In a framework as the one detailed in Chapter 4, NS images
need robust character segmentation since not all aforementioned
methods are suitable, and off-the-shelf OCR, using them lead to
too many recognition errors. A gap between complex NS images,
as the one displayed in Figure 3.4 in Subsection 3.2.2, and char-
acter recognition has to be filled to extend applications and use
of NS images in daily life.

A few papers deal with character segmentation into individual
components for NS images. This recent field focused more on
text detection and localization and more recently text extrac-
tion, with images sometimes having difficult-to-extract text but
largely spaced characters. For WWW images, Karatzas and An-
tonacopoulos [61] used a proximity measure to add information
for text extraction to avoid connecting or breaking components.
Hence, the number of wrong segmentations was reduced but no so-
lution was given to correct the issue. Myers et al. [104] corrected
perspective on NS images such as street signs to also reduce the
number of connected characters and increase recognition rates.
Chen [16] and Kim et al. [67] added spatial information to seg-
ment characters into individual components. The first method
uses MRF-based text extraction to reduce connected characters
and adds a gray-scale constraint to remove spurious parts between
components. It assumes that gray-level information inside a NS
character is nearly uniform. The second one exploits block infor-
mation using character structural information, and a confidence
factor based on recognition probability enables the verification
of character segmentation of camera documents, after a spatial
split-and-merge technique.
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Based on these considerations, a NS character segmenter is
needed to increase NS character recognition and has to be robust:

e against already individual characters, broken and joined
ones

e against unknown fonts, italic characters or with perspective
(in a reasonable degree).

A very innovative solution, using log-Gabor filters and the
recognition step that follows in a hybrid method, is fundamentally
different from existing ones, and is presented in Subsection 7.2.3
after focusing on properties of these filters in Subsection 7.2.2.

7.2.2 Why are log-Gabor filters appropriate for
NS character segmentation?

Character segmentation in NS images obviously needs text prop-
erties and gray-level information to complement the color informa-
tion exploited in text extraction in Chapter 6. Hence simultane-
ous spatial and directional information (for character separation
location) and frequency information (gray-level variation to de-
tect cuts) are required. Gabor filters are a traditional choice to
address this issue: they are cosine-like filters having a given di-
rection and modulated by a Gaussian window. They have been
extensively used to characterize texture, and more specifically in
this context, to detect and localize text into an image. In this aim,
Gabor filters are quite time consuming because several directions
and frequencies must be used to handle the variability in character
sizes and orientations. Moreover, Gabor filters present limitations:
large bandwidth filters induce a significant continuous component
and only a maximum bandwidth of 1 octave could be designed.
Field [35] proposed an alternative function called log-Gabor which
lets us choose a larger bandwidth without producing a continuous
component. Moreover, he suggested that natural images are bet-
ter coded by filters that have a Gaussian transfer function on a
logarithmic frequency scale, by showing that their spectrum sta-
tistically falls off at approximately 1/f, which corresponds well
to where the log-Gabor filter spectrum falls off on a linear scale.
Figure 7.2 displays the shape of log-Gabor functions at the same
frequency but with bandwidth varying from 2 to 8 octaves. Log-
Gabor functions have the same appearance as Gabor functions for
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Figure 7.2: From top to bottom: even (left) and odd (right) log-
Gabor filters with a bandwidth of 2 octaves and even (left) and
odd (right) log-Gabor filters with a bandwidth of 8 octaves. In
the spatial domain, the possibility of sharpening the filters is high-
lighted.

bandwidths less than one octave. The possibility of sharpening
the filters is highlighted.

Log-Gabor filters in the frequency domain can be defined in
polar coordinates by H(f,0) = Hy x Hy where Hy is the radial
component and Hy, the angular one:

B 2 A O e
H(f.6) = p{Q[l”(Uf/fO)]Q}X p{ 207 } (7-2)

where fj is the central frequency, 6 is the filter direction, o¢ is
the standard deviation of the radial components of the Gaussian
describing the filter and is used to define the radial bandwidth B in
octaves with B = 2,/2/In(2) * |In(os/ fo)| and oy is the standard
deviation of the angular part of the Gaussian and enables the
definition of the angular bandwidth AQ = 209+/2in(2).

As we are looking for vertical separation between characters,
we only use two directions for the filter: the horizontal and the
vertical ones. Hence, for each directional filter, we have a fixed
angular bandwidth of AQ = II/2. Log-Gabor filters are not really
strict with directions and defining only two directions enables the
handling of italic and/or misaligned characters. For highly mis-
aligned characters, the number of directions could be increased to
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Figure 7.3: Correction of misestimated thickness with varying
bandwidth. From left to right: original image, segmentation with
misestimated thickness, segmentation with the same thickness cor-
rected by a larger bandwidth.

handle this additional degradation, but it is important to mention
that the angular bandwidth will become narrower and hence more
selective.

Only two parameters remain to be defined, fo and oy, which
are used to compute the radial bandwidth. The central frequency
fo is used to handle gray level variations to detect separation be-
tween characters. The spatial extent of characters is their thick-
ness that we consider as the wavelength of ‘characters’, hence it is
logical to get a central frequency close to the inverse of the thick-
ness of characters to get those variations. However, the measure-
ment of character thickness may not be very accurate depending
on the presence of degradations. In order to handle all kinds of
degradations, we compensate for inaccurate thickness estimation
with the second parameter oy. If the thickness of characters is not
consistent inside a character such as in Figure 7.3, some character
parts can be removed permanently. In this case, by increasing
the bandwidth, we can support the variability in the thickness of
characters with a ‘larger’ filter. Moreover, sometimes with very
degraded or close characters, the thickness is very difficult to esti-
mate and the filter must be very sharp to get each small variation
in the gray level values such as in Figure 7.4.

In Mancas-Thillou and Gosselin [93], we segmented characters
individually by using log-Gabor filters in a static way, presenting
problems with noisy characters or inconsistent character thick-
nesses. Hence, as degradations and conditions of frequency esti-
mation are quite unexpected, we chose the bandwidth filter in a
dynamic way using recognition results. In the following subsec-
tion, we detail our method and how each parameter is estimated.
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Figure 7.4: Impact of varying log-Gabor bandwidth for charac-
ter segmentation. Original image (top left), binary version (top
right), segmentation with large bandwidth (bottom left), segmen-
tation with narrow bandwidth (bottom right).

7.2.3 Character segmentation-by-recognition

Based on the binarization of the detected area, which is available
with the proposed SMC algorithm in Chapter 6, the character
segmentation may now be performed on gray-level images.

Frequency estimation To define frequency, a classical way is

to use a "wavelet-like" method. This means trying out sev-
eral frequencies to get a good result for one of them. This
method is time consuming due to several convolutions with
multiple frequency filters and the number of computations
rose to the power of two with the second parameter.

Text embedded in natural scene images presents a quite con-
sistent wavelength, which is very different from the back-
ground. For the filter, we decided to use a wavelength re-
lated to the average of the character thicknesses. This is
computed by using the ratio between the number of pixels
of the first mask obtained by the SMC method and its skele-
ton as shown in Figure 7.5. Hence, the central frequency fj
can be estimated approximately by:

fo= Z skeleton(i, j)/ Z mask(i, j) (7.3)

2% ,J

Bandwidth estimation-by-recognition Due to the large vari-

ation in NS character fonts and sizes, the bandwidth has to
be chosen dynamically. As objects to be segmented are text,
we can use segmentation-by-recognition to choose the con-
venient bandwidth. We fix the initial and final values for
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Figure 7.5: Visualization of thickness estimation. Left: original
image, right: mask (white) obtained by the SMC method and its
skeleton image (red).

Figure 7.6: Log-Gabor filtering results for each filter property.
From top to down: phase of the horizontal filter, phase of the
vertical filter, magnitude of the vertical filter and absolute phase
of the vertical filter.

the bandwidth estimation. From approximately 2 octaves
to approximately 8 octaves, which makes o/ fy vary with
a step of 0.1 (from 0.1 to 0.6), we process six filters and
provide the result to an OCR engine.

