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ABSTRACT

In the recent years, Independent Component Analysis (ICA) has become a
fundamental tool in adaptive signal and data processing, especially in the field of
Blind Source Separation (BSS). Even though there exist some methods for which
an algebraic solution to the ICA problem may be found, other iterative methods
are very popular. Among them is the class of information-theoretic approaches,
laying on entropies. The associated objective functions are maximized based
on optimization schemes, and on gradient-ascent techniques in particular. Two
major issues in this field are the following: 1) Does the global maximum point
of these entropic objectives correspond to a satisfactory solution of BSS ? and
2) as gradient techniques are used, optimization algorithms look in fact for local
maximum points, so what about the meaning of these local optima from the BSS
problem point of view?

Even though there are some partial answers to these questions in the liter-
ature, most of them are based on simulations and conjectures; formal develop-
ments are often lacking. This thesis aims at filling this lack as well as providing
intuitive justifications, too. We focus the analysis on Rényi’s entropy-based con-
trast functions. Our results show that, generally speaking, Rényi’s entropy is
not a suitable contrast function for BSS, even though we recover the well-known
results saying that Shannon’s entropy-based objectives are contrast functions.
We also show that the range-based contrast functions can be built under some
conditions on the sources.

The BSS problem is stated in the first chapter, and viewed under the informa-
tion (theory) angle. The two next chapters address specifically the above ques-
tions. Finally, the last chapter deals with range-based ICA, the only “entropy-
based contrast” which, based on the enclosed results, is also a discriminant con-
trast function, in the sense that it is theoretically free of spurious local optima.
Geometrical interpretations and surprising examples are given. The interest of
this approach is confirmed by testing the algorithm on the MLSP 2006 data
analysis competition benchmark; the proposed method outperforms the previ-
ously obtained results on large-scale and noisy mixture samples obtained through
ill-conditioned mixing matrices.
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INTRODUCTION

The XX-th century has been marked by the born of a new area in mathe-
matical science: communication. Its main contributor is certainly, up to now,
its inventor: Claude E. Shannon. Since 1948 Shannon’s seminal paper entitled
“A mathematical theory of communication”, statistical signal processing has re-
vealed to be an unmissable tool in the electrical engineering community. In his
paper, Shannon has suggested to model the communication problems by stochas-
tic processes. He was the first to ask (and answer) the following question: “Can
we define a quantity which will measure, in some sense, how much informa-
tion is contained in a message that has been emitted by a so-called information
source?”. He showed that the entropy function, a concept due to Boltzmann and
already widely used in physics, fulfills the above requirement.

Nowadays, this quantity plays a fundamental role in, among others, physical
chemistry, physics, mechanics, cosmology and obviously, signal processing. A
considerable and unexpected power of the entropy is its intuitive interpretation:
it tells us about the randomness of a process, it is the key point of the second law
of thermodynamics and, even more surprisingly, it is the more common way to
define the direction of time! [see Greene, 2005, Reinchenbach, 1984, Gell-Mann
and Hartle, 1996]

Shannon has modeled communication systems as information sources (phys-
ical entities) that are sending a given message (e.g. an audible sound with a
specific meaning). The latter is converted in a signal (most often an acoustic or
electrical signal) via a transmitter (e.g. a microphone), and sent to a receiver
via a propagation medium (electric wire, air, . . . ). The received message might
be contaminated by some additional noise. The signal is then converted by the
receiver (a.o. loudspeakers) to a message (again an audible sound), which should
be ideally very close to the original message sent by the source. Finally, the mes-
sage is forwarded to a destination, a second physical entity to which the original
message had to be sent.

Nowadays, the world is full of emitters and receivers, between which signals
are transmitted and, unfortunately, interferences are observed. This tendency to
spread sensors around us should continue to increase, as recently pointed out by
Martin Vetterli in the plenary talk Distributed signal processing for sensor net-
works given at EUSIPCO 2006 (such a popular kind of sensors are the Berkeley

xxiii
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motes). Therefore, an extension of the “one-to-one” Shannon’s communication
model, including several physical entities that are communicating simultaneously
in a common medium at same time, is needed. This specific area of signal pro-
cessing considers the additional problem that each receiver records a mixture
of the original messages; the channel “perturbations” are related to each other.
Assuming a specific propagation model for the messages, we would like to know
if it is possible to recover the original information that has been sent by the
individual emitters knowing the recordings that have been collected by the sen-
sors. Clearly this is possible when “source coding” can be managed (think about
radio-emission, mobile phones, etc). For example, you can select a specific ra-
diophonic program if the emission bandwidths of the radio stations are different
by using frequency or amplitude modulation/demodulation and filtering. But
this is not always possible.

For instance, the problem that consists in separating acoustic speech signals
or astrophysical signals does not enter this framework as we have no way to
adapt the source coding; we have no way to access (and thus code) the source
signals. They have to be processed directly, as they are sent in the medium by
the physical sources. This problem, called “source separation”, is a critical issue.
When no (actually, very weak) information is known about the sources and/or
the propagation medium, the problem is refer to as Blind Source Separation
problem (BSS); the separation is based on the signals collected at the receivers
only. This often occurs in biomedical applications.

BSS seems to be untractable: how can we recover source signals without
knowing them neither the mixing system? This is possible for the human being:
even if some people are simultaneously speaking in the same room, we can un-
derstand what a specific person is saying without knowing in advance anything
about the speaker or his message, or knowing the mathematical description of
the message propagation through the ambient medium. But we can exploit ad-
ditional information which is not available to a machine. For example, assume
that the four source signals, shown in the left of Fig. I.1., are waveforms of sound
signals linearly mixed to produce the mixture signals plotted in the middle of
the figure. We assume that neither the mixing coefficients nor the source signals
are known; only the mixtures are available.

If one listens to the four mixed sound signals one shall probably recognize
at the end that each of them is a mixture of the first notes of the James Bond
“Goldeneye” theme, the “Ketchup song”, the sentence pronounced by a female
“si vous comprenez cette phrase, votre algorithme de separation fonctionne cor-
rectement” (said twice) and a noisy sound. Transcribing each of these signals is
another thing but, still, one can make some use of the information emitted by
these sources as they can be “separated”. For the computer, however, none of
these signals has a specific meaning: they are nothing but electrical signals. Con-
sequently, will a sufficiently intelligent machine be able to separate them, too?
The answer is yes: according to 1994 Comon’s paper “Independent Component
Analysis, A New Concept?”, the source messages can be recovered under mild
assumptions by globally maximizing a so-called contrast function. More con-
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Figure I.1. Blind processing of mixed signals (middle), which are linear mixtures
of source signals (left) produces estimated sources (right) by estimating the demixing
system.

cretely, maximizing a suitable contrast function based on the signals shown in
the middle of Figure I.1. yields the demixing coefficients: the estimated sources,
whose temporal waveform are shown in the right of Figure I.1. resemble the
waveforms of the original “soundtracks”, possibly up to a permutation.

The above considerations briefly specify the context of this thesis, which deals
with these two exciting areas of electrical engineering: the use of entropy (and
its generalized form due to Alfred Rényi) in the framework of blind source sep-
aration. More specifically, we shall analyze the contrast properties of entropy-
related criteria: are they all contrast functions? How “suitable” are there from
the optimization point of view?

In order to fix the framework, Chapter 1 presents BSS and its relationship to
Independent Component Analysis. Entropy, which is nothing but a measure of
information, is shown to be a promising criterion for BSS. Based on the defined
concepts, the issue of the thesis can then be more clearly stated.

In Chapter 2, the critical points of entropies are studied in the BSS con-
text, and some tools for building contrast functions from this concept are given.
In addition to the state-of-the-art, some additional results due to Dinh-Tuan
Pham are provided regarding Shannon’s entropy based on a Taylor’s develop-
ment. Next, the support (or range) function is proved to be a contrast based
on the Brunn-Minkowski inequality, a similar form of Entropy Power Inequality,
a well-known theorem regarding Shannon’s entropy. These two approaches are
seen to be particular cases of Rényi’s entropy. It is then natural to try to develop
a more general theory that would unify all the approaches based on Rényi’s en-
tropy. Unfortunately, we conclude that generally speaking, some conditions that
are difficult to check have to be met when general Rényi’s entropy is used in the
BSS context (without restriction on the value of Rényi’s exponent).

However, a major problem remains in the related literature, even if a very
simple model is assumed for the propagation medium: “how can we find the
global maximizer of a function?” When algebraic methods corresponding to the
criteria are available, the problem can be easily managed, but unfortunately,
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this is not the case in the BSS applications when “exact” entropy-based contrast
functions are used. Then, some optimization algorithms (like gradient-ascent
techniques) have been proposed for adaptively locally maximizing the contrast,
without guarantee that the local maximum found will be the global (seeked) one.
The problem would be much easier to solve (and actually vanishes) if the local
maxima of the contrast function are all global ones (each corresponding to the
separation of the original sources), or if all the local maxima of the contrast
correspond to a satisfactory solution of the BSS problem ! This so-called dis-
criminacy property would be very useful; it would give confidence in the results
returned by the optimization algorithm. This ideal possible behavior was the
guideline and motivation of Nathalie Delfosse and Philippe Loubaton in 1995
detailed in their key paper “Adaptive Blind Separation of Sources: A Deflation
Approach”. In this work, a kurtosis-based contrast function is proved to benefit
from this nice advantage, when the sources are extracted iteratively, one by one.

One of the main topics of this thesis is to tackle the lack of knowledge on the
BSS entropic contrasts; this is done in Chapter 3. It is proved that in specific
situations, the entopic contrast might suffer from the existence of spurious local
maxima, in which the optimization algorithm may be stuck. A same conclusion
is drawn regarding the minimum support approach. Then, a slight variant is
proposed, the minimum range approach, which benefits from the discriminacy
property whatever the extraction scheme, that is even if the signals are not esti-
mated sequentially like in the Delfosse & Loubaton method. This result deserves
to be emphasized because of its uniqueness; to our knowledge, this contrast is the
only one used in simultaneous separation for which the discriminacy property
has been established, up to now.

Therefore, Chapter 4 logically focuses on that criterion. A geometric inter-
pretation is given and the practical problems related to range estimation are
discussed. This method also proves efficient to separate correlated signals (such
as images with common shape: human face pictures, landscapes, etc.) by slightly
modifying the optimization algorithm in order to relax the rigid orthogonaliza-
tion constraint. Finally, the minimum range method, which applies only to
double-bounded signals (with finite range) is extended to signals bounded on
one side only. This method proves to perform well on the “IEEE MLSP 2006
data analysis competition” data set; this is detailed in the last section of the
thesis.



CHAPTER 1

BLIND SOURCE SEPARATION AND ITS

RELATIONSHIP TO INDEPENDENT

COMPONENT ANALYSIS AND

INFORMATION MEASURES

Abstract. This chapter aims at giving the context of the work as well
as defining mathematical and conceptual notions needed in the sequel. It is
also explained why the concept of independence measure is not the panacea to
solve the BSS problem even when the sources are independent, and that it is of
interest to sketch this problem in the context of information theory. From this
viewpoint, entropy-based approaches are unified using Rényi entropies: they are
all information measures. The issues of this thesis are then clarified.

Contribution. We define the concepts of “non-mixing matrices” and
“(sub)PD-equivalency”, that have relationship and are closely linked to the BSS
problem. The contrast function definition due to Comon in 1994 is extended
to define simultaneous, deflation and partial contrast functions; they can be
plugged into simultaneous, deflation and partial separation schemes, respectively.
We propose an information-theoretic approach to ICA, based on the concept of
“information measures” due to Hartley. This extends the usual minimum output-
dependence approach, which is shown to be meaningful for BSS in a simultaneous
separation scheme only. This viewpoint suggests that the general class of Rényi
entropies would deserve to be further analyzed for BSS (they are widely used, but
the underlying motivation remains subjective and misunderstood). We explain
why the central limit theorem is a good intuitive approach, though not a formal
proof for justifying the use of Shannon’s entropy. Rather, information-theoretic
inequalities such as the entropy power inequality (first conjectured by Shannon

1
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in 1948, and latter formally proved by Stam in 1959) is used to that aim. An
extended form of Rényi’s entropy is also proposed to further include the range
approach in the class of informative criteria.

Part of the work presented in this chapter was published in JP1 (see Ap-
pendix B).

Organization of the chapter. In the first section of this chapter, the Blind
Source Separation (BSS) task will first be sketched as well as the mathematical
model and corresponding assumptions. Section 1.2 introduces the well-known
method of Independent Component Analysis (ICA); based on Comon’s identifia-
bility Theorem, connections between BSS and ICA are emphasized. Section 1.3
gives a non-exhaustive list of examples of independence measures that are/could
be used in ICA. In spite of the relationships between BSS and ICA, they can-
not be seen to be rigorously equivalent problems even under the assumption of
independent sources, especially when deflation or partial separation schemes are
considered. Therefore, Section 1.4 presents the three possible extraction schemes
as well as a corresponding general formulation in terms of the optimization of
a so-called contrast function. The dimension of the definition domain of these
functions (i.e. of the search space) can be reduced thanks to the so-called whiten-
ing preprocessing, where the parameter space is the group of (semi-)orthogonal
matrices or the set of orthonormal vectors, and the corresponding contrasts are
named orthogonal contrasts; this is presented in Section 1.5. Section 1.6 reminds
gradient-ascent rules designed for the extractions schemes of the contrasts, as of-
ten, algebraic techniques are not available for the maximization of the contrast
functions. Even if the source independence assumption is still needed, Section 1.7
proposes a different way to consider the BSS problem than the usual ICA. Rather
than the output dependence, the output “complexity” is minimized, where the
complexity measure can be seen interestingly to be linked to information mea-
sure. Finally, Section 1.8 introduces the objectives of this thesis, which is mainly
the analysis of the contrast properties of the class of Rényi’s information mea-
sures.