The result is composed of the vertical filter only as the
character separation is mainly vertical. Moreover, in the
output, only the phase of the filter will be exploited. As
the text and background information have different wave-
lengths, the phase contains much more information than
magnitude. Moreover, local variation issued from the initial
separation between characters induces a phase difference.
The latter one contains the gray-level information while the
phase shows a local map which makes a good separation
between the background and the textual information; this
intermediate result is then multiplied by the first mask from
text extraction to remove possible noise around characters
as displayed in Figure 7.6.
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Figure 7.7: Phase of the vertical filter multiplied by the mask is-
sued from the text extraction (top) and result after global thresh-
olding (bottom left). Improvement is obvious from the binary
version (bottom right).

As shown in Figure 7.7 after filter convolution, characters
have mainly low intensities and higher background intensi-
ties. In order to remove spurious parts between characters
and to remain parameter-free, we use a global Otsu thresh-
olding [113], which automatically chooses the threshold to
minimize the intra-class variance of the thresholded black
and white pixels. With the use of the absolute phase of the
vertical filter, only one threshold needs to be determined.
After this step, we get a result, such as the one shown at
the bottom of Figure 7.7, to choose the bandwidth for filters.

We use a home-made OCR algorithm composed of a multi-
layer perceptron with geometrical features to recognize char-
acters, which is trained by a separate data set and is used to
assess how well characters are segmented. Detailed expla-
nations about this in-house OCR are provided in Chapter
8. After applying log-Gabor filters, connected components
(mostly characters) are given as inputs to OCR. Figure 7.8
shows two examples with varying bandwidths and results
from recognition, which enables us to make the right de-
cision for the bandwidth estimation. Recognition rates for
each character or assumed character are averaged and the
maximum score enables the choice of the bandwidth. The
first example is an image with little contrast between char-
acters and background, and the second one presents mis-
aligned and slanted text, highlighting the robustness of the
algorithm. This estimation needs six straightforward filters
with only one frequency which enables the use of log-Gabor
filters for character segmentation in a low-resource context.
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Figure 7.8: Character segmentation-by-recognition using recog-
nition rates. 1%* and 37¢ columns: character segmentation with
bandwidth varying from 2 to 8 octaves, 2"¢ and 4** columns: OCR
results with average recognition rate, based on retrieved connected
components, shown in blue. For the first example, the estimated
thickness is 13 pixels and for the second one, 17 pixels, leading
respectively to a frequency of 0.48 and 0.37 cycles/degree.

More examples are given in Figure 7.9 to appreciate perfor-
mance of this proposed character segmentation based on log-
Gabor filters. From top, the third example is composed of severely
joined characters and the result after segmentation is very satis-
fying. Between ‘i’ and ‘n’ of the word ‘smokin’, the connection is
still present but the recognition is now successful even with off-the-
shelf OCR including traditional segmentation. The last example
illustrates an original image with characters of two different ma-
jor colors (yellow and white) and a yellow and blue background.
Based on the combination of clusters, the ‘M’ of the word ‘Memo-
rex’ has been reconstituted but simultaneously with some parts of
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background. Nevertheless, the yellow background information has
a different intensity and frequency than the ‘x’ character, leading
to a successful segmentation.

I LOAD LOAD
EZTIRITE Gomputer Gomputer
[IIEAT smokin smokin

" Memorex Memorex

R

I AN Memorex. Memaorex.

Figure 7.9: More character segmentation examples. From left to
right: original image, SMC-based binary version and result after
character segmentation.

Even if in NS images, broken characters are rare due to the
relatively large thickness of characters whose aim is to be read, it
may be useful to have solutions for handling them. To recompose
parts of a single character, we proposed in [92] an algorithm using
log-Gabor filters as well. It enables the correction of already bro-
ken characters (particular fonts or text extraction errors) and new
broken characters due to recognition failures. The bandwidth is
fixed and the frequency estimation is refined by an iterative log-
Gabor convolution.

Figure 7.10 details the algorithm where steps 1 to 4 are dis-
played. Step 1 computes the initial character segmentation, and
in order to recompose parts of broken characters, components are
considered by pairs in Step 2 by applying an iterative dilatation
between them until they become a single component. Step 3 is
a second iteration of the log-Gabor filtering. For this iteration
if the two fused objects were really two characters, they will be
separated a second time. If they were in reality two parts of the
same character as for the ‘U’ or ‘X’, they will remain fused. The
difference is that the frequency is recomputed for Step 3 to refine
it and is hence more accurate. This fact helps to correct some
of the false alarms as the ‘X’ which was incorrectly split during
the first log-Gabor iteration because of a wrong estimation of the
frequency, for example.
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Figure 7.10: Schema of correction of broken characters. From top
to bottom: initial image, text extraction result, first log-Gabor
iteration (Step 1), objects pair grouping by dilatation (Step 2),
second log-Gabor iteration (Step 3), and final character selection
(Step 4).
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Finally the fourth step consists of taking the decision on the
last character segmentation. If an object is segmented twice in
the same way, it means that it contains a unique character. If this
is not the case, the character was broken and we have to fuse the
two objects to get the entire character. Excepting the first and
last objects, ‘A’, ‘I’, and ‘M’ are segmented twice in both pairs
of objects: there were correctly segmented and they are single
characters. For ‘X’ and ‘U’; the objects are not the same twice.
In this case we obtain three objects: two lateral ones from the
broken characters, and a central one which contains the objects
fused into a single character. We shall choose the fused object in
order to eliminate the broken parts. At this step we can add a
validation to have more robust results: by fusing the lateral broken
objects, we should obtain the same central object containing the
fused character. If it is not the case, hence an error occurred at
the third step: therefore, the final result will be a word with one
(or more) lacking character(s).

The convolution of text extraction results with log-Gabor fil-
ters has several goals: to choose the better extracted text, to
segment characters into individual parts and also to fuse broken
characters by validating or not previous outputs. Log-Gabor fil-
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ters give a large set of applications in NS images with a large
modularity and very satisfying results as detailed in Subsection
7.2.4.

7.2.4 Evaluation

Similarly from the beginning of this text, all results are computed
with databases mentioned in Chapter 4, except DB-VideosPDA.
To compute log-Gabor filtering, we use the Kovesi’ toolbox [69]
in Matlab. The home-made OCR, which is useful to choose the
right bandwidth, has been extended in C language from a version
of Gosselin [48]. The "Caliper" distance and evaluation measures
have been developed in Matlab.

In Table 7.1, comparisons are done between the behavior of
an efficient commercial OCR (detailed in Chapter 4) against
initial images without any processing, after the SMC-based
text extraction without character segmentation, after a classical
"Caliper" distance-based segmentation and after the log-Gabor-
based segmentation-by-recognition to show the efficiency and
necessity of this latter method to improve recognition results.
Error rates are computed using the Levenshtein distance [73] be-
tween the ground truth and the resulting text. The Levenshtein
distance or edit distance between two strings is given by the min-
imum number of operations needed to transform one string into
the other, where an operation is an insertion, deletion, or substi-
tution of a single character. Equal weights for each operation are
employed in our computation. Error rates are then computed by
dividing with the number of characters. By using the Levenshtein
distance, some error rates for a word may be superior to 1, but
it is useful to penalize broken characters. Tests have been com-
puted on 10% of the databases due to the impossible automatic
processing with a commercial OCR.

DB-ICDAR and DB-WWW contain more complex images
with closed characters which may become joined characters af-
ter applying the SMC method. "Caliper-based" segmentation into
individual components give better results for DB-Sypole, which is
composed of more traditional and clean scenes. On DB-ICDAR, it
even gives worse results than without segmentation. It is mainly
due to the number of broken characters which increase. Log-
Gabor segmentation drastically decreases error rates.

In Table 7.2, we compare the number of broken and connected
characters between dynamic log-Gabor-based segmentation and
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Table 7.1: Usefulness of character segmentation in natural scene

images stated from recognition error rates with a commercial
OCR.

color | SMC-based | "SMC + "SMC +
Error images images Caliper" | Log-Gabor"
rates images images
DB-ICDAR | 71% 40% 43% 19%
DB-Sypole 37% 22% 19% 21%
DB-WWW 65% 38% 35% 17%
Average 58% 33% 32% 19%

the static one with a fixed bandwidth of 1.7, which is the best
value for databases, as mentioned in [89]. Hence, the number of
joined or broken characters decreases with the dynamic character
segmentation-by-recognition. DB-WWW is the database which
contains most of broken characters due to the low resolution of
images. Effort must be brought for LR web images.

Table 7.2: Impact of segmentation-by-recognition.

Touching Broken

characters | characters
fixed bandwidth 9.6 % 14.8 %
seg.-by- reco. 5.3 % 7.3 %
improvement 55.5 % 49.3 %

Finally, in this proposed character segmentation, the band-
width is estimated with the recognition step and we compute the
efficiency rate of this decision. Some erroneous choices could be
made due to the majority vote on the whole text and the decision
is correctly taken in 98.1% of images. Errors are mostly avoided
with this character segmentation-by-recognition as each decision
is checked with other steps dynamically. Main errors are either
due to the OCR engine with much degraded characters or to the
presence of thin characters. As log-Gabor filters exploit intensity
information to accurately segment characters into individual com-
ponents, if characters are too thin, they will be easy to break in
several pieces of characters, leading to erroneous recognition.

Another benefit of log-Gabor filters in text understanding
needs to be mentioned: the possibility to correct erroneously
extracted text. In Figure 7.11, an example of this case is dis-
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played. Between the three extractions, the first one is obviously
the best one but some errors may occur in the choice of the best
segmentation or even in the previous step of cluster combination
for example. With the simultaneous combination of spatial and
gray-level information, log-Gabor filters may enhance results to
reduce the impact of errors. Due to an erroneous choice between
the three binary hypotheses, the word ‘point’ is more difficult to
segment (even if the other solutions are not really satisfying), but
log-Gabor based segmentation is impressive again, leading to a
total separation between characters. Even if some details have
been lost (on the ‘t’ of the word ‘point’), the recognition is now
successful.

poinl

Figure 7.11: Denoising impact of log-Gabor segmentation. From
top to bottom: original image, three binary hypotheses from SMC
algorithm (D,q-based (left), Seos-based (middle), global thresh-
olded (right)), binary result chosen and segmentation result using
log-Gabor filtering.

Some deeper comparisons have been done with a recent
method from Gatos et al. [43], who used the same public database.
Their text extraction is based on a gray-scale adaptive thresh-
olding and they proposed to recombine characters components
based on several rules to avoid too many joined characters. In
their evaluations, they included the step of text detection, which
adds some errors. Hence, in order to compare similar methods,
we do not use the manual text locating method but the public
A.Chen’s one [83] on the same images. Moreover, we use the same
evaluation method being the Levenshtein distance [73]. Results
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are displayed in Table 7.3. Improvement from Gatos et al. [43]
may be observed with an error rate decreasing of around 43%.
Note that 51% of errors come from text locating part and 8%
from OCR (the home-made OCR recognizes mistakes of the used
OCR). Errors of the proposed method mainly come from the
choice between the three SMC-based hypotheses.

7.3 Conclusion of the Log-Gabor-based
Character Segmentation

In this chapter, we propose NS character segmentation-by-
recognition based on log-Gabor filters whose some parameters
are defined dynamically. This algorithm fulfills requirements, es-
tablished in Subsection 7.2.1, and gives interesting results under
various aspects:

e No assumption on characters fonts, sizes or skew is done

e Characters are segmented with not only vertical separations
but cuts following the character profile, leading to increased
recognition rates

e Touching and broken characters are handled

e The algorithm is made more robust by using additional in-
formation with the consecutive step of character recognition

e Satisfying results in terms of recognition rates as well as the
number of connected and broken characters are obtained

e The algorithm may even handle some errors of the previous
text extraction step.

To conclude, log-Gabor filters are very modular and efficient
tools to segment NS characters into individual and understandable
components.
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Table 7.3: Comparison of OCR results between the use of an OCR,
alone (O), Gatos et al’s method [43] (G) and the proposed method
(M). Evaluation is based on Levenshtein distance [73] from the
ground truth.

NS oO|G | M NS O |G| M
images images
- CARLING
21| 0 0 2 1 1
25181 6 2 2 0
5 | 4 0 32 | 3 4
2| 2 1 2 0 0
i . 313 4 39 |18 | 19
|G00D |
WML )
1 1 0 10 | 1 1
0|0 0 10 |10 ] O
2 1 1 6 3 0
0|0 0 38 | 16 | 10
- -] - 201 | 83 | 47




— CHAPTER 8 —

Comnsiderations on NS Character
Recognition and Correction

From resolution enhancement to unit-based character segmenta-
tion, the main goal was to improve extracted text in order to
finally increase recognition rates.

Character recognition is made easier with previous robust pre-
processing steps. Hence, in this text, the objective was to pro-
vide high-quality extracted text in order to exploit off-the-shelf
OCR. Nevertheless, NS character recognition, faced with the very
large diversity of images without any a priori information, needs
suitable conditions to work properly, such as a huge and signi-
ficative training database or completion of the frequent NS cut
words. Instead of focusing on convenient selected features for the
recognizer, optimization of learning and so on, which in itself is
enough to cover an entire thesis, we shall mention considerations
on NS character recognition in Section 8.1 and on recognition-
by-correction with the use of efficient and lightweight finite state
machines in Section 8.2.

8.1 NS Character Recognition

8.1.1 What is done in NS character recogni-
tion?
From the origin of OCR in 1870 when Carey invented the retina

scanner being an image transmission using a mosaic of photocells,
through the real start in 1950 within the business world, to recent
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breakthroughs in online and offline recognition, much effort have
been done to decrease computation time and increase recognition
rates. With fields varying from typewritten characters to his-
torical handwritten ones, OCR needed dedicated algorithms for
each category. Nevertheless, some progresses made OCR work
efficiently for clean, binarized typewritten characters and recog-
nition of NS characters within the framework aims at exploiting
standard OCR.

Main character recognizers use:

Feature extraction: The objective of feature extraction is to
capture the essential characteristics of the patterns. Build-
ing a feature vector is probably the single factor in achieving
high recognition performance in OCR. Conventional features
characterize distribution of points, transformations and se-
ries expansions of structural analysis such as moments, n-
tuple, characteristic loci and so on, for either binary images,
skeletons (thinned characters) or gray-scale images.

Feature selection: Several features may be redundant creating
overhead computation or in the worst case scenario, con-
fusion if some features bring contrary information for the
same character. Main feature selection methods are prin-
cipal components analysis, exhaustive search, branch-and-
bound, iterative selections and so on [123].

Classification: Obviously, a classifier is required based on fea-
tures or pixels themselves. Among template-matching, k-
Nearest Neighbor (kNN) or other kinds of classifiers, statis-
tical supervised recognizers, such as hidden Markov models
or neural networks, are preferred and have proven real effi-
ciency in OCR.

The reader must understand that a state-of-the-art character
recognition system may be huge if detailed, which is out of scope
of this text, therefore the reader is referred to the excellent survey
of Jain et al. [57], on this topic.

To focus on NS character recognition, main recent papers deal
with gray-level characters to handle degradations and low resolu-
tion of acquisition. The idea is therefore to build efficient recogniz-
ers against some issues without improving characters beforehand.

For WWW images, Zhou et al. [167], first extracted characters
by color clustering and then converted the characters’ colors into
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gray-scale. The main color receives the value of 255 and the other
ones are set to differences from the representative color. The char-
acter shape is then treated as a 3D surface and a polynomial sur-
face fitting method (Legendre polynomial basis) is used as feature
extractor and a basic character-to-class Euclidean distance is used
to recognize characters. For NS text, Zhang et al. [165] exploited
also gray-scale images after intensity normalization with Gabor-
based features in the context of Chinese sign recognition. They
performed feature selection with a linear discriminant analysis to
build a space as discriminate as possible. Finally the classifica-
tion is solved with kNN. Yokobayashi and Wakahara [163], after
local binarization on CMY color planes, performed affine-invariant
gray-scale recognition as well as using global affine transformation
correlation, a particular template matching technique. To circum-
vent poor binarization of mobile phone camera-based images, Sun
et al. [141] extracted features based on dual eigenspace. A sub-
pixel gray-scale normalization is used first, then, the recognition
is done by comparing similarities of features with synthetic gen-
erated patterns. Usual training database to recognize characters
are not noisy and high resolution, hence they created a degraded
dictionary using a video degradation model based on perspective
transformation.

8.1.2 Description of the exploited recognition
system

To perform segmentation-by-recognition in Chapter 7, we use an
extended version of classifier from Gosselin [48], based on geomet-
rical features and a multi-layer perceptron (MLP).