1.1 SOURCE SEPARATION: MOTIVATION AND MODELS

One of the main reasons for justifying the impressive development of BSS-related
techniques is the wide range of applications. Let us consider the BSS problem
as first sketched in the introduction: the aim is to recover source signals from
mixtures of them. This problem is often illustrated by the so-called cocktail party
problem. Assume that K persons are simultaneously speaking in a room, as it
often occurs in a cocktail party, where in several smaller groups of persons, one
person is speaking. Assume further that a sufficient number of microphones, say
N , are located at different places in the room. Obviously, each microphone does
not record an individual speech, but rather a kind of superimposition of the sound
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messages; the recording depends on the location of the microphones. The BSS
task is to find a suitable method that would process the microphone recordings
and give, as output, the original speeches. The cocktail party problem is often
used as an illustrative and comprehensive application of the BSS. However, many
other real-world applications can be modelled as a BSS problem. Here is a non-
exhaustive list (some references can be found in [Hyvärinen et al., 2001, Cichoki
and Amari, 2002, Pham and Jutten, 2003, Antoniadis et al., 2001])

• Audio processing

• Power plants monitoring

• Seismic and astrophysical signals analysis

• Denoising

• Biomedical signal analysis

• Image processing

• . . .

All the above applications share the same model: K sources S1(t), . . . ,SK(t),
emitted by a physical entity, have to be recovered via N mixtures of them, say
X1(t), . . . ,XN (t); these signals are random variables (t is implicitly assumed to
be discrete). The resulting mixtures obviously depend on the original sources,
their respective location compared to the microphones, the propagation medium,
and the characteristics of the sensors. Such a model can be written in a quite
simple way.

Denote, at time t, the sources vector by S(t) = [S1(t), . . . ,SK(t)]T, the record-
ings by X(t) = [X1(t), . . . ,XN (t)]T . They are linked by the following relation:

X(t) = F
(
(S(t),S(t− 1), . . .), t

)
, (1.1)

where F(·, t) denotes the mixing system at time t. With these notations, we can
sketch a first definition of the general BSS task.

Definition 1 (General BSS) Assuming that a vector X(t) of N mixtures is
known and that X(t) = F(S(t), t), where F(·, t) is the unknown mixing system at
time t and S(t) is a vector of K source signals, the BSS task is to blindly find a
demixing system G(·, t) such that

S(t) = G(X(t), t) . (1.2)

The usual approach of classical signal processing would be to model the mix-
ing system F(., t) by using the physical specificities of the propagation medium
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and of the sensors and then, to invert this system. However, this is a tedious
task, since it requires to have a lot of information on both the mixture scheme
and the sensor specificities, which is often lacking (just think about biomedical
applications).

Rigourously speaking, BSS should refer to the problem of separating the
sources whatever they are and whatever the mixture scheme. Unfortunately,
this is not possible in practice: some assumptions have to be made. Conse-
quently, a new challenge consists in making some assumptions on the mixing
system, and then trying to estimate the parameters of this model according to
the estimation theory, i.e. by using e.g. maximum likelihood techniques. We fix
a specific model for the demixing system G(·|Θ, t) where Θ denotes the (set of)
parameter(s) involved in the model, belonging to some parameter space T , i.e.
we assume that G has a specific form, and that there exists a (set of) parameter(s)
Θ? ∈ T such that G(·|Θ?, t) = F−1(·, t).

In the BSS community, the acronym blind has thus a specific meaning: im-
plicitly, mild assumptions are made. Several assumptions on the pair [mixture
scheme, sensor] can be drawn. One can deal with linear, convolutive, post-
nonlinear, or convolutive post-nonlinear mixture schemes (see e.g. the mono-
graph [Hyvärinen, Karhunen, and Oja, 2001]). This thesis focuses on the sim-
plest (but also most used) BSS model. It is assumed that the mixing system is
linear, time invariant and instantaneous: in other words,

F(S(t), t) = AS(t) , (1.3)

where A is an N ×K mixing matrix.
Consequently, the demixing system G also reduces to a single matrix B, and

G◦F is the identity mapping if and only if BA = IK with IK the identity matrix
of order K.

Then, Θ? = B? with B?A = IK and T = IRK×N . Since the mixing system is
memoryless and time-invariant, we can drop the time index t. The new aim of
BSS is thus the following:

Definition 2 (Linear, instantaneous, time-invariant BSS) Let us assume
a mixture model F(S) = AS for the mixtures, where both the mixing matrix and
the vector of sources are unknown. The goal of BSS is to find a demixing system
G(X) = BX such that G ◦ F(S) = S, that is to find the demixing matrix B such
that BA = IK .

The above definition sates the problem, but does not ensure that the sources
are separable, yet. In other words, we have no guarantee that without further
hypothesEs, we are indeed able to find such a demixing matrix B? from the
mixture vector X only. Actually, the above assumptions on the mixing system are
not sufficient to ensure separability; we need further hypotheses on the sources.
As for the mixing system, a wide variety of hypotheses can be made, each one
yielding to a specific method solving the BSS problem: the sources can e.g. be
independent and identically distributed (i.i.d.) or, on the contrary, with temporal
structure; they can be bounded, take only positive values, etc.
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When the assumptions are much stronger, as it is the case when additional in-
formation is available on the mixing system (the entries of the mixing matrix are
constrained to be positive coefficients, some of them are known, . . . ) or on the
sources (some of the sources pdf are available, sparse, . . . ), the problem is often
referred to as semi-blind source separation. For instance, these approaches in-
clude among other Bayesian methods, support-based criteria, application-driven
information such as in audio source separation (sparsity, time-frequency masking,
etc).

In spite of the terminology, the general BSS problem is thus untractable. So
why reserving this term to a problem which is impossible to solve in practice?
Rather, the BSS problem usually refers to Definition 2 (p. 4), with additional
assumption on the sources and still further constraints on the mixing system.
They are summarized in the following list.

Assumptions on the mixing matrix A

A1 A is a square matrix of size K ×K: A ∈ IRK×K .

A2 A is invertible, and thus of full rank : rank(A) = K.

• The joint assumption A12 = A1 ∧ A2 is equivalent to the requirement
A ∈M(K), whereM(K) is the General Linear group of degree K, defined
by :

M(K)
.
= {M ∈ IRK×K : rank(M) = K} . (1.4)

It should be stressed that A1 is actually too restrictive. Clearly, if A is not
square, it is not invertible, but if N > K and row-rank(A) = K it is still possible
to recover the K sources. Indeed, if N > K the mixture scheme is said to be
overdetermined (or undercomplete), and it suffices to “discard” some components
of the mixture vector X that can be generated by a linear combination of other
rows of the mixing matrix. Clearly, N −K such mixtures exist as the rows of A
span a K-dimensional space.

Finding these redundant mixtures is a priori not an easy task. It is possible,
however, to use ad-hoc preprocessing methods, such as Principal Component
Analysis (PCA), to project the mixture data from a N -dimensional space to
a K dimensional one without any loss of information [Hyvärinen, Karhunen,
and Oja, 2001] (only the redundancies vanish). This procedure yields a new K-
dimensional vector X (which is not simply composed of K of the N components
of the original mixture vector, but rather of linear combinations of them), which
could have been generated by a full-rank K ×K mixing matrix, which is clearly
invertible. Therefore, such a preprocessing ensures that A1 now holds.

More precisely, let us define the statistical expectation of a function f of a
random variable (r.v.) X with respect to its density pX by

EX[f(X)]
.
=

∑

x∈Ax

pX(x)f(x) if X is a discrete r.v. (1.5)

EX[f(X)]
.
=

∫

x∈Ω(x)

pX(x)f(x)dx if X is a continuous r.v. (1.6)
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In the last definitions, AX is the countable alphabet of X and Ω(X) is the support
set of X, the latter is defined in the one-dimensional space as

Ω(X)
.
= {x ∈ IR : pX(x) > 0} . (1.7)

Note that if we extend the pdf definition domain to IR such that pX(x) = 0 for
x ∈ IR \ Ω(X), then

E[f(X)] =

∫

IR

pX(x)f(x)dx , (1.8)

where the subscript X is dropped for short when no confusion is possible.
PCA consists in projecting the data onto the eigenvectors of

Cov[X]
.
= E[XXT]− E2[X] , (1.9)

(the covariance matrix of the noise-free observed mixtures) associated with the
K non-zero eigenvalues among the N obtained via e.g. eigenvalue decomposition
(EVD) of Cov[X]. It only cancels the linear redundancies contained in the data
by projecting them onto the basis formed by the eigenvectors of Cov[X] which is
orthogonal because the covariance matrix is symmetric (this yields, in addition,
uncorrelated signals, see Section 1.5). Then, we shall assume N = K even if the
more general case N > K can be easily managed.

Assumptions on the sources

A3 The sources are identically distributed; for each source index i ∈
{1, . . . ,K}, the probability density function (pdf) pSi(t)(Si(t)) of Si(t) does
not depend on the time index t (and this index can thus be omitted when
it is not necessary).

A4 The sources are zero-mean: E[Si] = 0, i ∈ {1, . . . ,K}.

A5 The sources are mutually independent:

pS(S) = pS1,...,Sm
(S1, . . . ,SK) =

K∏

i=1

pSi
(Si) . (1.10)

A6 There is at most one Gaussian source; noting a divergence measure between
densities as D(p‖q) satisfying D(p‖q) > 0 with equality if and only p = q
almost everywhere we have

] [{i ∈ {1, . . . K} : D(pSi
‖φSi

) = 0}] 6 1 , (1.11)

where φSi
is the zero-mean Normal pdf with same variance σ2

Si
as Si

φSi
=

1√
2πσ2

Si

e
−x2

2σ2
Si , (1.12)
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and ][.] is the cardinal operator.

From A12, AA−1 = IK where A−1 is unique. We are now able to state the BSS
problem definition, which is thus not blind at all actually, as understood by the
scientific community:

Definition 3 (BSS) Assuming that X = AS where A ∈ M(K) and the vector
of sources are both unknown (up to the assumptions A3 −A6), find a demixing
matrix B ∈M(K) such that BA = IK .

In 1994, Comon has shown that in the BSS framework defined in Def. 3 (p. 7),
B = A−1 is identifiable, but only up to some indeterminacies [Comon, 1994].
Such a matrix can be found through an ICA, as detailed in the next section.

1.2 INDEPENDENT COMPONENT ANALYSIS : AN EFFICIENT TOOL
FOR BLIND SOURCE SEPARATION

Blind source separation has been defined in Def. 3 but, still, we have no way
to recover the original sources, i.e. we need some tool for estimating B ≈ A−1.
Independent Component Analysis (ICA) aims at recovering independent compo-
nents from a random vector; it is thus apparently a somewhat different problem;
however, both BSS and ICA are closely connected to each other. We shall first
review some independence-related concepts before illustrating the relationships
between ICA and BSS.

1.2.1 PD-equivalency and Non-mixing matrices

Let P(K), D(K) be the subgroups1 of permutation and diagonal invertible ma-
trices, with thus P(K) ⊂ M(K) and D(K) ⊂ M(K). We now define two
important other sets of matrices.

Similarly to Eq. (1.4), we define by MP×K the set of full row-rank P × K
matrices:

MP×K .
= {M ∈ IRP×K : row−rank(M) = P, P 6 K} . (1.13)

Important subsets of M(K) and MP×K are the sets of non-mixing matrices.

Definition 4 (Set of non-mixing matrices) The set of non-mixing matrices
of order K is defined as the set of K × K matrices having a single non-zero
element per row and per column

W(K)
.
= {M : ∃Λ ∈ D(K),Π ∈ P(K),M = ΛΠ} . (1.14)

1It is easy to observe that these sets have indeed the group structure under matrix multiplica-
tion satisfying closure, associativity, inverse and identity.
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It is easily seen that W(K) forms a group, also called the group of monomial
matrices.

A K × K matrix M is said to be non-mixing if M ∈ W(K). Similarly, a
P ×K rectangular matrix, P 6 K, is said to be non-mixing if each of its row is
a distinct row of a given matrix M ∈ W(K) (it has a single non-zero element
per row). If we define Π as a matrix composed of P distinct rows of Π ∈ P(K),
then the set WP×K of P ×K non-mixing matrices is

WP×K .
= {M : ∃Λ ∈ D(P ),M = ΛΠ} . (1.15)

This set is the set of rectangular matrices with a single non-zero element per row
and at most one per column; it satisfies WK×K =W(K).

Example 1 (Non-mixing matrices) From the above definition:



−2/3 0 0

0 0 4
0 0.3 0


 ∈ W(3), but




0 1 0
0 .2 1/4
6 0 0


 /∈ W(3)

and 

−1 0 0 0
0 0 0 2
0 3 0 0


 ∈ W3×4, but

[
1 0 0
0 1 1

]
/∈ W2×3

Let us now define the PD-equivalency operator.

Definition 5 (PD-equivalence) A matrix M is said to be PD-equivalent to
B, noted M ∼ B, if there exists two matrices Π ∈ P(K), Λ ∈ D(K) such that
B = ΛΠM or, equivalently, if there exists a non-mixing matrix N ∈ W(K) such
that B = NM.

Observe that the PD-equivalency operator is, by definition, scale and permuta-
tion invariant but it also further satisfies three important properties, summarized
in Lemma 2. The following lemma is useful for proving Lemma 2.

Lemma 1 For any product ΠΛ where Π ∈ P(K),Λ ∈ D(K), there exists Λ′ ∈
D(K) such that ΠΛ = Λ′Π. Conversely, for any product ΛΠ, there exists
Λ′ ∈ D(K) such that ΛΠ = ΠΛ′.