Briefly, an MLP is a network of simple processing units ar-
ranged into a hierarchical model of layers. The units (neurons
or nodes) in the first (input) layer are connected to nodes in the
subsequent layer(s) (hidden layers), to the final (output) layer.
Numerical input vectors of patterns are presented at the input
layer, and activity flows through the network to the output layer.
Connections have a numerical weight value associated with them,
and the signal transmitted via a connection is multiplied by the
weight value. Each unit computes some function of the sum of
its weighted inputs, and transmits the result through its output
connections by comparing with a threshold, as shown in Figure
8.1. This kind of activation function is generally the sigmoid
function f, expressed by:
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Figure 8.1: Zoom on a perceptron to explain operations of a simple
neural network.
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where (§ is a parameter to choose, meaning the scale value
applied by the neuron. ( is usually chosen equal to 1.

The backpropagation algorithm [128] provides a means of
training the network to perform supervised learning tasks. Su-
pervised learning starts with the presentation of a set of example
input features to a learning system. The learner’s output is then
compared with the known correct output for each pattern, and
some adjustments are made so as to improve the response of the
learner to those patterns. The MLP is trained in order to give
the value 1 to the output of the node corresponding to the true
class and 0 to the others. In practice, each output has a value
between 0 and 1 representing the confidence level that the char-
acter belongs to the corresponding class. The architecture of the
multi-layer perceptron is displayed in Figure 8.2. In the classifier,
we use the improved backpropagation of Vogl et al. [154] to speed
up the training step.

In order to recognize many variations of the same character,
features need to be robust against noise, distortions, style varia-
tion, translation, rotation or shear. Invariants are features which
have approximately the same value for samples of the same char-
acter, deformed or not. To be as invariant as possible, input-
characters are normalized into a N x N size with N = 16. How-
ever, not all variations among characters such as noise or degra-
dations can be modelled by invariants, and the database used to
train the neural network must have different variations of a same
character.

(8.1)
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Figure 8.2: Architecture of a multi-layer perceptron where z; are
inputs and y; are outputs.

In experiments, we use the feature extraction of Gosselin [48]
which is based on contour profiles. The feature vector is based
on the edges of characters and a probe is sent in each direction
(horizontal, vertical and diagonal) and to get the information of
holes like in the ‘B’ character, some interior probes are sent from
the center. Moreover, another feature is added: the ratio be-
tween original height and original width in order to very easily
discriminate an ‘i’ from an ‘m’. Explanations of probes are given
in Figure 8.3.

Experimentally, in order to lead to high recognition rates, we
complete this feature set with Tchebychev moments, which are or-
thogonal moments. Moment functions of a 2D image are used as
descriptors of shape. They are invariant with respect to scale,
translation and rotation. Traditional orthogonal moments are
based on Legendre or Zernike radial polynomials.

According to [103], we use instead Tchebychev moments of
order 2 for their robustness to noise, and the general definition
for order p+ ¢ (p and ¢ varying from 0 to N-1) and for the image
1(i,4) is given by:

=

N-1N-1
1

T, = PPN Z ;) to(i)ta()I(,5)  (8:2)

1=

<.

where p(m, N) is the square norm of ¢,,, (), the scaled Tcheby-
chev polynomial and defined by:
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Figure 8.3: The probes characteristics used to extract character
contour.

S, ) = N(1- ];2)(127—71]%1) (1= (8.3)

and ¢,, with the recursive relation:

(m A4 Dty () — (2m 4+ Dty (@)t (z) + m(N? —=m?)t,_1(z) =0
(8.4)

where to(z) =1 and t1(z) =2z — N + 1.

No feature selection is defined and the feature set is a vector of
63 values provided to an MLP with one hidden layer of 120 neu-
rons (stated by trial-and-error) and an output layer of size 36 for
each Latin letter and digit. Due to few training samples for capi-
tal letters, uppercase and lowercase letters were initially grouped
into the same class. Nevertheless, with the algorithm described
in the next paragraph, an output layer of 62 neurons may be con-
sidered efficiently. The total number of training samples is 40614
divided into 80% for training only and 20% for cross-validation
purpose in order to avoid overtraining [48]. Samples of the train-
ing database are built from various data sets, different from the
databases detailed in Chapter 4, used in experiments.
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Zoom on training database: how to build a relevant and
general one?

Traditional database increasers are based on geometrical defor-
mations such as affine transformations or on the reproduction of
a degradation model such as [141] to mimic low resolution. In
NS images, the very large diversity must be handled and char-
acter extraction of a huge data set is awkward and difficult to
achieve. Hence, we increase the NS database with the image
analogies of Hertzmann et al. [51], with the particular algorithm
of texture-by-numbers. The image analogies are, by the way, close
to example-based super-resolution experienced in SISO interpola-
tion, as briefly explained in Chapter 5.

Given a pair of images A and A’, with A’ being the binarized
version of A, the textured image in the algorithm, and B’ the black
and white image to transfer texture, the texture-by-numbers al-
gorithm applies texture of A into B’ to create B. Binary versions
are composed of pixels having values of 0 or 1; texture of A cor-
responding to areas of 0 of A’ will be transferred to areas of 0 of
B’ and similarly for 1. Multiscale representations through Gaus-
sian pyramids are computed for A, A’ and B’ and at each level,
statistics for every pixel in the target pair (B,B’) are compared to
every pixel in the source pair (A,A’) and the best match is found.
Additional mathematical information may be found in [51].

One sample used to increase the training database is displayed
in Figure 8.4, which also schematises the concept of image analo-
gies.

The entire process of increasing database is firstly based on
character extraction from a given data set, using SMC algorithm
of Chapter 6. Characters are hence binarized and normalized. De-
formations on character thickness, slant, rotation, and perspective
are then performed and the texture-by-numbers is applied on each
binary image. A huge and new data set is hence built. To pro-
vide standardized characters, all newly-textured characters are
then binarized always using the SMC algorithm, leading to re-
alistic degradations of NS images, which enables to increase the
database as naturally as possible.

Based on the finite steps of variation for each of the pre-cited
parameters, for one extracted character and one given texture,
33480 samples may be created. Hence, the power of increasing
database of this method is very large (almost infinite depending on
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Figure 8.4: Principe of image analogies in the context of database
increase. A represents the textured and segmented character, A’
its binary version. From a binary version of an ‘m’ in B’, the
texture is transferred onto B, similar to the analogy between A
and A’

the parameter variation and the number of textures). Some tests
have been done on recognition and rates are slightly increased.
Extensive studies are needed to know if the increase is due to the
enlarging database and/or the representativeness of the database
with texture transfer. Nevertheless, this technique enables the
growing of a database in a fast and reliable way.

Zoom on cut characters: how to handle their large num-
ber in NS images?

In NS images, acquired by HIDs, the number of cut characters
is larger than that in traditional scanner-based acquisition, for
several reasons, the main one being a natural cut done by the
constrained field of view or by an inaccurate acquisition such as
the one taken by a blind user. Some cut characters may also ap-
pear from the text detection and localization or text extraction
steps. We performed a study in [85] using a prolongation-based
approach, where a detection step of cut characters is done at first,
followed by prolongation based on curve fitting, and finally a vote
between dedicated MLPs for cut characters and the MLP for pro-
longed characters is performed to help recognition. This technique
slightly improves recognition rates. However, prolongations are
based on learnt prolongations on typical characters and they fail
in case of noisy characters or very artistic fonts or confusion exists
between similar characters (‘5” and ‘S’ for example). Hence, we
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may conclude that this solution is highly efficient in a dedicated
application with the font estimation.

8.1.3 Conclusion on considerations of character
recognition

As character recognition was not the central focus of this text, sev-
eral studies around an efficient MLP-based recognizer have been
performed.

Robust OCR is useful for the character segmentation-by-
recognition of Chapter 7 and the one described in this chapter
is efficient enough to choose the right bandwidth for log-Gabor
filters. In NS text recognition, the training database needs to
be very representative and an algorithm dedicated to increase
data sets in a quasi-natural way has been detailed in this sec-
tion. Moreover, features need to be robust against degradations
and usual affine transformations. Given the complexity of the
study for handling cut characters, features are also required to be
insensitive to cut characters.

Several improvements may be brought for this step such as
the development of a light, efficient and versatile recognizer to
use in low computational resources devices. Additional works in
feature extraction and selection are also required. An extensive
study on the compromise of color-based character recognition and
the framework may also be done in terms of efficiency, complexity,
required resources and computation time.

Finally, character recognition alone is hardly error-free and
linguistic information needs to be added to correct errors for which
a light and modular solution is proposed in Section 8.2.