Proof: We only show the first claim; the converse is proved in the same way.
By definition of permutation matrices, any i-th row of Π corresponds to a j-th
row ej of the identity matrix IK . Let us denote by j(i) the column index of the
single non-zero element of the i-th row of the permutation matrix Π (that is the
indice j of the row of IK corresponding to the i-th row of Π); for all 1 6 i 6 P ,
[Π]ij 6= 0 if and only if j = j(i). The matrix ΠΛ is obtained by replacing the
i-th row of Λ by the j(i)-th one. On the other hand, ΛΠ is obtained by replacing
the i-th column of Λ by the j′(i)-th one, where j′(i) is defined as j(i) but with
ΠT instead of Π: for all 1 6 i 6 P , [ΠT]ij 6= 0 if and only if j = j′(i).
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The equality ΠΛ = Λ′Π is equivalent to ΠΛΠ−1 = Λ′ with Π−1 = ΠT

because Π is a permutation matrix. Let us now prove that ΠΛΠT is in the set
D(K) of K ×K diagonal matrices. As explained above, the left-multiplication
of Λ by a permutation matrix moves the (k, l)-th element to the (j(k), l)-th
place. The right multiplication of a matrix by Π (resp. ΠT) moves the (k, l)-th
element to the (k, j′(l)) (resp. (k, j(l))). Hence, the elements of Λ′ are related
to those of Λ by the relation [Λ]kl = [Λ]′j(k),j(l) which shows that Λ′ ∈ D(K)

since {j(i), i ∈ {1, . . . ,K}} forms a permutation of {1, . . . ,K} and therefore
j(k) = j(l) if and only if k = l.

�

Lemma 2 The following holds true for the PD-equivalency operator.

• it is transitive: if M1 ∼M2 and M2 ∼M3, then M1 ∼M3.

• it is invariant under right multiplication: if M1 ∼ M2, then M1M3 ∼
M2M3.

• it is symmetric: For any pair of matrices M1,M2 ∈M(K),

M1 ∼M2 ⇔M2 ∼M1 . (1.16)

Proof: By definition of PD-equivalency, there exists Λ1,Λ2 ∈ D(K), Π1,Π2 ∈
P(K) such that M1 = Λ1Π1M2 and M2 = Λ2Π2M3, i.e. M1 =
Λ1Π1Λ2Π2M3. But by Lemma 1, there exists Λ3 s.t.Λ2Π2 = Π2Λ3. Thus,
noting that Π3

.
= Π1Π2 ∈ P(K) and Π3Λ3 can be rewritten as Λ4Π3,

M1 = Λ1Λ4Π3M3 yielding M1 ∼ M3 since Λ1Λ4 ∈ D(K). This proves the
first property.

The second property is trivial because M1M3 ∼ ΛΠM1︸ ︷︷ ︸
M2

M3 and of Lemma 1.

Finally, the last property results from the group structure of P(K) and D(K)
(each element of the sets of permutation and diagonal matrices is invertible and
the inverse is in the respective set: if M1 = Λ1Π1M2, we have M2 = Π2Λ2M1,
where Π2 = Π−1

1 and Λ2 = Λ−1
1 . The property is shown by using Lemma 1.

�

Definition 6 (Invariance under PD-equivalency preserving transforms)
A function f(·) is said invariant under PD-equivalency preserving transforms if
f(B) = f(M) for M ∼ B.

The PD-equivalence operator can be extended as follows.

Definition 7 (SubPD-equivalence) A matrix M1 ∈ MP×K is subPD-
equivalent to a square K × K matrix M2 ∈ M(K), P 6 K, if for all
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i ∈ {1, . . . , P} ∃j(i) ∈ {1, . . . ,K} and λ > 0 such that [IP ]iM1 = λ[IK ]j(i)M2

where [IQ]k denotes the k-th row of IQ. They are noted M1 ∼u M2.

In other words, each of the P 6 K rows of M1 is proportional to a distinct row
of M2 (they must be distinct since otherwise rank(M1) < P and M1 /∈MP×K).

Lemma 3 (SubPD-equivalence operator and right multiplication)
Let M ∈ MP×K , {M1,M2} ⊂ M(K). Then, if M ∼u M1, MM2 ∼u M1M2.
As a corollary, if MM1 ∼u IK , then M ∼u M−1

1 .

Proof: If M ∼u M1, there exists Π ∼u Π, Λ ∼u Λ where Π ∈ M(P ), Π ∈
P(K), Λ ∈ D(P ) and Λ ∈ D(K) such that Λ ΠM ∼u M1. It is always possible
to define a matrix M ∈M(K) such that ΛΠM ∼M1. But because of Lemma 2,
ΛΠMM2 ∼M1M2 and thus Λ ΠMM2 ∼u M1M2, i.e. MM2 ∼u M1M2.

�

Obviously, two PD-equivalent matrices are trivially sub-PD-equivalent and these
definitions are equivalent if P = K.

We get the following corollary:

Corollary 1 (PD-equivalence and set of non-mixing matrices) If a ma-
trix M is (sub)PD-equivalent to a non-mixing matrix, then M is non-mixing and
conversely, if M is non-mixing, it is (sub)PD-equivalent to a non-mixing matrix.

The following equivalences hold between PD-equivalence relation and member-
ship to set of non-mixing matrices:

• For a pair M1, M2 of matrices in M(K): M1 ∼ M2 ⇐⇒ M1M
−1
2 ∈

W(K);

• For a pair M1 ∈ MP×K , M2 ∈ M(K): M1 ∼u M2 ⇐⇒ M1M
−1
2 ∈

WP×K .

Proof: The proof of this corollary is trivial; we deal here with the square case, but
the extension to sub-PD-equivalency is straightforward. Let M2 ∈ W(K) and
M1 ∼M2. From Lemma 2, M1M

−1
2 ∼ Ik implying that there exists Λ ∈ D(K),

Π ∈ P(K) such that M1M
−1
2 = ΛΠ, that is M1M

−1
2 ∈ W(K). Conversely, if

M = M1M
−1
2 ∈ W(K), it exists Λ ∈ D(K), Π ∈ P(K) such that M = ΛΠIK

which proves IK ∼M.

�

As a consequence, the set of non-mixing matrices can alternatively be defined as

W(K) = {M ∈M(K) : M ∼ IK} (1.17)

and
WP×K = {M ∈MP×K : M ∼u IK} (1.18)
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1.2.2 Independence and ICA

Let us consider the random variables X and Y that are continuous and for which
we can define their probability density functions (pdf) pX(x),pY(y), expectations
E[X] and E[Y], variances Var[X] and Var[Y], covariance Cov[X,Y] and Pearson
correlation coefficient (correlation, for short) Corr[X,Y]:

Var[X] = E[(X− E[X])2] (1.19)

Cov[X,Y] = E[XY]− E[X]E[Y] (1.20)

Corr[X,Y] =
Cov[X,Y]√
Var[X]Var[Y]

, (1.21)

where the expectation E[.] is defined in Eq. (1.8).
Observe that the statistical definition of independence matches the intuitive

one. Indeed, for two independent variables X and Y, we have:

pX,Y(x, y) = pX(x)pY(y) . (1.22)

Noting pX|Y(x|y) the conditional pdf of X given Y = y and using Bayes’ rule,
it comes that

pX|Y(x|y) =
pX,Y(x, y)

pY(y)
, (1.23)

where pX,Y(x, y) is the joint density of (X,Y) at (x, y). Hence, we obtain that

pX|Y(x|y) = pX(x) . (1.24)

In other words, there is no information brought on X by knowing that Y = y.

Definition 8 (ICA-1) Assume that ∧6
i=1Ai hold. Knowing a K-dimensional

vector of observations X, ICA aims at finding a linear transformation B ∈M(K)
such that the components of Y = BX are as independent as possible.

Observe that by contrast to the BSS problem definition as stated in Def. 2
(p. 4), ICA-1 is a tractable problem since it does not involve neither A nor S.2

ICA can be seen as an extension of decorrelation. Instead of searching a ba-
sis in which the components are decorrelated, we try to find a basis in which
the components are made independent. It aims at recovering underlying inde-
pendent components from the mixture; it is a kind of higher order, non-linear
decorrelation. Indeed, while decorrelation between two centered variables X and
Y is achieved if and only if E[XY] = E[X]E[Y], independence between these vari-
ables requires that E[f(X)g(Y)] = E[f(X)]E[g(Y)] for all continuous functions

2Note that this must be tempered as in practice: the output densities depend on the pair
(A,S). It is thus implicitly assumed that those pdfs can be obtained from the data.
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f, g that are zero outside a finite interval [Feller, 1966]. Indeed:

E[f(X)g(Y )] =

∫ ∫
f(x)g(y)pX,Y(x, y)dxdy (1.25)

=

∫
f(x)pX(x)dx

∫
g(y)pY(y)dy (1.26)

= E[f(X)]E[g(Y)] . (1.27)

In a similar way, while decorrelation between X and Y cancels the second-order
cross-cumulants, independence means that all higher-order cross-cumulants are
zero, too. In practice, a good approximation of independence consists in having
the fourth-order cross-cumulant equal to zero. As a reminder, the fourth-order
cumulant of a random vector Y is defined as

cumijkl(Y)
.
= E[YiYjYkYl]−E[YiYi]E[YkYl]−E[YiYk]E[YjYl]−E[YiYl]E[YjYk] .

(1.28)

1.2.3 ICA and BSS

A similarity between ICA and BSS now arises: both aims at finding a specific
demixing matrix; in ICA, “demixing” means recovering independent outputs,
while in BSS, we are interested in recovering original sources (supposed to be
independent as suggested by A5) that have been mixed through the mixing
matrix A. In the following, it will then be assumed that the BSS model defined
in Def. 3 (p. 7) holds.

In 1994, Comon has shown that under the above assumptions, the BSS prob-
lem can be solved by using ICA. In this section, we shall restrict ourselves to
showing that recovering underlying independent components form the mixture
leads to identifying the mixing matrix up to some indeterminacies.

The first step to link BSS to ICA is the so-called Darmois-Skitovitch theo-
rem [Darmois, 1953].

Theorem 1 (Darmois-Skitovitch) Let us suppose that X1 =
∑K

i=1 αiSi and

X2 =
∑K

i=1 βiSi where S1, . . . ,SK are independent rv and αj ∈ IR, βj ∈ IR, j ∈
{1, . . . ,K}. Then, if X1 and X2 are independent, all the Sj such that αjβj 6= 0
are Gaussian (i.e. have a Gaussian pdf).

This theorem admits a converse (see e.g. [Theis, 2002]).

Theorem 2 (Converse DS) Let us suppose that X1 =
∑K

i=1 αiSi and X2 =∑K
i=1 βiSi where S1, . . . ,SK are independent rv and αj ∈ IR, βj ∈ IR, j ∈

{1, . . . ,K}. Then, if αiβi = 0 for all 1 6 i 6 K, then X1 is independent
from X2.

Based on Theorem 1, Comon has derived the following key theorem.
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Theorem 3 (Comon) Let S be a K-dimensional vector of independent compo-
nents where at most one of the Sj is Gaussian and A ∈ M(K). Then, setting
X = AS, the following statements are rigorously equivalent:

• X1, . . . ,XK are pairwise independent;

• X1, . . . ,XK are mutually independent

• A ∼ IK or equivalently, A ∈ W(K).

Consequently, it is not possible to obtain a vector X = AS with independent
components if matrix A ∈M(K) is not in W(K).

The following corollary results from Theorem 3 with A ← BA, X ← Y and
Definition 5.

Corollary 2 (Identifiability) Assume that there exists A ∈M(K) and a vec-
tor S ∈ IRK of sources such that X = AS and ∧6

i=3Ai hold true. Then, the
components of Y = BX are pairwise independent if and only if BA ∈ W(K) or
equivalently, if and only if B ∼ A−1.

This result basically states that the only way to make independent the com-
ponents Y1, . . . ,YK of Y = BAS where S satisfies ∧6

i=3Ai is to have B ∼ A−1.
The above identifiability theorem links, rigorously, the BSS and ICA prob-

lems. The K sources can be recovered by finding a linear transformation B such
that the components of Y = BX are independent; in this case, each output (in-
dependent component) is proportional to a distinct source signal. Formally, if
the outputs are pairwise independent:

∀i ∈ {1, . . . ,K} ∃j(i) ∈ {1, . . . ,K} : Yi ∝ Sj(i) ,

where ∪i{j(i)} forms a permutation of {1, . . . ,K}.
Then, BSS cannot be uniquely determined : the demixing matrix B = A−1

cannot be explicitly recovered. It can only be found up to the product of a
diagonal (scaling) and permutation (ordering) matrix; i.e. up to a monomial
transformation. Consequently, neither the order, nor the scale of the sources can
be estimated via ICA (the sources can then be assumed to be unit-variance).
From the ICA point of view, this is because independence is neither sensitive
to the order nor to the scale of the variables. From the BSS viewpoint, this is
because the mixture model X = AS remains unchanged when i) Sj is divided by
a scale factor provided that the j-th column of A is scaled by the same factor,
and ii) when Si and Sj are swapped provided that the i-th and j-th columns of
A are also swapped. An additional source assumption will then be considered
in the following:

A7 The sources are unit variance: Var[Si] = 1 for all i ∈ {1, . . . ,K}.
Combined to A5, we have Cov[S] = IK .
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1.3 INDEPENDENCE MEASURES

From the above section, it seems that we have to express what is meant by
maximizing independence between the components of a vector. In other words, we
are thus led to find a suitable independence measure to tackle the BSS problem.
A definition of independence measure is proposed below.

Definition 9 (Independence measure) An independence measure is any
mapping from a random vector Y to IR whose maximum value is reached if and
only if the components Yi of Y are independent.

Property 1 (Divergence measure and independence) According to Def. 9,
the opposite of any divergence measure of the same form as defined in A6 can be
used as an independence measure, since

−D
(

pY(Y)

∥∥∥∥∥
K∏

i=1

pYi
(Yi)

)
6 0 , (1.29)

with equality if and only if the joint pdf is separable into the product of the
marginal densities.

According to Corollary 2, if X = AS and Y = BX, the independence measure
reaches its global maximum point when B ∼ A−1 or equivalently from Corol-
lary 1, if BA ∈ W(K).

Since independence measures can be obtained through a kind of “distance”
between the joint density and the product of the marginal densities, let us turn
to divergence measures between density functions.

1.3.1 Divergence measures between densities

Actually, we do not necessarily need a distance, in the sense that the measure is
not constrained to fulfill the triangular inequality nor to be symmetric.

A non-exhaustive but rather extended list of such divergence measures can
be found in [Basseville, 1989]. The most used distances in signal processing
and pattern recognition are probably the f -divergences, which forms a class of
“distances” independently derived in [Csiszar, 1967] and [Ali and Silvey, 1966].
This specific class of divergence measures between densities including the Bhat-
tacharyya, Chernoff, Variational, Hellinger and Kullback-Leibler (KL) measures,
see [Basseville, 1989]) is of the form:

〈p‖q〉 = f(Ep[c(L(X))]) , (1.30)

where f(·) is a non-decreasing function, Ep[·] is the expectation with respect to
p, c(·) is a convex function and L(·) is the likelihood ratio p(·)/q(·).



INDEPENDENCE MEASURES 15

Obviously, a lot of other classes of measures can be found (see e.g. [Gray
et al., 1975],[Poor, 1980]), but the Ali & Silvey class and, in particular, the KL
measure has been preferred in the ICA community. It is a very kind measure, in
the sense that it benefits from interesting computational [Kullback, 1959, Cover
and Thomas, 1991] and geometrical properties (see e.g. [Johnson and Sinanovic,
2001] and reference therein for relationship to optimal classification rates and
associated manifolds and [Cardoso, 2003, 2000] for an interpretation in the ICA
framework). All divergence measures belonging to the Ali & Silvey’s class enjoy
specific properties [Ali and Silvey, 1966]. They are not all given here because
some of them would require a detailed discussion to be well understood, but we
point the two following ones:

• The 〈p‖q〉 coefficient is defined for all pairs of measures p and q on the
same sample space (i.e. for all pairs of densities defined on a same support
Ω);

• 〈p‖q〉 is minimum when p = q almost everywhere and maximum for p ⊥ q
(i.e. 〈p‖q〉 must increase when p moves apart from q).

Setting c(x) = x log x and f(x) = x in Eq. (1.30), we obtain the well-known
Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951, Kullback, 1959].

Definition 10 (Kullback-Leibler divergence) Let p, q be two density func-
tions, integrable with respect to the Lebesgue measure, and p absolutely contin-
uous with respect to q (Ω(p) ⊆ Ω(q)). Then, the KL divergence between p, q is
defined as:

KL[p‖q] =

∫
p(x) log

p(x)

q(x)
dx = Ep

[
log
(p

q

)]
. (1.31)

1.3.1.1 KL properties

The KL obviously benefits from the “reasonable” properties of all the diver-
gence measures of the general Ali & Silvey class; further, other specific charac-
teristics can be emphasized [Cover and Thomas, 1991].

Proposition 1 (KL properties) For all densities p1,p2,p3 for which the
quantities KL[p1‖p2], KL[p1‖p3] and KL[p2‖p3] are well-defined:

• KL[p1‖p2] > 0 with equality if and only if p1 = p2 almost everywhere (this
results directly from Jensen’s inequality);

• it is invariant under any linear invertible transformation ϕ : KL[p1‖p2] =
KL[ϕ(p1)‖ϕ(p2)];

• it is not a metric distance because it is not necessarily symmetric (in gen-
eral: KL[p1‖p2] 6= KL[p2‖p1]) and it usually violates the triangular in-
equality (KL[p1‖p2] + KL[p2‖p3] � KL[p1‖p3]);
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Other divergence measures between densities can be found. For instance, we
could take one of the following symmetric quantities

〈p‖q〉 =

∫
|p(x)− q(x)|dx , (1.32)

or

〈p‖q〉 =

∫
(p(x)− q(x))2dx . (1.33)

However, the benefits gained from considering the KL divergence in BSS are so
considerable from the computational simplicity viewpoint that no other diver-
gence measure has been seriously investigated, to our knowledge, in the BSS
framework, even though they can be used, exactly as the KL, to derive an inde-
pendence measure.

1.3.1.2 From KL to mutual information

From Property 1, the KL between pY (the joint pdf of the multivariate random

vector) and
∏K

i=1 pYi
(the product of the marginal pdf of the components of

Y) seems to be an interesting independence measure; it is called the mutual
information.

Definition 11 (Mutual information) The mutual information of a random
vector Y = [Y1, . . . ,YK ]T is defined as

KL

[
pY

∥∥∥∥∥
K∏

i=1

pYi

]
. (1.34)

This divergence measure is also equivalently noted KL(Y).

Proposition 2 (Mutual information properties) The mutual information
properties result from the KL ones but, further remarkable results are the follow-
ing.

• KL(Y) > 0 with equality if and only if the components of Y are mutually
independent; hence, −KL(Y) is an independence measure.

• It is symmetric: KL(Y) = KL[pY,
∏K

i=1 pYi
] = KL[

∏K
i=1 pYi

,pY]

• Let us define ϕ(Y) = [ϕi(Yi), . . . ϕK(YK)] where the K ϕi’s are linear
invertible with existing derivatives and derivable inverses mappings (i.e.
diffeomorphisms). Then KL(Y) = KL(ϕ(Y)).
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1.3.2 Other measures of independence

The independence can also be measured by some means different from a di-
vergence between the joint density of a random vector and the product of
the marginal densities of its components. Remind that K non-Gaussian rv
Y1, . . . ,YK are independent if all their cross-cumulants vanish. Hence, a mea-
sure of independence would be a functional of positive mappings of all the cross-
cumulants; independence would then be reached if and only the functional van-
ishes. In practice however, this is not feasible: we have to consider only a finite
number a cross-cumulants. Most often, existing methods assume a whitening
pre-processing (see Section 1.5) so that the outputs are decorrelated, and they
only cancel a finite number of cross-cumulants. For instance, the criterion

−
∑

ijkl 6=iiii

cum2
ijkl(Y) (1.35)

can be seen as an approximate measure of independence between the Yi if
E[YiYj ] = E[Yi]E[Yj ], i 6= j (the fourth-order cumulant was defined in Eq.
1.28, p. 12); but this approximation suffices to solve the BSS problem [Comon,
1994]. Minimizing the last criterion is equivalent to maximizing

∑
i cum2

iiii(Y)
[Comon, 1994].

A variant of this criterion,

−
∑

ijkl 6=ijkk

cum2
ijkl(Y) (1.36)

has also been proposed [Cardoso, 1998, Cardoso and Souloumiac, 1993].
Similarly, another approximate measure would be to compute a linear combi-

nation of positive mappings of

E[f(Yi)g(Yj)]− E[f(Yi)]E[g(Yj)] for i, j ∈ {1, . . . K}, i 6= j (1.37)

for a finite number of functions f, g. The possibly non-linear functions f, g ∈ F
capture the higher-order information on X,Y, not only their covariance. The
pioneering solution to the BSS problem, which was proposed by Hérault and
Jutten in 1991, was based on this approach; they used f(y) = y3 and g(y) =
arctan(y) [Jutten and Hérault, 1991].

This is the method used in [Bach and Jordan, 2002]: independence is reached
if and only if the following generalized non-linear correlation coefficient is zero:

ρF = max
f,g∈F

Corr[f(X), g(Y)] = max
f,g∈F

Cov[f(X), g(Y)]√
Var[f(X)]Var[g(Y)]

. (1.38)

A review of independence measures for BSS can be found in [Achard, 2003].
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1.4 EXTRACTION SCHEMES AND CONTRAST FUNCTION
DEFINITION

In Section 1.2.3, a relation between independence (and thus ICA) and BSS was
pointed out by Theorem 3 (p. 13): maximizing any independence measure (as de-
fined in Def. 9, p. 14) of BX will provide a demixing matrix being PD-equivalent
to A−1, i.e. such that each of the output Yi will be proportional to a distinct
source Sj . However, even under the usual assumption on the independence of the
sources, source separation cannot be seen, generally speaking, to be equivalent
to independent component analysis; this is e.g. the case where only a subset of
whatever sources is needed.

Independence measures are rather restrictive criteria; they implicitly require
that all the outputs be considered at the same time. For instance, if one desires
to extract a single source, the viewpoint of independence maximization cannot be
easily adopted as a single signal is considered, while independence is a relative
quantity. In a more general framework, one may desire to separate P signals
from K mixtures. In this case, ICA is not equivalent to BSS, as shown in the
next example.

Example 2 (ICA is not BSS) Let W = BA, Yj =
∑K

i=1WjiSi, j ∈
{1, . . . , P} where Wij is the (i,j)-th entry of W. Assume P = 2 for simplic-
ity. We know from the Theorem 2 (the converse form of the Darmois-Skitovitch
theorem, p. 12) that if W1iW2i = 0 for all 1 6 i 6 K, then Y1 is independent
from Y2.

In other words, if one can find B ∈ MP×K such that BA has exactly one
non-zero element per column, the entries of BX are independent provided that
at most one source is Gaussian. The problem is that such matrices are not
necessarily subPD-equivalent to A−1, that is, we can find B ∈MP×K such that
the components of BX are independent but BA /∈ WP×K . For instance setting
P = 2 and K = 4, a demixing matrix B such that

BA =

[
1 1 0 0
0 0 1 1

]
(1.39)

yields independent outputs, but none of them is proportional to a source signal:
BA /∈ WP×K .

From the above example, we conclude that ICA only solves specific schemes of
the BSS problem, in which the number of outputs equals the number of sources
involved in the mixture. Therefore, in order to deal with separation schemes more
general than the simultaneous separation of all the K sources, it is necessary to
find BSS criteria that are no more necessarily “pure” independence measure.

The purpose of this section is to review three extraction schemes that can
be used to recover (part of) the demixing matrix. For each of these schemes,
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the BSS problem is rewritten as an optimization problem; based on the contrast
function definition, solving the BSS problem reduces to maximizing a criterion,
if the latter belongs to the specific class of the BSS contrast functions.

1.4.1 Extraction schemes

When recovering the sources, three approaches can be adopted to estimate B
such that B ∼u A−1. First, the demixing matrix B can be estimated globally, by
maximizing a simultaneous contrast function. Second, P 6 K rows bj of B can
be estimated one by one, yielding the sources sequentially. Third, P 6 K rows
of B can be estimated simultaneously. These three approaches are respectively
named simultaneous, deflation and partial separation.

1.4.1.1 Simultaneous separation

In simultaneous extraction, one is led to maximize a criterion f(B) with re-
spect to a K × K matrix B, so that the rows of B are estimated all at once.
After convergence, we shall have B ∼ A−1.

1.4.1.2 Deflation separation

An alternative method is to compute the rows of B one by one. Instead of
maximizing the function f(B) directly in a K ×K-dimensional space, K “sub-
functions” are estimated iteratively. The sources are recovered by sequentially
maximizing f(b1), . . . , f(bK), where the bi are the rows of the target matrix B.
A decorrelation constraint is added in order to avoid recovering twice a same
source: at each step, the i-th estimated source must be uncorrelated to the i− 1
previously extracted sources.

The deflation method has an advantage compared to the simultaneous ap-
proach: it allows one to extract P 6 K sources by maximizing sequentially
f(b1), . . . , f(bP ), and then considering b1X, . . .bP X as the P estimates. How-
ever, this sequential technique may suffer from the cumulation of errors resulting
from the decorrelation constraint imposed between the rows.

1.4.1.3 Partial separation

Recently, a new kind of extraction has been introduced in [Pham, 2006b]: it
consists in simultaneously extracting P among K sources, for any P 6 K. This
method yields all the K sources if P = K (and thus reduces to the simultaneous
separation scheme) and yields the first output just as the deflation method if
P = 1.
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1.4.2 Contrast functions

In this section, the BSS problem is formalized as an optimization problem for
each of the extraction schemes. For each scheme, we define the concept of contrast
function, which is the objective of the optimization problem.

1.4.2.1 Simultaneous separation

Definition 12 (Simultaneous BSS (S-BSS) contrast) A simultaneous BSS
(S-BSS) contrast is a mapping C(.) : M(K) 7→ IR being invariant under PD-
equivalency preserving transforms and satisfying

argmax
B∈M(K)

C(B) = {B ∈M(K) : B ∼ A−1} , (1.40)

or equivalently:

argmax
B∈M(K)

C(B) = {B ∈M(K) : BA ∈ W(K)} . (1.41)

In the above definition, the mathematical expression argmaxx∈X f(x) has to
be understood as a the set of points X ? in dom f ∩ X such that the function f
reaches its global maximum value over the set dom f ∩X at, and only at points
in X ?.

Note that this definition differs slightly from the contrast definition first given
in [Comon, 1994]. However, we define here a BSS contrast, i.e. a contrast in
the framework of BSS; this corresponds now to the usual common meaning of
a contrast for BSS, as accepted by the related community (see e.g. [Cardoso,
1998], etc). The major differences are the following. First, it is no more supposed
that a contrast is a mapping from the set of densities. It is here understood as a
mapping from M(K). Second, the only if statement in the third property was
not required in Comon’s definition. This additional requirement yielded, with
Comon’s terminology, to a discriminating contrast. However, this terminology
will be used for another property, which will be stated in Chapter 3.

From the Identifiability theorem (Corollary 2) and the independence measure
definition, the following corollary trivially holds.

Corollary 3 Under assumptions ∧6
i=1Ai, any independence measure being si-

multaneously scale-invariant and permutation-invariant is a simultaneous con-
trast function.