8.2 Recognition-by-Correction

8.2.1 Context of OCR correction

Even a robust OCR is error-prone in a lower percentage and a
post-processing correction solution is necessary. Main ways of
correcting pattern recognition errors are either multiplication of
classifiers to statistically decrease errors by adding information
from different computations, such as Lopresti and Zhou proposed
for WWW images [81], or by exploiting linguistic information in
the special case of character recognition. Depending on applica-
tions following text analysis, if too many errors are present, the
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result could be completely useless. For example, Lin [77] assessed
the impact of imperfect OCR on part-of-speech tagging, essen-
tial component of text-to-speech (TTS) systems and he concluded
that "the quality of OCR directly affects the performance of the
[Natural Language Processing] NLP in the complete content un-
derstanding". Hence, minimum error is required for efficient text
analysis and speech synthesis.

Commercial OCR use mainly a dictionary to validate in-
dictionary words, correct obvious errors (uppercase/lowercase let-
ters, punctuation and so on) and ask the user for feedback on
more erroneous words. Processing of all these steps on a stan-
dard computer is permitted but on a low-resource device, it is
not! For automatic and embedded Chinese sign recognition [165],
user feedback is also required through dedicated interfaces for out-
of-vocabulary (OOV) words, meaning that no correction is done.
The OCRSpell of Taghva and Stofsky [142] builds dynamic con-
fusion by allowing a user to set default statistics for a particular
document set. This guarantees that the used statistics will be ad-
equate to find correction for most of the errors in the document.

User intervention may be awkward for industrial purposes and
needs to be used in extreme cases when an application requires no
error to minimize this expensive intervention. Moreover, for blind
people, it makes no sense to require intervention.

There are essentially two types of word errors: non-word errors
and real-word errors. A non-word error occurs when a word does
not correspond to any valid word in a given word list while a real-
word error occurs when a word is interpreted as a valid word in a
dictionary, but is not identical to the printed word.

Most papers deal with non-word errors as we will mention
in the following subsections and statistical language models are
obviously used in real-word errors with part-of-speech tagging into
syntactic categories (noun, verbs, ...) and word n-grams. More
details for real-word errors will be discussed in Subsection 8.2.4
and may be found in the excellent survey of Kukich [70].

For non-word errors, two main categories are highlighted: iso-
lated word correction and context-dependent word correction.
The first one corrects words without any context by taking the
one with the highest rank after applying any algorithm while the
second one exploits all words in the same sentence, where gram-
matical context of each leads to meaningful sentences. Similar
methods are applied for context-dependent non-word errors and
real-word errors.
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For isolated word correction, a lexicon is often used and the
most simple method is lexicon lookup which gives the existence of
a word in the lexicon or not. This point is often the first step of
correction as error detection. Generation of candidate corrections
and their ranking follow this part. Lightweight methods prefer
not to use a lexicon even if dictionary-based methods have low
error rates, because they suffer from large storage demands and
high computational complexity. Probabilistic techniques and n-
gram analysis are hence exploited, among the five kinds of isolated
word correction. They use transition and confusion probabilities
using hidden Markov models (HMM) (1) or the well-known Viterbi
algorithm (VA)(2), first used by Neuhoff [107] in text correction.
Thillou et al. [143] have developed a without-lexicon correction
based on letter trigram analysis through VA and by exploiting
3-best OCR outputs to add information for correction. A priori
probabilities were computed using a French database from a 10-
year news archive of "Le Monde" and a Katz smoothing for absent
trigrams. The main trouble these methods pose is the absence of a
lexicon, and real words may be corrected into OOV words, because
some trigrams of the word are less probable, and the incapacity
of correcting words with several errors is also a challenging issue.
Errors are effectively propagating along the word and even the
sentence, if space is considered as a letter.

The three other categories are minimum edit distance tech-
niques(3), enabling the handling of the insertion, deletion or sub-
stitution of letters, with the Levenshtein distance [73] for exam-
ple, the rule-based techniques (4), as properly named, exploiting
rules, confusion list and finally neural networks techniques (5),
which learn the confusion, directly from rule-based methods.

The last three categories have the main advantage, along with
the presence of a lexicon, to handle confusion lists and usual OCR
errors such as insertion, deletion and substitution of letters. The
challenge is therefore to decrease error rates using a lexicon but
in a light way to efficiently and quickly work in HIDs.

Methods similar to ours may be mentioned to highlight ad-
vantages of the proposed solution in Subsection 8.2.2. Bunke [11]
built an automaton (a particular finite state machine) to find out
the most similar strings from a vocabulary using minimum edit
distance techniques. An efficient conventional parsing method was
allowed in his algorithm, yielding the required results. Neverthe-
less, a high spatial cost was mentioned as the correction was not
driven by errors but by similarity only. Jones et al. [58] described
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an OCR post-processing system which uses individual steps for
correction: rewrite rules, correction of word split errors and use of
word bigram probabilities. The three phases interact with others
to guide the search but decision has to be taken at each step.

More similar to the system, by considering an end-to-end gen-
erative model, is the one of Kolak et al. [68]. They use at run-time
a single transducer that takes a sequence of OCR characters as in-
put, and returns a lattice of all possible sequences of real words as
output, along with their weights. This transducer is the result of
the off-line composition of several transducers trained separately
on the same corpus. The main idea of this system is to split
each in-dictionary word into its two most probable subsequences of
characters (e.g., “example” = “ex | ample” and “exam | ple”), and
to propose, from the training corpus, a list of observed corrupted
sequences (e.g., “exam” = “exain”, “cxam”, etc.). A first draw-
back of this system is perhaps this OCR confusion model, which is
greatly context-dependent. The second drawback is surely the off-
line composition of a single transducer, because no simplification
between the different steps is still possible at run-time.

All aforementioned methods consider OCR as a "black box"
and start correction independently of OCR results, missing di-
rect information. We shall propose an efficient and lightweight
non-word error correction combining OCR outputs and linguistic
information using a lexicon. For this purpose finite state machines
are exploited and extensions for context-dependent non-word and
real-word error correction will also be finally discussed in Subsec-
tion 8.2.2.

8.2.2 Lexicon-based non-word error correction

A finite state machine (FSM) contains a finite number of states
and produces outputs on state transitions based on inputs. FSMs
are widely used to model systems in diverse areas, such as text-
to-speech, text processing, communication protocols or data com-
pression (a lexicon is represented by one machine only). They
often lead to a compact representation of rules, which can be lex-
ical for example, which is considered as natural by linguists.

FSMs are one of the most widely used models in computer
programming in general; they have even been adopted as a part
of the well-known Unified Modelling Language (UML).

FSMs include finite state automata (FSAs) and finite state
transducers (FSTs) with their weighted components, respectively
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Figure 8.5: Display of a simple FST: this transducer contains 3
states with an alphabet of 2 letters (a, b). b:a means b may be
transduced into a.

WEFSAs and WFSTs.
FSMs are defined by a 7-tuple (@, i, F, ¥, A, §, 0):

e () is the set of states.
e | € () is the initial state.

e [ C @ is the set of final states.

> and A, finite sets corresponding respectively to the in-
put and output alphabets of the machine, with alphabet,
meaning a finite set of symbols. Elements of an alphabet
are called words and a subset of an alphabet is called a lan-
guage. In an automaton, A is undefined.

e 0 is the state transition function which maps @ x X to Q.

o is the output function which maps @ x ¥ to A* (meaning
A and the empty word, ¢).

Figure 8.5 illustrates’ a simple FST with Q = {0,1,2}, i =
{0}, F = {1}, ¥ = A = {a,b}, §(0,a) = 0, §(0,a : b) = 2,
0(2,a) =1, 0(Q, %) = a*bala*, meaning that all output words are
composed of an infinite number of ¢ and may be followed by ba or
not. This basic example shows the modelling possibility of OCR
errors.

WFSMs are finite state machines in which each transition has
a weight and they are particularly suited to integrate probabil-
ities between transitions. Without weights, all generated word
sequences in NS text correction will be equivalent if several ones

1Figures of FSMs are produced by the Dotty software, a graph layout
product, which may be found at http://hoagland.org/Dot.html.
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belong to the lexicon. By including weights, traducing a priori
probabilities, the best path with the highest probability could
easily be chosen, similarly as VA which looks for the best path,
the one with the minimum weight.

To combine or decode several FSMs, the composition opera-
tion (o) defined for mappings is very useful. It allows constructing
more complex FSMs from simpler ones, hence becoming a com-
plex FST. The result of the application 707 to a string can be
computed by first considering all output strings associated with
the inputs in 71, then applying 7 to all these strings. It allows an
end-to-end process by considering all generated possibilities.

Other operations, such as union and equivalence, are out of
scope of this text and may be found in [101, 102] along with
detailed explanations on FSM in general.

For recognition-by-correction, the proposition is based on com-
bination of 4 FSMs:

1. The first one is a dynamic WFSA a3 which links 3-best
OCR outputs by combining all word possibilities. This FSA
is dynamic as the OCR output is not known a priori for
a given character and weighted as dedicated weights for
each output are given. The best output has to be obviously
privileged against the second and third ones. Hence, we
experimentally award a weight 3 times larger for the best
output than that given to the second and third outputs.
Finer probabilities may be defined based on a large corpus.
Weights of second and third outputs are slightly different
as OCR robustness does not enable the awarding of very
different weights.

Ex: For the word ‘late’, best outputs were ‘lelo’, second ones
‘tate’ and third ones ‘hoha’ and the dynamic WFSA may be
represented as in Figure 8.6:

where @ ={0,1,2,3,4},i = {0}, F = {1} and ¥ = ASCII.

2. The second one 75, a static WEFST, represents a static confu-
sion list with predefined rules based on classical confusions
such as ‘i’ and ‘I’; ‘rn” and ‘m’ and so on. Weights are defined
to differentiate very probable confusions and less probable
ones and have been computed on DB-ICDAR and based on
the home-made OCR errors.
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Figure 8.6: Display of the first weighted automaton of the system
to model the 3-bests OCR output for the example ‘lelo’.

3. The third machine 73 is a static WFST to reaccent char-
acters. In NS text understanding with all possible noise in
an image, accents are difficult to extract and frequent errors
of absent accents occur. Moreover, in advertisements for
example, some words may be all in capital letters without
accents. This machine is useful for language with accents
such as French. Reaccentuation is weighted to privilege in-
dictionary words without accents.

4. Finally the fourth machine 74 represents a lexicon (with ac-
cented words) by an FST of 330 278 lexical forms, including
all syntactic classes, singular and plural and all inflected
forms of verbs.

The best output is straightforward: all machines are composed
together with o om073074 and results are all possible in-dictionary
accented words from OCR outputs. The best one with the mini-
mum weight will be chosen by multiplying consecutive weights (in
practice, weights are given by a negative logarithm and they are
simply summed).

8.2.3 Evaluation

In order to assess recognition-by-correction using the 3-best OCR
outputs as inputs in the lexicon-based non-word error correction,
we detail some examples from DB-WWW and DB-Sypole with
French text?. Comparisons are done with recognition without
correction using the home-based recognizer, followed by the use
of a correction without lexicon, as the one described in [143] which
uses trigram analysis through VA, and with the proposed correc-
tion technique in this section. Table 8.1 displays results. Five

20nly a French dictionary was available.
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expressions have been carefully chosen to illustrate the complex-
ity of correction and modularity and efficiency of FSM.

The first one is a sentence with proper nouns, hence OOV
words. The result of OCR without correction is correct. With VA-
based correction, the first name is changed to another one, which is
wrong. The same bad result appears with FSM-based correction,
which forces the correction to reach a real word. Nevertheless,
integration of an additional machine with syntactic information
may resolve this issue. The proper noun ‘mannoni’ is converted
to ‘marnons’, meaning the inflected verb of ‘marner’ (‘we marl’).
Hence, with a syntactic correction, the first name could not be
followed by this inflected form. For the second sentence, correc-
tion may be found either in the 3-best output of OCR or in the
confusion list. FSM-based correction gives better results as the
word 'programmation’ does not exist in a lexicon. The third ex-
ample has its correction only in the confusion list as the error was
due to the presence of a cut character on image edges while the
fourth one only in the 3-best OCR output. Finally, the fifth ex-
pression is never corrected as each word is a real-word. Only with
an expression-based lexicon, this correction may be handled: the
right expression is "coup de foudre" meaning "love at first sight",
which is the second best solution of FSM-based correction.

An interesting study has been done on correction constraints.
Some strongly erroneous words, with the confusion list stated for
To, may be turned into real words. Nevertheless, these resulting
words are very far from the initial word. The same consequence
may appear for OOV words. Hence, in order to automatically
prune the composed machine, we restrain the number of correc-
tions at around one third of the word length. The machine is hence
heavier but the number of explored paths drastically decreases.
The initial complexity of the solution is dependent on the number
of letters n and was O(2") and is now O(n®/c!) with ¢, the number
of permitted corrections. Based on several sentences, results were
identical but with constrained correction, they were computed
much faster! If results are not in-dictionary words, other deci-
sions may be taken, in order not to obtain very different words. Is
it an OOV word? Is it an incorrect separation between words? If
the last answer to the last question is positive, another machine,
modelling space insertion and deletion, may then be added. In the
study, if corrected words are very far from the initial recognized
ones, we decide not to apply correction. If the end application
is speech synthesis, the spoken word may still be understood by
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Table 8.1: Comparison of correction samples based on several

types of correction.

Sentences

f errors

Without
correction

"octave mannoni"
"les 1000 fonctlons
de programmatlon”
"tout sur la programmatior"
"un feu iouge"
"loup de foudre"

0

With
VA-based
correction

[143]

"ociave mannoni'
"les 1000 fonctions
de programmation"
"tout sur la programmatior”
"un feu louse"
"loup de foudre"

= =

The FSM-based

correction

"octave marnons"
"les 1000 fonctions
de programmation"
"tout sur la programmation"
"un feu rouge"
"loup de foudre"

N~ DN = =

_— o o o
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Table 8.2: Comparison of correction samples based on the number
of included recognition outputs (either only one or three).

Sentences g errors

With 1-best "octave marnons" 2
OCR only "les 1000 fonctions

output de programmation" 0

"tout sur la programmation” 0

"un feu fouge" 1

"loup de foudre" 1

The "octave marnons' 2
recognition- "les 1000 fonctions

by- de programmation" 0

correction | "tout sur la programmation’ 0

"un feu rouge" 0

"loup de foudre" 1

users based on the initial word. A particular threshold has been
chosen to balance the compromise between the number of cor-
rected errors, which may be high, leading to very different words
and the pronunciation of the recognized word, which may be close
to the real one.

Since the system does not consider OCR as a black box, a com-
parison of results with the system and a composition of FSMs not
using this information is done. Actually, the first WFSA «; is con-
strained to only 1-best OCR output. The results, shown in Table
8.2, highlight the relevance of this additional machine, compared
to recent efficient and similar existing techniques. Moreover, with-
out this additional information, on several other examples, results
were empty meaning that no word was found in the lexicon.

To appreciate the efficiency of an FSM-based correction, we
computed recognition rates for French parts of DB-WWW and
DB-Sypole. Results are displayed in Table 8.3 and the improve-
ment compared to a non-dictionary based correction, such as the
VA one, is clearly proven. Main serious errors of VA-based cor-
rection were to correct real words into non-real words and its
incapacity of modelling N towards M correction, meaning that
insertion and deletion may not be handled with only the confu-
sion list inside VA. Errors in FSM-based correction are mainly
due to real OOV words, either due to cut words or foreign words
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Table 8.3: Recognition rates (%) without correction, with the
VA-based one and with the FSM-based one.

No correc. | VA-based correc. | FSM-based correc.
Rec. 83.4% 86.5 % 94.7 %

and acronyms.

Finally the main purpose was computation time and low re-
sources to get a good compromise between high quality correction
using a lexicon and reasonable computation to fit HID resources.

Much effort has been provided by the Multitel TTS team® to
build an efficient, lightweight and fast toolkit. On a classical PDA
(on PocketPC2003, 520 MHz), the algorithm corrects a word of 13
letters in 0.2s after loading the composed machine. Finer details
of computation time in different applications for this FSM toolkit
may be found in [7, 8].