1.4.2.2 Deflation separation

Definition 13 (Deflation BSS contrast) A mapping C(.) : IRK 7→ IR is a
deflation BSS (D-BSS) contrast if it fulfills the following conditions:

• it is scale-invariant: C(b) = C(αb) for any α ∈ IR0;
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• the global maximum point is attained when bA is proportional to a row of
IK :

argmax
b∈IRK

C(b) ⊆ {b ∈ IRK : bA ∝ ei, i ∈ {1, · · · ,K}}} , (1.42)

or equivalently, by noting ‖x‖ the Euclidean norm of x:

argmax
b∈IRK

C(b) ⊆ {b ∈ IRK : ‖bA‖ = ‖bA‖∞} ; (1.43)

• the criterion allows complete extraction. Let Sk be the set of the source
indices that have been extracted at the k-th step: for any 1 6 i 6 k, biX ∝
Sj, j ∈ Sk. Then, under the constraint that bbT

i = 0 for i ∈ {1, . . . ,K}:

argmax
b∈IRK

C(b) ⊆ {b ∈ IRK : bA ∝ ei, i ∈ {1, · · · ,K} \ Sk} . (1.44)

1.4.2.3 Partial separation

Definition 14 (Partial BSS contrast) A mapping C(.) : MP×K 7→ IR is a
partial BSS (P-BSS) contrast if it fulfills the following conditions:

• it is scale-invariant: C(B) = C(ΛB) for any matrix Λ ∈ D(P );

• it is order-invariant: C(B) = C(ΠB) for any matrix Π ∈ P(P );

• the set of the global maximum points are P ×K non-mixing matrices:

argmax
B∈MP×K

C(B) ⊆ {B ∈MP×K : B ∼u A−1} , (1.45)

or equivalently,

argmax
B∈MP×K

C(B) ⊆ {B ∈MP×K : BA ∈ WP×K} . (1.46)

Note that the first two items are equivalent to require C(B) = C(MB) if
M ∼ IP .

It is a kind of compromise between deflation and simultaneous approaches,
combining the advantages of both separation schemes, in the sense that we can
limit the computational load if only P < K sources are needed and on the other
hand, the cumulation of errors resulting from the orthogonalization constraint is
avoided3.

3We would like to point out here that generally speaking, there is no information about which
subset of P sources will be extracted.
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1.5 WHITENING PREPROCESSING AND GEODESIC SEARCH

Whitening is a usual preprocessing to BSS, either for simultaneous or deflation
extraction schemes. It does half the work of ICA, in the sense that the dimen-
sionality of the BSS problem is approximatively divided by a factor 2 thanks to
the whitening. In other words, half the job is done by using an algebraic tech-
nique (reminded in Section 1.5.1), so that orthogonal BSS contrast functions can
be proposed (Section 1.5.2). In the remaining adaptive optimization step, the
argument space is limited in such a way that the possible adaptive search will be
managed in a lower dimensional subspace of the original space of the demixing
matrices (Section 1.5.4).

1.5.1 Whitening

Whitening a data vector X consists in jointly i) centering the data (unneces-
sary if A4 holds), ii) linearly transform them in such a way that they become
uncorrelated (Cov[X] is diagonal), and iii) scaling the Xi so that they become
unit-variance (yielding Cov[X] = IK).

Definition 15 (whitening matrix) A matrix V ∈M(K) is a whitening ma-
trix of a random vector X ∈ IRK if Z = VX is a white random vector: E[Z] = 0
and E[ZZT] = IK .

A whitening matrix V of X can be found via eigenvalue decomposition (EVD).4

Let us denote by Λ a diagonal matrix whose diagonal entries are the eigenvalues
of the K × K covariance matrix Cov[X], and let U be an orthogonal matrix
(because Cov[X] = CovT[X]) whose columns are unit-norm eigenvectors such
that eiU

T is the eigenvector associated to the eigenvalue located at the i-th
diagonal element of Λ. Then,

V
.
= Λ−1/2UT (1.47)

is a whitening matrix. This results from the following equalities:

E[VX(VX)T] = V E[XXT]︸ ︷︷ ︸
=UΛUT

VT (1.48)

= Λ−1/2 UTU︸ ︷︷ ︸
IK

ΛUTU︸ ︷︷ ︸
IK

Λ−1/2 (1.49)

= Λ−1/2ΛΛ−1/2 (1.50)

= IK . (1.51)

4Singular value decomposition (SVD) can also be used but is not considered here, except briefly
in the last Chapter.
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Observe that in the above developments, it is assumed that all the eigenvalues
are non-zero in order that Λ−1/2 exist since detΛ =

∏K
i=1 Λ(i, i) (in other words,

Λ ∈ D(K) ⊂ M(K)). Clearly, this is the case since Cov[X] is symmetric (the
eigenvalues are real) and because the covariance matrix is positive semi-definite
(all the eigenvalues will be non-negative) leading to detCov[X] > 0. Further,
Cov[X] ∈M(K) since Cov[X] is full-rank:

rank(Cov[X]) = rank(ACov[S]AT)
A7= rank(AAT) = rank(A) = K . (1.52)

Consequently, det Cov[X] > 0 and, on the other hand det Cov[X] =
detΛdet2 U = detΛ, implying Λ ∈ D(K) ⊂M(K).

An important subset of IRK×K is the orthogonal group.

Definition 16 (Orthogonal group) The orthogonal group of degree K is the
subset of orthogonal matrices :

O(K)
.
= {M ∈M(K) : MMT = IK} . (1.53)

A specific subset of this group is the special orthogonal group:

Definition 17 (Special orthogonal group) The special orthogonal group is
the subset of O(K) corresponding to rotation matrices, i.e.

SO(K)
.
= {M ∈ O(K) : detM = +1} . (1.54)

The following property can be easily proved.

Property 2 (Whiteness preservation under orthogonal transform) Let V
be a whitening matrix of X ∈ IRK . Then, for any orthogonal matrix R ∈ O(K),
RV is a whitening matrix of X.

The above property states that whiteness property is preserved under orthogo-
nal transforms and, consequently, that the whitening matrix of a random vec-
tor is not unique. It results directly from the fact that E[(RVX)(RVX)T] =
E[RZZTRT] where Z

.
= VX. The last expectation reduces to RRT = IK since

Z is a white random vector.
The whitening preprocessing is seen as solving half of the ICA problem. In-

deed, even if not known, VA reduces to an orthogonal matrix, because:

E[ZZT] = E[VAS(VAS)T] (1.55)

= VAE[SST]ATVT (1.56)
A7= (VA)(VA)T (1.57)

= IK , (1.58)
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where the last equality results from the whiteness of the zero-mean vector Z.
Because of the group structure of O(K), the inverse of the transfer matrix

VA from S to Z is also included in O(K). Consequently, one can restrict the
search of a demixing matrix B from M(K) to O(K) and even to SO(K), since
assuming detB = +1 does not add any indeterminacy on the recovered sources,
as shown by the following lemma.

Lemma 4 For any matrix M1 ∈ O(K), there exists M2 ∈ SO(K) such that
M2 ∼M1.

If M1 ∈ O(K), |detM1| = 1. Hence, by definition, M1 ∈ SO(K) and we can

take M2 = M1. Assume now that detM1 = −1. Noting by I
(−i)
K the identity

matrix IK in which the i-th diagonal element is replaced by its opposite. Then,

det I
(−i)
K M1 = det I

(−i)
K detM1 = −detM1 = 1. But, by definition of the PD-

equivalency, M2 = I
(−i)
K M1 is PD-equivalent to M1 and M2 ∈ SO(K).

�

Then, since the dimension of SO(K) is K×(K−1)/2, the number of elements
to be estimated in the demixing model is approximatively divided by a factor
two. The whitening preprocessing reduces the dimensionality of the problem;
an orthogonal contrast can then be used. An orthogonal contrast is a contrast
whose argument is constrained to be in SO(K).

1.5.2 Orthogonal contrast functions

Definition 18 (Orthogonal BSS contrast) An orthogonal simultaneous (resp.
deflation) BSS contrast is a simultaneous (resp. deflation) BSS contrast where
the mixing matrix is assumed to be a rotation matrix (A ∈ SO(K)) and the
demixing matrix is always constrained to be in the special orthogonal group. A
partial orthogonal BSS contrast is a partial contrast whose argument is con-
strained to be a semi-orthogonal matrix, that is where BBT ∈ SO(K). The
orthogonal BSS contrasts are noted C⊥.

Obviously, the set of orthogonal contrasts is included in the set of (global)
BSS contrasts.

Remark 1 Note that whatever the mixing matrix A, one can still use an or-
thogonal contrast. In order to do that, one can deal with a whitened version of
the mixtures since as shown in Section 1.5.1: VA ∈ O(K) if V is a whitening
matrix of X = AS.

Assume X ← VX. Then, if B? ∈ SO(K) maximizes the orthogonal contrast,
the demixing matrix satisfies B? ∼ (VA)−1 and from Lemma 2 (p. 9), B?V ∼
A−1.

Since the mixing matrix is not necessarily orthogonal, we shall always consider
X← VX and A← VA when dealing with orthogonal contrast functions.
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1.5.3 Angular parametrization in the K=2 case

It has been explained that if X is whitened, A can be seen to be an orthogonal
matrix. In two dimensions, an orthogonal matrix is fully determined by a sin-
gle angle, called here the mixing angle φ. As explained above, one can freely
assume that A is a pure rotation matrix (detA = +1). Hence, the mixing and
prewhitening steps can be expressed as follows:

[
X1

X2

]
=

[
sinφ cosφ
− cosφ sinφ

] [
S1

S2

]
. (1.59)

Furthermore, under the additional E[YYT ] = IK constraint, W also reduces to
an orthogonal (assumed rotation) matrix, parametrized by a single unmixing
angle ϕ. Hence, for K = 2, the input-output model becomes:

[
Y1

Y2

]
=

[
sin(φ+ ϕ) cos(φ+ ϕ)
− cos(φ+ ϕ) sin(φ+ ϕ)

] [
S1

S2

]
. (1.60)

Hence, the BSS problem reduces to finding the unknown initial angle φ only
knowing X and Y by adjusting ϕ. Let us define θ

.
= φ + ϕ. The angle φ is

fixed, since A is a constant matrix, but θ is unknown, and may vary via ϕ.
Consequently, the transfer matrix, also noted W(θ) for clarity, is non-mixing if
and only if we have found blindly (φ is unknown) ϕ = ϕ? such that ϕ? = kπ/2−φ,
k ∈ Z. When a single output is considered in the K = 2 case, it will often be
noted

Yθ
.
= sin(θ)S1 + cos(θ)S2 , (1.61)

i.e. it corresponds to the first output Y1 of the model given in Eq. (1.60) with
θ = φ+ ϕ.

1.5.4 Manifold-constrained problem and geodesic optimization

From the above subsection, we conclude that under pre-whitening constraint,
there always exists B ∈ SO(K) such that B ∼ (VA)−1. We can thus restrict
the search of demixing matrix to SO(K). Lie groups such as e.g. IRK×K ,M(K),
O(K) or SO(K) can be given a Riemannian manifold structure [Amari, 1998,
Plumbley, 2004, Chefd’Hotel et al., 2004].

Definition 19 (Manifold) A manifold is a topological space which is locally
Euclidean.

Without entering into details, various definitions of the manifold object exist:
basically, some of them suppose that the manifold is “smooth everywhere”, the
others assume that the manifold is locally flat almost everywhere. As an example,
depending of the definition, the boundary of a square is a manifold or not, but
in any case, it is not a “smooth manifold”, because of the corners [Absil et al.,
Lee, 2003].
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In the sequel, the set notation will be used for the manifolds. Generally,
a manifold will be noted M (not related to the set of matrices M(K) and
MP×K). In other words, it is a mathematical space in which (almost) every
point has a neighborhood which resembles the Euclidean space, but in which the
global structure may be more complicated. When these manifolds are embedded
in IRK , they are named “sub-manifolds embedded in IRK”. Any open subsets
in IRK forms a sub-manifold. Curves and circles are examples one-dimensional
(smooth) sub-manifolds embedded in IRK (K > 2), also named one-manifold for
short, because locally, every point has a neighborhood that resembles a line. The
surface of a sphere is an example of a two-dimensional manifold because locally,
the neighborhood of every points on a sphere looks like a plane (the surface of
the Earth was formerly believed to be a plane because on the human scale, the
surface of a sphere looks “flat”). In the following, it is always assumed that the
D-manifold is embedded in IRK (for some K large enough), and the prefix “D−”
and “‘sub-” will be omitted when unnecessary. In general, any object embedded
in IRK which is “nearly flat” on small scales is a manifold embedded in IRK

provided that K is large enough (to, indeed, embed it). On a manifold, the basic
usual rules of geometry do no more hold as it is not a vector space. Generally
speaking, the sum of the angles of a (curved) triangle laying on a manifold does
not equal π, and summing two vectors belonging to this space does not result in
a third vector belonging to the manifold. By contrast, the definition says that at
each point of the manifold, there exists a tangent space on which we can use the
common calculus. Therefore, if the aforementioned triangle is sufficiently small,
the sum approximatively equals π. The manifolds are seen here to be (possibly
lower-dimensional) spaces (i.e. subspaces) embedded in a higher-dimensional
Euclidean space. They may be created by a kind of “constraint”: a centered
circle of radius r is a one-manifold embedded in IR2 associated to the vectors in
IR2 having a Euclidean norm equal to r. One can also associate manifolds to the
sets O(K) and SO(K); these are K(K − 1)/2-dimensional manifolds embedded
in the set of square matrices IRK×K . Most of the time, one deals with “smooth”
manifolds (because it is implictely required in the definition or because it is often
required when dealing with other definitions); basically, they are manifolds with
functional structure (e.g. parametric equations [Lee, 2003]). The unit circle in
the xy-plane (defined by the constraint x2 + y2 = 1) is the smooth manifold
with parametric equations (x = cos θ, y = sin θ) . The parametric equations
(when they exist) are friendly because they can be integrated and differentiated
termwise. Informally, this means that the notion of “differentiability” exists on
smooth manifolds (differential geometry is nothing else than the study of calculus
on smooth manifolds). As an illustration, let f(x, y) = xy2 s.t. ax2 +by2 = 1 for
two scalar numbers a, b. How does this function change for a small variation of
(x, y)? This question seems difficult to answer because of the ambiguity about
the meaning of “a small variation of (x, y)”. The function is only defined on
the set ax2 + by2 = 1 and not on IR2; consequently, the new pair of coordinates
(x, y) + (δx, δy) is required to fulfill the constraint. Using the parametrization
x = cos θ/

√
a, y = sin θ/

√
b, the constraint is implicitly fulfilled and it makes
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sense to compute the derivative of f(θ) = cos θ sin2 θ/
√
ab2 with respect to θ.

For a small increment δθ of θ we have

f(θ + δθ) ≈ f(θ) +
sin θ√
ab2

(2 cos2 θ − sin θ)δθ .

The manifold associated to the definition domain of the above function can be
seen to be “smooth” because a differentiable parametrization is possible5. By
contrast, the set of points satisfying xy = 0 does not form a smooth manifold
because of the intersection.

An additional interesting property of a manifold is it connectedness. Intu-
itively, a manifold is connected if any pair of points can be joined by a piecewise
smooth curve belonging to the manifold.

Property 3 (Properties of O(K) and SO(K)) The smooth manifolds asso-
ciated to O(K) and SO(K) satisfy the following properties

• O(K) is a manifold composed of SO(K) and {B ∈ O(K) : detB = −1};

• SO(K) is a connected manifold containing the identity matrix IK ;

• the restriction of the neighborhood of a given point B ∈ IRK×K to the
manifold induced by O(K) is a subset of the neighborhood of B in the
whole RK×K space (recall that O(K) ⊂ RK×K). This is also true for
B ∈ SO(K), since SO(K) is a connected subgroup of O(K).

More details about manifolds can be found in [Absil et al.].

1.6 ADAPTIVE MAXIMIZATION OF CONTRAST FUNCTIONS

In Section 1.4.2 contrast functions have been defined in order to rewrite the BSS
problem as an optimization problem. However, the maximization methods have
not been discussed yet. A lot of optimization techniques exist. They can be
based on algebraic or adaptive methods.

Example 3 (Algebraic vs Adaptive solution) Let X = [X1, . . . ,XK ]T. The

matrix V = Λ−1/2UT (see Eq. (1.47)) is an algebraic solution to the problem

argmax
M∈M(K)



−

∑

i6=j

∣∣∣ [Cov[MX]]ij

∣∣∣



 , (1.62)

5The simple approach saying thatM is a differentiable manifold is equivalent to the parametric

equations of M are differentiable has not been proved to exactly correspond to the formal
definition of “manifold differentiability” (that can be of class Ck, like for functions). However,
this intuitive explanation generally holds true (at least in the sense “differentiable parametric
equations” ⇒ “differentiable manifold”) and anyway, this intuitive way of seeing things suffice
for our purposes
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where [M]ij = Mij is the (i, j)-th entry of M, because the maximum value of
this expression is zero and Cov[MX] is diagonal if M is a whitening matrix of
X (i.e. if M = UV with U ∈ O(K) and V given by Eq. (1.47)). As a matter
of fact, the solution is provided by an eigenvalue decomposition of Cov[X]. The
result can be expressed as a closed form expression. The problem of finding the
maximum reduces to the problem of finding the eigenvalues and the associated
eigenvectors.

An adaptive solution to the problem would consist in choosing an initial point
in M(K), say M(0) and then modifying M(t+1) ← M(t) + ∆(M(t)) where
∆(M(t)) is such that

−
∑

i6=j

∣∣∣
[
Cov[M(t)X]

]
ij

∣∣∣ 6 −
∑

i6=j

∣∣∣
[
Cov[M(t+1)X]

]
ij

∣∣∣ . (1.63)

The major difference between algebraic and adaptive optimization techniques is
not that the former is non-iterative while the latter is, because iterative schemes
can be required for computing (estimating) the parameters of the closed form
solution. As an illustration, the computation of the eigenvalues and eigenvectors
in Ex. 3 (p. 27) may require an iterative scheme (e.g. iteration of QR decom-
positions). The main difference is rather that algebraic techniques estimate the
parameters of the close form corresponding to the global maximum, while adap-
tive techniques try to reach a local (hoped to be global) maximum by modifying
the argument in a way that makes the objective increasing. In the BSS context,
some contrast functions can be optimized via algebraic techniques (this is the
case of criterion given in Eq. (1.36), whose optimization reduces to tensor diag-
onalization; the latter can be obtained via Jacobi techniques and, at each step,
the angles are available in closed form [Cardoso and Souloumiac, 1993]), see e.g.
[Cardoso and Comon, 1996] for a review. But for a wide class of contrasts, there
exists no algebraic methods that would make possible the global maximization
of the BSS criteria. Consequently, we need adaptive rules that will make B con-
verge to B? ∼u A−1. The general form (gradient ascent) of these update rules,
depending of the method of separation that has been chosen, is given below.

• Simultaneous separation of the K sources
update, until convergence matrix B subject to the constrain that B(t) ∈
M(K) holds at each step:

B(t+1) ← B(t) + µ(t)∆(B(t)) . (1.64)

• Sequential extraction of the K sources (deflation)

for i ranging from 1 to K, update until convergence the rows of B subject
to the constraint that B(t) ∈M(K) holds at each step:

b
(t+1)
i ← b

(t)
i + µ(t)∆(b

(t)
i ) . (1.65)
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• Partial separation of P 6 K sources
update until convergence matrix B such that B(t) ∈MP×K holds at each
step:

B(t+1) ← B(t) + µ(t)∆(B(t)) . (1.66)

In the above update rules µ(t) is a learning rate parameter. Obviously, one
needs to find a suitable form for the pushforward term ∆(·). Clearly, ∆(·)
must depend on the evolution of C(·). If ∆(·) has the form of the gradient
of C(·) with respect to the elements of B, then the above rules are called
gradient ascent.

• geodesic optimization on the SO(K) manifold (global or deflation)

In order to limit the computational load, one may deal with orthogonal
BSS contrasts, and constrain B to be always kept on SO(K); then, only
K(K−1)/2 parameters have to be estimated. This is the so-called geodesic
search on the Stiefel manifold of special orthogonal matrices. For instance,
the above update rule for simultaneous separation must be modified such
that for each t, B(t) ∈ SO(K).

According to the group structure of SO(K), the aforementioned constraint
always holds if, at each step t, the update rule is modified as

B(t+1) ← R(t)B(t) , (1.67)

provided that R(t) ∈ SO(K) and B(0) ∈ SO(K).

Such a geodesic search can be done by using Jacobi rotations. Because of
the group structure of SO(K) [Plumbley, 2004], for any pair of matrices
B,G in SO(K) then GB ∈ SO(K). Therefore a geodesic optimization
can be obtained by factorizing B as a product of rotation matrices, and

we can choose R(t) = G
α(t)
ij (i < j), where G

α(t)
ij is a Givens matrix. A

Givens matrix is a rotation matrix equal to the identity except entries
[Gα

ij ]ii = [Gα
ij ]jj = cosα and [Gα

ij ]ij = −[Gα
ij ]ji = sinα. At each step, the

rotation angle α(t) is updated so that the criterion is increased.

1.7 BSS AND INFORMATION MEASURES

In the above subsection, various extraction schemes have been presented. As
explained in the introduction of the section, the independence measure is a con-
trast for the simultaneous approach only. In order to obtain deflation and par-
tial contrasts, we need another class of measures: the measure of information,
a quantity that will be defined and explained below, is a possible candidate to
derive contrast functions.
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1.7.1 Information measure

The ICA approach to BSS tells us that, in order to solve the BSS problem in a
simultaneous extraction scheme, one has to maximize an independence measure,
as stated by Corollary 3 p. 20. Another viewpoint is the following. Assume that
we can find a complexity measure of a signal, in the sense that the complexity
measure of a linear combination of signals is larger than the smallest complexity
measure of any of the individual signals, up to some normalization constraint
on the mixture weights. Intuitively, if such a measure can be found, it is rea-
sonable to think that minimizing the complexity measure of

∑K
i=1 wiSi, up to a

normalization constraint of the form

‖w‖p .
= p

√√√√
K∑

i=1

wp
i = cst , (1.68)

with respect to w = [w1, . . . , wK ] would yield the source signal Sj with the lowest
complexity measure. Yet another point of view is to consider the complexity
measure as a sparsity measure of w: the minimum complexity value is obtained
when w is the most sparse, i.e. has a single non-zero component, equal to the
above constraint value fixing the p-norm of w. Observe that throughout this
thesis, ‖w‖ is most often used instead of ‖w‖2, for short.

The complexity measure of a signal, as informally described above, can be
thought of as a measure of the uncertainty of a process. It is a kind of information
measure in the sense that intuitively, the more complex the signal, the more
random the outcome; a large information is contained in the outcome since,
for an observer, the outcome was not easily predictable. Consequently, a low
information measure of a linear mixture of signals would thus mean that the
mixture contains few “basis signals” with low uncertainty.

An information measure of a random variable could be, for example, the
minimum number of bits needed to code the variable under constraint that the
outcomes are one-to-one (i.e. univocally) decodable. The higher is the minimum
number of bits required for the coding, the more complex is the underlying
signal; it seems reasonable that coding Yi =

∑K
i=1 wiSi requires a larger number

of bits than coding the “simplest” variable Si if the Si are independent random
variables.

The information measure is the starting point of information theory, a field
concerning the mathematical aspects of preserving, transforming and transmit-
ting a message. Information measures are introduced in a very simple case in
the next subsection, to yield then the entropy concept.

1.7.1.1 Discrete introductory example and Hartley’s formula

This section is inspired from the following books: [Rényi, 1966, Cover and
Thomas, 1991, MacKay, 2003].

Example 4 (Questions and Hartley’s entropy) As an introduction to the
information measure, assume that EN is a discrete random variable with alphabet



BSS AND INFORMATION MEASURES 31

AE(N) = {0, 1, . . . , N−1} and that Pr(EN = j) = 1/N for all j ∈ AE(N), where
Pr(.) is a probability measure. We would like to know what is the information
of an observation of EN . Let us suppose N = 8. The information measure of
EN could be, for example, the minimum number of questions needed to find a
given number, say n, in AE(8). Actually, the best strategy is to ask the following
questions [MacKay, 2003]:

• is n > 4?

• is n mod 4 > 2?

• is n mod 2 = 1?

Then the minimum number of questions needed to find the seeked number is
equal to 3. This correspond to log2 8, which is Hartley’s formula of the infor-
mation amount of EN ; log2N is the minimum number of bits required to code a
number univocally in the set AE(N) if the elements of AE(N) are equiprobable.

According to Hartley, the information measure should satisfy ideally the follow-
ing axioms:

• Additivity: the information measure of ENM must be equal to the sum
of the information measures of EN and EM . Indeed, the set AE(NM)
can be decomposed in N disjoint subsets AE(M)(1), . . . ,AE(M)(N), each
containing M elements. Finding a number e ∈ AE(NM) can be man-
aged by first finding the subset AE(M)(j) including e (requiring log2N
questions, as given by Hartley’s formula) and then finding the number
in AE(M)(j) (requiring log2M); the information measure of ENM equals
log2(NM) = log2N + log2M , and is thus additive.

• Increasing with complexity: The minimum number of bits required to code
bi-univocally EN increases with N ; the information measure of EN+1 is
larger than or equal to that of EN .

• Normalization: the information measure of E2 is set to one, and this unit
is named “bit”, because it is the information measure contained in one bit.

It can be shown that log2N is the only functional satisfying the above axioms
(p. 498 of [Rényi, 1966]).

The above information measure log2N equals − log2 1/N , i.e. minus the log
of the probability that a uniform discrete random variable EN with alphabet
composed of N elements takes a specific value. When the random variable is not
necessarily uniform and possibly continuous, the information measure is defined
as follows.

Definition 20 (Information measure) The information measure of a ran-
dom variable X with probability mass funciton pX is defined by the quantity

log 1/pX. (1.69)
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It satisfies all the above axioms. The information unit of the amount of informa-
tion is the “bit” (standing for BInary digiT) if the base-2 is used; if the Natural
logarithm is used instead, the unit is the “nat” (for NAtural digiT).

1.7.1.2 Information and entropy

Assume that X1, . . . ,XN are discrete i.i.d. random variables drawn from a
pdf pX with alphabet AX. We can define the average information measure
−1/N

∑N
i=1 log pXi

. From the Asymptotic Equipartition Property (AEP) [Gray
and Davisson, 2004, Gray, 1991, Cover and Thomas, 1991], this converges in
probability to −E log pX when N → ∞. The quantity −E log pX is called (dis-
crete) Shannon’s entropy [Shannon, 1948]:

H[pX]
.
= −

∑

x∈AX

Pr(X = x) log Pr(X = x) (1.70)

= −
∑

x∈AX

pX(x) log pX(x) (1.71)

= E[log 1/pX] . (1.72)

If X is a random variable with pdf pX, we note H(X) = H[pX].
Shannon’s entropy is thus the expected information measure of a random

variable. It is a remarkable quantity satisfying, among others, the following:

• H(·) > 0,

• H(X1, . . . ,XK) 6
K∑

i=1

H(Xi) with equality if and only if Xi are independent,

• H(X) 6 log ][AX] with equality if and only if pX is the uniform pdf.

The following statistical meaning of H shows the key role played by this quantity:

Theorem 4 (Source Coding Theorem) In average, if an experiment is re-
peated many times, we need more than H[pX ] and only arbitrarily more than
H[pX ] + 1 bits to code the results of an outcome of a random variable with pdf
pX .