8.2.4 Conclusion on recognition-by-correction

The lexicon-based non-word error correction is very modular,
which enables to handle OCR errors, such as insertion, deletion or
substitution of letters. Moreover, the system exploits 3-best OCR.
outputs to be directly linked with recognition, which is a real in-
novation and includes weights by regarding the output rank. It
enables to correct more words with highest probability. Regard-
ing recognition-by-correction, detailed in Subsection 8.2.2, more
thorough work is required to very accurately tune each machine.
Nevertheless, results are drastically improved and the modularity
offered by FSMs is very promising for NS text correction.

Several extensions may be formulated: similar to Kolak et al.
[68], higher-level syntactic information may be built through addi-
tional FSMs to handle word segmentation problems for example,
or to choose the best output regarding the whole sentence as well.
Syntactic information, modelled by an additional machine, with
grammatical forms, could be also used to correct real-word errors!
To be even more efficient and fast, this step may be included in the
syntactic analyzer, present in all TTS techniques, if applications
of NS text understanding end into a TTS algorithm.

3http://www.multitel.be/ TTS/
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8.3 Conclusion

In the first part of this chapter, we detailed the proposition of
algorithms of NS character recognition with relevant study on
cut characters handling and solutions to increase NS databases.
Moreover, in the second part, we presented a recognition-by-
correction method using modular and lightweight FSMs, carefully
highlighted with an evaluation part resulting with an increase in
recognition rates. The main points to highlight are the following:

e Brief explanation of the in-house OCR, leading to satisfying
results in terms of bandwidth determination for log-Gabor
filters.

e Recognition part was not described in terms of competitive
recognition performance but in terms of inclusion inside an
NS text understanding. Thorough studies have been made
to increase recognition rates:

— Artificial but realistic increase of database samples
based on image analogies technique to synthesize degra-
dations of natural scene images.

— Handling of cut characters through parallel neural net-
works. Results are slightly improved but confusion
between similar patterns remains an essential issue to
complete cut characters.

e Correction of recognition errors is an essential part of pat-
tern recognition to decrease the number of errors and to add
robustness through different information. The FSM-based
correction arrives at the following points:

— Recognition rates increase

Lightweight use of a lexicon

Correction of insertion, deletion and substitution errors

Exploitation of 3-best OCR, outputs to combine infor-
mation and to statistically converge towards best cor-
rections.

e The final recognition-by-correction algorithm could also be
exploited in conventional OCR, not specifically for NS text
recognition.

Finally, these two steps finish off the whole process of NS text
understanding from resolution enhancement to OCR correction.



— CHAPTER 9 —

Conclusion

This last chapter aims at concluding this text by summing up
each contribution among smaller conclusions for each step. The
first part highlights important points according to us to realize
an efficient and versatile NS text understanding and the second
parts emphasizes interesting work prolongations in other image
processing fields and the focus to give in next years.

9.1 Conclusions and Contributions

Color variation sources have been detailed by considering the
triplet Light, Object and Camera in order to understand image
formation. Moreover, based on MacAdam ellipses experiments,
requirements for an efficient text understanding came out:

e Handling of NS degradations in a combined way is preferred,
instead of independently in order to decrease the number of
errors and decisions to take at each step.

e Solution using chromaticities and luminance information
without defining a new color space is expected to combine
these complementary sources and to circumvent awkward
definitions of color spaces.

e Exploitation of magnitude and relative orientation of colors
to handle color variations in a more efficient way could be a
novel solution.
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After browsing main methods in text binarization and more
particularly in NS text extraction in another part, we concluded
that some points were missing to properly handle NS text images:

e Handling of all degradations with a computationally inter-
esting grouping-based methods is expected.

e Recent papers dealing with spatial information enable ob-
vious correction of bad extraction and spatial information
among chromaticities and luminance one is mandatory.

e Consideration of very complex and low resolution images
instead of simple or middle-difficulty NS images is a hole in
NS text understanding evaluation.

e Decrease of the number of rules in algorithms, which is
contrary to versatility, especially in character segmentation
techniques is mandatory as text properties are not efficiently
exploited.

A deep study on impact of color spaces on NS text extraction
highlighted the inappropriate definition of color spaces. Recent
color spaces, even perceptual ones, handle better more complex
images but not in a general way and sometimes perform very
poorly on simple images.

Based on these considerations we proposed solutions for color
variations, complex backgrounds, low resolution and very joined
characters, which are main failures reasons of text understand-
ing. Hence, we presented the selective metric clustering algorithm
which exploits magnitude of color pixels along with their orienta-
tion to introduce hue values inside the RGB color space. Color is
hence fully used for text extraction from background. In order to
add finer accuracy to separate characters into individual compo-
nents, color is associated with intensity and spatial information
in the subsequent step of character segmentation. A particular
effort has been done to intermingle each step to increase overall
robustness and these links have proven their efficiency through
detailed results in each chapter. For evaluation, databases have
been carefully chosen in order to highlight versatility. A large pub-
lic database was used among smaller ones such as samples from
Internet and camera-based images from low-resolution cameras.
Independence against a particular database is hence ensured.
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Text understanding and more particularly natural scene text
extraction need pre- and post-processing steps to correct or cir-
cumvent some degradations and to add useful information in or-
der to increase final recognition rates. Hence, from Chapter 5 to
Chapter 8, we dealt with available information in order to improve
global quality of text extraction:

Resolution Enhancement: By applying simple affine motion
assumption instead of pure translational model between
video frames, we presented the SURETEXT algorithm
which enhances high frequency information inside low res-
olution video. Super-resolution with Teager filtering has
proven its efficiency against traditional still images reso-
lution increaser and classical super-resolution algorithms.
The method is quite lightweight compared to more com-
plex and recent algorithms which assume information from
camera (point-spread function for example) and Bayesian
reconstruction methods. Nevertheless, more efforts have to
be done to decrease computation time even more in order to
enable inclusion of super-resolution algorithms into current
and future handheld imaging devices.

Text Extraction: This step was the main focus of the work
as its quality immediately has an impact on recognition re-
sults, meaning that recognition rates may be satisfying only
if text extraction presents very good results. Through the
parallel use of three extraction hypotheses issued from an
Euclidean-based and angle-similarity-based clustering and a
global thresholding, we introduced the SMC algorithm and
showed its performance with detailed results in each sub-
section. Several color spaces into different clustering algo-
rithms have been tested to highlight the sufficiency of RGB
for handling a very large set of natural scene images. Sim-
ilarly, several clustering metrics have been put to the test
through several quality measures to point out which metrics
were the best ones to answer desired versatility. To be com-
pletely included into a consistent text understanding, the
main goal is now to meet text detection and extraction re-
sults with Potts model for example. Text detection is rarely
based on color information alone and texture and edges are
often exploited, which perfectly complements studies in this
text.
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Screen-Bendered Text

Figure 9.1: Sample of screen-rendered text where first promising
results have been computed by using the log-Gabor-based charac-
ter segmentation.

Unit-based Segmentation: Even if this step is missing in
most algorithms, results have been shown to highlight the
usefulness of character segmentation inside very complex
natural scene images. In literature, complex samples of the
public database we used have never been presented and by
using log-Gabor filters and intimately linked to the text ex-
traction step, we introduced promising results for these im-
ages. First encouraging results even appeared after requests
during a conference to analyze screen-rendered text such as
the one displayed in Figure 9.1. To fully exploit results of
this step, one future work is to use log-Gabor features, dy-
namically tuned by our method, as feature classifier inside
a recognition framework.

NS Character Recognition and Correction: This final
step has been studied through several works to add neigh-
boring information in order to increase recognition rates.
Natural scene images are often populated with cut charac-
ters and we stated that correction of cut characters may be
a solution but robust recognition for cut characters is pre-
ferred. A particular attention has been paid to build a large
and realistic training database for a supervised classifica-
tion (with multi-layer perceptron for example). Correction
of recognition outputs is a necessary step to go towards
efficient recognition for text-to-speech algorithms, for exam-
ple. By adding linguistic information through lightweight
finite state machines, we showed a drastic improvement of
recognition results (from 83.4% to 94.7%) and highlighted
the modularity of this solution.
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9.2 Interesting Prolongations and Dis-
cussion

Among future works of each step detailed in the previous section,
one of the main prolongation work will be to extend some of these
solutions for extraction of other objects in natural scene images
to show once again versatility of these methods. Obviously, char-
acter segmentation or text correction are dedicated steps of text
analysis. Nevertheless, the combination of color, intensity and
spatial information or handling of low resolution frames may lead
to interesting results for other applications.