Shortly, the proof of this theorem relies on the fact that a one-to-one decodable
binary code needs necessarily more than H(X) bits (from Kraft inequality) and
that there exists such a code requiring less than H(X) + 1 bits; this code assigns
to each element ei ∈ AX a binary codeword of length d− log2 pie where pi =
Pr(X = ei). By doing so, the average length of a codeword is −∑i pidlog2 pie.
This is illustrated in a simple example from [Cover and Thomas, 1991].

Example 5 (Optimal coding) Suppose we have a horse race with eight horses
taking part (the alphabet is AX = {1, . . . , 8}), and assume that the probability of
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winning of these horses are given by the vector

pX = [1/2, 1/4, 1/8, 1/16, 1/64, 1/64, 1/64, 1/64] .

We would like to find the optimal code for X, the winner of the race. The en-
tropy of the race, which is also by the Source Coding Theorem the minimum
number of bits to obtain a one-to-one decodable code for coding the outcome of
X, is 2 bits. Clearly, log2 ][AX ] = 3 bits, which is the same number of bits
as the one given by Hartley’s formula, is a suboptimal coding scheme; attribut-
ing the same number of bits to each of the horses does not necessarily lead to
minimize the code length of the winner of the race. By contrast, attributing a
codeword length of d− log2 pie bits to each horse would result in an optimal code.
Such a code can be obtained by giving to each of the 8 horses, the codewords
0,01,001,0001,000000,000001,000010,000011 respectively. A shorter code is as-
signed to more probable outcomes. In average, the codeword lengths are equal to
the entropy as in this example, dlog2 pie = log2 pi.

1.7.1.3 Extension to continuous random variables

The above section deals with discrete (alphabet) variables. However, the
entropy concept also applies to continuous variables by replacing the sum symbols
by integrals (in the sense of Riemann). This gives the so-called differential
entropy :

h(X) = h[pX]
.
= −

∫

Ω(X)

pX(x) log pX(x)dx

= E[log 1/pX] . (1.73)

The differential entropy is also called Shannon’s entropy or abusively entropy, for
short, when no confusion is possible. In spite of this apparent similarity between
h and H, the latter has a rather different behavior. The differential entropy h is
sensitive to the scale of the random variable; H was not since it only depends on
the probability of the values of the random variable, which are not sensitive to
the scale of the variable, and not on the possible values of the random variable
itself. Similarly, while H is always positive, h may be negative, depending of
the variance of the random variable. This directly results from the following
property of the differential entropy:

Proposition 3 Let X be a continuous random vector with finite differential en-
tropy and Y = BX + µ where B is a matrix and µ a vector. Then:

h(Y) = h(X) + log |detB| . (1.74)

The entropy h is thus shift-invariant but scale sensitive. Observe that

h
(
X/
√

Var[X]
)

= h(X)− 1

2
log Var[X] (1.75)
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is invariant under scaling.

This comes from the expression giving the density of a linear transformation of
a random vector:

pY(Y) =
1

|detB|pX(B−1(Y − µ)) . (1.76)

Hence, provided that |detB| is sufficiently close to zero (compared to the finite
quantity h(X)), then h(Y) < 0. Similarly, provided that |detB| is large enough,
h(Y) can be arbitrary large. However, under a power constraint on the random
variable, it is possible to find the density with maximum (differential) entropy
h[·].
Theorem 5 (Maximum entropy pdf) Let X ∈ IRN be a zero-mean random
vector with covariance matrix ΣX = Cov[X] and φX the multivariate Gaussian
density of any zero-mean Normal vector of same dimension and covariance ma-
trix as X. Then h(X) 6 h[φX] with equality if and only if pX = φX almost
everywhere.

Proof : Let us note that

φX(X)
.
=

1

(2π)N/2
√

detΣX

e
−XT

Σ
−1
X

X

2 . (1.77)

Then:

0 6 KL[pX‖φX] (1.78)

= −h(X)−
∫

pX log φX (1.79)

(a)
= −h(X)−

∫
φX log φX (1.80)

= h[φX]− h(X) . (1.81)

The equality (a) results from the fact that EpX
[−XTΣ−1

X X] = EφX
[−XTΣ−1

X X]
implying

∫
φX log φX =

∫
pX log φX.

�

Simple algebraic manipulations show that h[φX] = 1
2 log((2πe)N detΣX).

1.7.1.4 Information gain and Mutual information

It could be reasonable to understand the mutual information (MI)

KL(Y) = KL

[
pY‖

K∏

i=1

pYi

]
(1.82)

as the difference between the sum of information contained in each of the random
variables Y1, . . . ,YK and the information contained in the joint set of these
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random variables, that is, the information contained in the random vector Y =
[Y1, . . . ,YK ]T.

Then, for such an information measure, say Q(.), we could write

KL(Y) =

K∑

i=1

Q(Yi)−Q(Y) . (1.83)

The functional Q can be found directly from the definition of the mutual infor-
mation:

KL

[
pY‖

K∏

i=1

pYi

]
=

∫
pY1,.,YK

(y1, ., yK) log pY1,.,YK
(y1, ., yK)dy1 . . . dyK

−
∫

pY1,.,YK
(y1, ., yK) log

K∏

i=1

pYi
(yi)dy1 . . . dyK (1.84)

(a)
= EY[log pY]−

K∑

i=1

∫

yi

pYi
(yi) log pYi

(yi)dyi (1.85)

=

K∑

i=1

EYi
[log 1/pYi

]− EY[log 1/pY] . (1.86)

Note that equality (a) comes from the marginalization on the joint density. From
the above equation and Eq. (1.83), it results that we can choose Q(.) = h(.)
where h is the differential entropy, defined as in Eq. (1.73).

Another viewpoint is to consider KL([X,Y]) as the gain of information of one
random variable resulting from the observation of the other. Let us define the
conditional entropy of Y = [Y1, . . . ,YK ]T given Yk, 1 6 k 6 K as

h(Y|Yk)
.
= EY[log pY|Yk

] . (1.87)

Then, by using the mathematical definition of the marginal, joint and conditional
entropies, the mutual information between X,Y is

KL([X,Y]) = h(X) + h(Y)− h(X,Y)

= h(X)− h(X|Y)

= h(Y)− h(Y|X) , (1.88)

where h(X) (resp. h(Y)) represents the uncertainty on the outcome of X (resp.
Y) and h(X|Y) (resp. h(Y|X)) represents the uncertainty on the outcome of
X (resp. Y) knowing the outcome of Y (resp. X). If the variables are inde-
pendent, observing Y = y does not modify the uncertainty on X so that the
gain KL([X,Y]) is zero. The gain is positive otherwise. This generalizes to
more that two random variables (chain rule for the entropy, resulting from the
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Figure 1.1. Venn diagram: relationships between entropies and mutual information.

definitions [Cover and Thomas, 1991]):

KL(Y) =
K∑

i=1

h(Yi)− h(Y)

=

K∑

i=1

h(Yi)− (h(Y1) + h(Y2|Y1) + h(Y3|Y1,Y2) + · · · )

=
K∑

i=2

h(Yi)−
K∑

i=2

h(Yi|Y1, . . . ,Yi−1) . (1.89)

This also shows the additivity nature of the entropy as an information mea-
sure: the information contained in the random vector Y is the sum of the infor-
mation contained in one of the K random variables, say Y1, plus the information
brought by another one (say Y2) given the first one, etc. In other words, the
information brought by a new variable in the random vector equals the infor-
mation of this variable knowing all the other ones already contained in Y; this
information equals the information of the random variable if and only if it is in-
dependent from all the other components of the random vector. More explicitly,
if Yk is known, the remaining uncertainty on Y reduces to h(Y|Yk):

h(Y)− h(Yk) = −EY[log pY] + EY[log pYk
]

= EY[log
pYk

pY

]

= −EY[pY1,...,Yk−1,Yk+1,...,YK |Yk
(y1, . . . , yk−1, yk+1, . . . , yK |yk)]

= h(Y|Yk) (1.90)

Figure 1.1. gives a Venn diagram showing the relation between marginal and
conditional entropies, joint entropy, and mutual information.

Remark 2 (Entropy, information and uncertainty) On the one hand
h(X) is the information measure of an outcome of X and, simultaneously, a
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measure of the uncertainty of X; how can that be possible? This is not, actually,
a contradiction. Assume X is a Bernoulli random variable, taking the value 1
with probability p and 0 with probability 1− p, with 0 6 p 6 1. Clearly, if p = 0
(resp. p = 1), H(X) = 0. The uncertainty contained in the variable is zero,
which seems natural, and simultaneously, the outcome X = 0 (resp. 1) does not
contain any information since there is no other possible value for the random
variable. If p is close but different from 0 (resp. from 1), the uncertainty of X is
low; we can predict, with a relatively high confidence, that X = 0 (resp. X = 1)
will be observed: the information given by an outcome is thus quite useless, since
one can guess it with a high confidence. If, on the contrary, p = 1/2, then it is
very difficult to know in advance which value will be observed for X; the informa-
tion provided by an outcome of X is thus really useful since it is very difficult to
predict. It is thus convenient to understand (intuitively) the “information mea-
sure” as the information needed to predict reliably the outcome of X; the higher
is the randomness of a system, the larger is, for an observer outside the studied
physical system, the “lack of information about the state of the system” and thus
the larger is the amount of information needed to guess the outcome of a given
event; the entropy is precisely the averaged information. For more details about
the meanings of entropy, we refer to [Brissaud, 2005, Arndt, 2004, Balatoni and
Rényi, 1976].

Remark 3 The KL divergence (also called relative entropy) is a divergence mea-
sure between densities, but can also be seen as a relative information measure.
From [Mourier, 1946], two densities differ more or less from each other accord-
ing to how difficult it is to discriminate between them with the best test. Let
Hi, i ∈ {1, 2} be the hypothesis that x was drawn from the density pi, then
log p1

p2
is the information in x for discrimination between H1 and H2 [Kullback

and Leibler, 1951]. Hence, the mean information for discriminating between the
Hi’s per observation from a subset E ⊆ Ω1 is

∫
x∈E p1(x) log p1(x)

p2(x)dx∫
x∈E p1(x)dx

(1.91)

if
∫

x∈E p1(x)dx > 0 and 0 otherwise. For E = Ω1 we recover the KL:
∫

x∈Ω1

p1(x) log
p1(x)

p2(x)
dx = KL[p1‖p2] . (1.92)

1.7.2 Entropy as a “complexity measure”

Let us now show that the entropy information measure can be seen as a complex-
ity measure as defined in Section 1.7.1. The reasoning relies on the fundamental
entropy power inequality (EPI).

Theorem 6 (Entropy Power Inequality (EPI)) Let S1,S2 be independent
random variables with finite entropy h. Then

22h(S1+S2) > 22h(S1) + 22h(S2) , (1.93)
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with equality if and only if both Si follow the Normal law.

This theorem first appeared in [Shannon, 1948], but it seems that the first
formal proofs are due to [Stam, 1959] and [Blachman, 1965]. It is also interesting
to have a look at [Verdu and Guo, 2006] in which a very simple proof of this
theorem, exploiting the relationships between mutual information and minimum
mean-square error in Gaussian channels, has been recently proposed.

It comes immediately that the following corollary holds:

Corollary 4 Let S1, . . . ,SK be independent random variables with finite entropy
and K > 1. Then

22h(ΣK
i=1Si) >

K∑

i=1

22h(Si) , (1.94)

with equality if and only if all the Si follow the Normal law.

Proof: The proof of this corollary consists in first observing that 22h(ΣK
i=1Si) >

22h(S1) + 22h(ΣK
i=2Si) since S1 is independent from

∑K
i=2 Si (by the converse form

of the Darmois-Skitovitch Theorem, Theorem 2 p. 12). The equality is at-

tained only if S1 and
∑K

i=2 Si are Normal random variables. But from the EPI,

22h(ΣK
i=2Si) > 22h(S2) + 22h(ΣK

i=3Si) for the same reason as above with equality
if and only if both S2 and

∑K
i=3 Si are Gaussian random variables, leading to

22h(ΣK
i=1Si) > 22h(S1) +22h(S2) +22h(ΣK

i=3Si) in which the equality holds true if and
only if S1,S2 and

∑K
i=3 Si are Gaussian. One concludes the proof by iterating

this result (by recurrence).

�

This theorem is the keystone for proving the intuitive nature of the complexity
measure of the entropy, stated in the following lemma.

Let us define S(K) to be the set of K-entries unit-norm vectors:

S(K)
.
= {w ∈ IRK : ‖w‖ = 1} . (1.95)

Lemma 5 Consider the K-dimensional vector w ∈ S(K) and S =
[S1, . . . ,SK ]T, where at most one of the sources is Gaussian. Then, the global
minimum of h(wS) if reached when and only when w = ±ek, k ∈ argmin

i∈{1,...,K}
h(Si).

Proof: The proof consists of two parts. First, assume that ‖w‖∞ = ‖w‖, that
is, wS is equal to one source (up to its sign), say Sj . Then, clearly, h(wS) = h(Sj);
this quantity is minimum if j corresponds to the index of one of the sources with
minimum entropy.