In order to sum up required points to extend to build an effi-
cient NS text understanding, we may highlight that low-resolution
still images (due to the low resolution acquisition or a small detail
in a high resolution image) require additional work. About the
global system and if resources are available, the small amount of
errors at each step may be decreased by keeping information un-
til recognition errors correction. These additional hypotheses will
be handled through another step of information fusion, such as
simply the solution with the least correction to reach real words.

Due to the great expansion of electronic goods and their
ever increasing performance, readers may wonder if these text
topics will not be obsolete in a few years. In some recently
launched smartphones in Asia with 3.2 Megapixels cameras and
rudimentary embedded OCR or with expansion to 8 Megapixels
of consumer-grade digital cameras, is the resolution enhancement
step useful? For tiny characters or correction of degradations, the
merge of several frames is still interesting. The text extraction
part handling complex backgrounds and uneven lighting will be
necessary for a long time: professional expensive cameras have still
problems with illumination by nature and complex backgrounds,
especially in advertisements. Such issues will not disappear any-
time! Unit-based segmentation may be removed by other compu-
tationally very demanding methods but character recognition and
correction is mandatory to understand text. Hopefully, text un-
derstanding steps will be automatically embedded into handheld
imaging devices soon for exciting and useful applications in daily
life!
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— APPENDIX A —

Color Spaces Conversion

This appendix details conversions and visualisation' of color

spaces described in Chapter 2 for the D65 white point?, the 2°
observer and the sRGB working space for RGB color space?:

¢ RGB

Figure A.1: RGB cube in the RGB color space.

1Visualization has been done with the ColorSpace software available at
http://www.couleur.org/.

2Xo = 0.9504, Yo = 1.0, Zo = 1.0889.

3For more details about device-dependent color spaces, the reader may
refer to [78].
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e RGB = CIE XYZ

Figure A.2: RGB cube in the CIE XYZ color space.

X 0.412 0.358 0.180 R
Y | =10213 0.715 0.072 G
Z 0.019 0.119 0.0950 B

e CIE XYZ = CIE L*a*b*

Figure A.3: RGB cube in the CIE L*a*b* color space.
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L* = 116(Y/Yy)'/? — 16
if Y/Yy > 0.008856
L* = 903.3(Y/Yp)
if Y/Yy < 0.008856
a* = 500[f(X/Xo) - f(Y/Yo)]
b* = 200[f(X/Xo) — f(Y/Y0)]
with
f(oy = uvs if U > 0.008856
f(U) = 7.787U +16/116 if U < 0.008856

e CIE XYZ = CIE L*u*v*

/I

Figure A.4: RGB cube in the CIE L*u*v* color space.

L* = 116(Y/Yy)'/3 — 16
if Y/Yy > 0.008856
L* = 903.3(Y/Yy)
if Y/Yy < 0.008856
v = 13L*[U(X,Y,Z) — U(Xo, Yo, Zo))
vt = 13L*[V(X,Y,Z) — V(Xo, Y, Zo)]
with
(Uers) = e
VIX,Y,Z) = x5ivi32
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e CIE L*a*b* = CIE L*CH"®

Figure A.5: RGB cube in the CIE L*CH® color space.

L* — L*
C = Vo' +b7
H° = 0 whether a* = 0
H° 180(1T + arctan(2))
e RGB = HSI

Figure A.6: RGB cube in the HSI color space.
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H = arctan(8/a)
S — /o2 + 52
I = (R+G+B)/3
with
{ « R—-X(G+B)
B = PGB
e RGB = HSV
i _
»
! u-x_'-,;;‘:‘:’-.'h!
S el R X
RS
v T
a::"'{'fl
e e
3 s

Figure A.7: RGB cube in the HSV color space.

T k=

S
Vv

0.235(G — B)/(R — min(R, G, B))
if max(R,G,B) =R
0.235(B — R)/(G — min(R, G, B))
if max(R,G,B) =G
0.235(R — G)/(B — min(R, G, B))
if maz(R,G,B) =B
maz(R,G,B)—min(R,G,B)

maz(R,G,B)
max(R, G, B)

e RGB = I 111,

|

I
I
I3

%(R+G+B)
?(R—B)
1(2G - R - B)
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Figure A.8: RGB cube in the I;I513 color space.

e RGB = CMYK

Figure A.9: RGB cube in the CMY color space. K stands for Key
and corresponds to the additional black ink added for printing.

C = 1-R
M = 1-G
Y = 1-B
K = min(C,M,Y)
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e RGB = YIQ

Figure A.10: RGB cube in the YIQ color space.

Y 0.299 0.587  0.115 R
I]=1059% -0.274 —0.322 G
Q 0.212 -0.523 0.311 B

e RGB = YUV

Figure A.11: RGB cube in the YUV color space.
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Y 0.299  0.587  0.115 R
Ul =1[-0147 —-0.289 0.436 G
v 0.615 —0.515 —0.100 B

e RGB = YCbCr

Figure A.12: RGB cube in the YCbCr color space.

Y 0.299  0.587  0.115 R
Cb| =1-0169 —-0.331 0.500 G
Cr 0.500 —0.418 —0.082 B



— APPENDIX B —

Expectation-Maximization

This appendix describes the Expectation-Maximization (EM) al-
gorithm in the framework of Gaussian mixture modelling and data
clustering:

Consider N points X = (X;...Xy) and each X; =

(Xj1...X;4) from a d-dimensional vector space. Here,

d = 3 for RGB color space.

Clusters are represented by mixture of Gaussian distribu-
tions.

Representation of a cluster 7 (with one Gaussian represent-
ing one cluster): center points p; of all points in the cluster
and d X d covariance matrix ¥; for the points in the cluster
i.

Density function g; for cluster ¢:

]- 1 Ts—1
(X, Xi) = —F————==ex (—3(X—p) "7 (X —pi))
(¥l 2 @det(sy) P
(B.1)

where det is the determinant of the covariance matrix ;.

Let p; denote the fraction of clusters i in the entire data set
D for the probabilistic model P(X):

M M
P(X) = Zpigi()f\ui,zi) with Zpi =1 (B.2)
i=1 -1

where M is the number of clusters.
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For univariate case (one Gaussian only), it is possible to solve
parameters of the Gaussian with the Maximum Likelihood Es-
timation method. For multivariate case, the EM algorithm is
traditionally used due to the presence of hidden variables. For
each observable point X, the hidden variable indicates to which
cluster it belongs to. EM is the solution to the chicken-and-egg
problem and is mainly used in the case of HMM or GMM, which
is our concern in this appendix. It iterates two steps being E and
M, standing for Expectation and Maximization respectively. The
main goal is to maximize the likelihood function, which represents
the probability of data given the model, such as described in the
following equation:

N M
P(datalmodel) = P(X|p, %) = [[ Y piP(X;|mi,2:)  (B.3)

j=1i=1

Maximization of the likelihood is a measure for the quality of
the clustering, meaning how well data fit the model. To assign
points to clusters, the Bayes rule may be considered to compute
probabilities. A point X may belong to several clusters with dif-
ferent probabilities and the posterior probability is given by:

9i (X i, ;)
Zfil Pigi (X |pi, Xi)

The EM procedure is as following:

P(pi, 24| X) = pi (B.4)

1. Initialize parameters (t; », Xin, Pi,n Where n is the number
of iterations. At the first iteration, n = 1.

2. E step: Compute P(X)|tin,2in), P(X) and hence
P(in, Xin|X) for each object X from the data set D
and each cluster i

3. M step: Recompute the model by calculating p; p+1, ti,n+1

and ¥; 41 with

1
Pin+1 = N Z P(;U'Z,n7zz,n|X) (B5)
XeD

Wintl = ZXGDXP(M’L‘,TL7E'£,7L‘X)
o ZXED P(/Ll,nazi,n|X)

(B.6)
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. ZXeD P(tin, Xin] X)(X — :ui,n)z

Yintl = B.7
i ZXED P(N’i,nazi,n‘X) ( )
Steps 2 and 3 are iterated until:

| P(data|model,) — P(data|model,+1)| < € (B.8)

The convergence is ensured but a possible local minimum is
not discarded. The first step is responsible of the initialization
sensitivity of the EM algorithm, leading to different results. Sev-
eral papers propose to circumvent this issue, such as Figueiredo
and Jain [36]. More details on proofs of the EM algorithm may
be found in the explanation of Dempster et al. [21], which popu-
larized the algorithm in 1977.