Suppose now that at least two entries of w are non-zero, and that I(w) is the
set of the indexes of these non-zero elements:

I(w)
.
= {i ∈ {1, . . . ,K} : wi 6= 0} , (1.96)
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with ][I(w)] > 2. Then, noting that at most one source is Gaussian, the strict
inequality holds true in Corollary 4 and we get

22h(wS) = 22h(Σi∈I(w)wiSi) >
∑

i∈I(w)

22h(wiSi)

(a)
=

∑

i∈I(w)

22(h(Si)+log |wi|)

=
∑

i∈I(w)

22h(Si)2log w2
i

=
∑

i∈I(w)

w2
i 22h(Si) , (1.97)

where (a) results from Property 1.74 (p. 33). Clearly, since the logarithm is a
strictly increasing function, the last expression reduces to

h(wS) >
1

2
log2


 ∑

i∈I(w)

w2
i 22h(Si)


 . (1.98)

But since ‖w‖ = 1, we have

w2
j = 1−

∑

i∈I(w)\{j}
w2

i (1.99)

for all j ∈ I(w), and in particular for j = k′ where

k′ ∈ argmin
i∈I(w)

h(Si) . (1.100)

Then, it comes by definition of k′

∑

i∈I(w)

w2
i 22h(Si) = 22h(Sk′ ) +

∑

i∈I(w)\{k′}
w2

i (22h(Si) − 22h(Sk′ ))

︸ ︷︷ ︸
>0

(1.101)

and finally

h(wS) >
1

2
log2

(
22h(Sk′ )

)

= h(Sk′)

> h(Sk) (1.102)

since I(w) ⊆ {1, . . . ,K}.

�
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Clearly, Lemma 5 is the starting point for looking at BSS criteria based on
information measures. They could constitute a wide class of BSS contrasts. We
shall focus on information measures called r-th order information measure or
Rényi’s information measure. The definition of this class of information measures
is the purpose of the next subsection.

1.7.3 Generalized information measures

Rényi’s entropy is a generalization of Shannon’s in the sense that both share the
same key properties of information measures [Rényi, 1976a]. It is defined as

Hr[pX]
.
=

1

1− r log

( ∑

x∈AX

pr
X(x)

)
, (1.103)

where r > 0 (the non-negativity of Rényi’s exponent is always assumed through-
out this work even if not explicitly mentioned). As for Shannon’s entropy, we
note Hr(X) = Hr[pX] if X follows the density pX. To see where does this extended
form of information measure come from, observe that in the general theory of
means [Aczel, 1948, Hardy et al., 1934], the mean of the real numbers x1, . . . , xn

with respective weights w1, . . . wn (wi > 0, and
∑n

i=1 wi = 1) is an expression of
the form

ϑ−1

(
n∑

i=1

wiϑ(xi)

)
, (1.104)

where the usual definition of mean of the xi is obtained for ϑ being any linear
function and wi = 1/N . Hence, the general average of information measure,
noting pi

.
= Pr(X = xi) is

ϑ−1

(
n∑

i=1

piϑ(log 1/pi)

)
. (1.105)

But in order to preserve the additivity property of the average information mea-
sure axiom, ϑ cannot be arbitrary. It can obviously be linear (it corresponds then
to Shannon’s entropy H defined in Eq. (1.72)), but it can also be an exponential
functional [Rényi, 1976a]. The quantity Hr is obtained by taking ϑ(x) = 2(1−r)x

or ϑ(x) = e(1−r)x depending on the log being the base-2 or natural logarithm
(i.e. if the entropy is expressed in bits or in nats).

Just as for Shannon, we can extend the discrete Rényi entropy to continuous
densities:

hr[pX]
.
=

1

1− r log

∫

Ω(X)

pr
X(x)dx , (1.106)

where r > 0 and Ω(X) is the support (set) of the random variable X. As usual,
we note hr(X) = hr[pX] if X has the density pX. Rényi’s entropy satisfies the
following [Cover and Thomas, 1991]:
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• limr→1 hr(X) = h1(X) = h(X);

• limr→0 hr(X) = h0(X) = log µ[Ω(X)] where µ[.] denotes the Lebesgue mea-
sure;

• Rényi’s entropy is continuous and decreasing in r [Lutwak et al., 2005,
Ben-Bassat and Raviv, 1978];

• As for Shannon’s entropy, if α, β are two scalars and M1,M2 two K ×K
matrices:





hr(αX + β) = hr(X) + log |α| ,

hr(M1X + M2) = hr(X) + log |detM1| .

Proof: It is easily checked that Rényi’s entropy is not sensitive to translation.
Regarding the scaling, we have from Eq. (1.76)

hr(M1X) =
1

1− r log

(∫

Ω(M1X)

pr
M1X(M1X)d(M1X)

)

=
1

1− r log

(∫

Ω(X)

1

|detM1|r
pr

X(X) detM1dX

)

(a)
=

1

1− r log

(
|detM1|1−r

∫

Ω(X)

pr
X(X)dX

)

= log |detM1|+ hr(X) . (1.107)

Note that equality (a) holds true even when detM1 < 0 since in this case, detM1

is multiplied by −1 when the ad-hoc bounds of the integral have been suitably
swapped.

�

As a matter of fact, just as for Shannon’s entropy (see Eq. (1.75)):

hr(X/
√

Var[X]) = hr(X)− 1

2
log Var[X] (1.108)

is a scale-invariant function of the random variable X.
In the sequel, Rényi’s entropy is either denoted hr(X) or hr,Ω(X), Ω being

the support set of the random variable argument X (instead of Ω(X) for short,
when no confusion is possible). It is possible to define an extended form of
Rényi’s entropy, called Extended Rényi’s Entropy (ERE), noted hr,Ω̄(X) , which
is defined as Rényi’s entropy except that the integration domain in Eq. (1.106)
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is the convex hull Ω̄ of the support Ω, that is the smallest convex set including
Ω:

hr,Ω̄(X)
.
=

1

1− r log

∫

Ω̄(X)

pr
X(x)dx . (1.109)

However, the pdf is undefined out of Ω(X). In order to deal with densities on
the whole real line, we set pX(x) = 0 for all x ∈ IR\Ω(X). Clearly, the following
corollary holds true.

Corollary 5 The extended Rényi entropy satisfies the following:

hr,Ω̄(X) = hr,Ω(X) = hr(X) if r > 0

h0,Ω̄(X) > h0,Ω(X) = h0(X) with equality if and only if µ[Ω̄(X)] = µ[Ω(X)].

Proof The proof is straightforward. If r > 0, then, if the base-2 for the logarithm
is used:

hr,Ω̄(X) =
1

1− r log

{∫

Ω(X)

pr
X(x)dx+

∫

Ω̄(X)\Ω(X)

pr
X(x)dx

}

=
1

1− r log

{
2(1−r)hr(X) +

∫

Ω̄(X)\Ω(X)

0r(x)dx

}

= hr,Ω(X) = hr(X) . (1.110)

On the other hand, h0 = log µ[Ω(X)] and

h0,Ω̄(X) = log

{
µ[Ω(X)] +

∫

Ω̄(X)\Ω(X)

dx

}

= log µ[Ω̄(X)] , (1.111)

which is greater than h0(X) = h0,Ω(X) with equality if and only if µ[Ω̄(X)] =
µ[Ω(X)] as the log function is monotonic.

�

For more information on Rényi’s entropy, we refer to the monograph of [Aczel
and Daroczy, 1975].

1.8 ISSUES AND OBJECTIVES OF THE THESIS

In this chapter, the BSS task has been mathematically written and its solutions
were formulated in terms of non-mixing matrices. After having briefly recalled
the relationships between independence (and thus ICA) and BSS, it was ex-
plained that other contrast functions are needed, especially regarding the partial
and deflation procedures. Information measures derived from Rényi’s entropies
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seem to be interesting candidates, as shown for the specific Shannon entropy case.
The particular Shannon entropy has close relationships to mutual information
(as shown by Eq. (1.88)) and non-Gaussianity approaches, and have been al-
ready suggested for BSS. Sometimes however, only informal arguments are used
for justifying the use of entropy as a BSS contrast function for e.g. deflation (see
Section 2.2.2).

We are now able to introduce the original contributions of the thesis. Based
on Lemma 5, it has been explained that the opposite of Shannon’s information
measure is a good candidate for a contrast function (to be maximized); but what
about the more general class of Rényi’s entropies? This is a natural question
as it shares the same information measure properties than Shannon’s one. In
other words, we shall analyze if, generally speaking, the opposite of information
measures such as hr(X) are contrast functions for simultaneous, deflation or
partial separation. Chapter 2 proposes a unifying investigation of the contrast
properties of hr(X), and formal proofs are provided when possible. Even if
some results exist regarding the contrast properties of Shannon’s entropy, the
particular cases r = 1 and r = 0 of Rényi’s entropy will be considered before
trying to generalize the results to hr. The reason for doing that is threefold:

• for being self-complete regarding entropic contrast functions,

• for giving alternative (and simpler) proofs of the contrast properties,

• for developing proof strategies that are extendable to the general case.

In summary, the next chapter will tell us if the global maxima of the criteria
based on hr i) if r = 1, ii) r = 0 or iii) in the general case r > 0 yield the
seeked sources, whatever the extraction scheme. An additional study is further
provided for the deflation and partial schemes: the analysis of the possible local
maxima of the criteria when the demixing matrix satisfies B ∼u A−1, that is
when BA ∈ WP×K ; they are called non-mixing maxima. For instance, does the
contrast function has a local maximum point when any (subset of) the K sources
is extracted?

Chapter 3 will tackle another problem related to the BSS contrast functions.
It was explained in Section 1.6 that when maximizing some particular criteria
(such as the ones based on information-theoretic criteria), non-algebraic (i.e.
iterative) optimization techniques similar to those given in the last section have
to be used. The problem is that these rules converge to a local maximum (if
it exists) of the function. But according to its definition, the global maximum
of a BSS contrast must be reached in order to recover B ∼ A−1. Therefore,
the maximization algorithm may be stuck in a so-called mixing maximum, that
is a local maximum that does not correspond to an acceptable solution of the
BSS problem; the obtained matrix B is not in the set of P × K non-mixing
matrices WP×K . Then, it is important to study the possible existence of the
local maxima to know if we can “blindly trust” the solution obtained by the
iterative maximization algorithm, that is if we have 100% confidence in the fact
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that the algorithm, that will converge surely to a local maximum, will converge
to a non-mixing point. The only way to be sure of the non-mixing specificity
of the attained maximum points is to use a criterion that has no mixing local
maximum. The BSS contrast functions that benefit from this nice behavior will
be called in the following “discriminant” BSS contrasts.

The last analysis will reveal a major advantage of h0,Ω̄(Yi) regarding the ERE
with other values of r; the latter criterion reduces actually to the log-range of the
output Yi. Because of its theoretical and practical advantages, the use of this
criterion, as well as its estimation and extension to challenging BSS applications
will finally be addressed in Chapter 4.



CHAPTER 2

CONTRAST PROPERTY OF ENTROPIC

CRITERIA

ANALYSIS OF THE NON-MIXING MAXIMA

Abstract. In this chapter, we are interested in analyzing the contrast prop-
erty of generalized information measures that have been proposed in the litera-
ture for solving the BSS problem. More specifically, we focus on the (possibly
extended form) of Rényi’s entropies, noted hr (Section 1.7.3, Eq. (1.106)). The
analysis in this chapter focuses on the non-mixing maxima of these criteria as
a function of the demixing matrix elements. Two kinds of non-mixing maxima
are analyzed:

• First, the global maximum points of the criteria are analyzed. These points
are related to the contrast function property in the sense that they should
correspond to transfer matrices W = BA that are non-mixing (W ∼u IK).

Some of them are already known but we remind them here, as well as some
tools for proving the contrast property easily, when possible. In some cases,
counter-examples are used to show that a given criterion is not a contrast
function.

• Second, we focus on the less known local non-mixing maximum points of
the criteria.

Yet another kind of maximum points exists: the mixing maximum points (cor-
responding to transfer matrix W �u IK). They shall be investigated separately
in Chapter 3.

45
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Contribution. Author’s contribution is divided in two classes, for clarity.
First, the results about the contrast properties of entropic criteria are summa-
rized. Next, the mathematical tools that have been developed in order to perform
the above analysis are listed.

• Results about the local and global optima of entropic criteria

– Shannon’s entropy was proved to lead to a contrast function for
simultaneous separation (see [Comon, 1994]). It was then used in a
deflation scheme, but we were not able to find a pioneering reference.
We note that Hyvärinen proved in 1998 that this method sounds
for specific approximations of Shannon’s entropy [Hyvärinen, 1997].
This is proved here for the exact Shannon entropy based on the EPI.
Similarly, Shannon’s entropy is proved to have a local minimum point
under a fixed variance constraint when this output is proportional to
a non-Gaussian source, based on a Taylor expansion. Pham showed
that the partial separation criterion reaches a stationary point when
a subset of sources is extracted [Pham, 2006a].

– The range-based criterion was proposed to be a contrast for si-
multaneous separation in [Pham, 2000], and then for deflation un-
der prewhitening (orthogonal deflation contrast) [Cruces and Duran,
2004]. It is shown here that the range yields contrast functions for
the three deflation schemes, even without prewhitening. Furthermore,
under a fixed variance constraint on the outputs, it has a local min-
imum point when the output is proportional to a source. In partial
separation scheme too, the related contrast reaches a local maximum
point when the rectangular demixing matrix is subPD-equivalent to
the inverse of the mixing matrix.

– In a more general way and in a mimetic manner compared to Shan-
non’s entropy, Rényi’s entropies were conjectured to be contrast
functions [Erdogmus et al., 2002a]. It is proved here that they are
not, generally speaking, contrast function if Rényi’s exponent is not
set to zero or one, neither for deflation separation, nor for simulta-
neous separation. By contrast, we show that Rényi’s entropy admits,
under a fixed variance constraint, a stationary point when the out-
put is proportional to a source; but the kind of this stationary point
(minimum/maximum) depends on the value of the Rényi’s exponent
and on the source densities as well.

• Tools and other results

– A Taylor expansion of Rényi’s entropy is proposed;

– Rényi’s entropy is proved to not be a superadditive functional: some
counter-examples of source density exist for every value of Rényi’s
exponent (other than 0 and 1) within the exponential family, even in
the simple case involving two sources sharing a same density;
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– An extended form of the Brunn-Minkowski inequality was given (not
in the sense of the dimensionality, but in the sense of the “iff” state-
ment for non-convex sets).

In this chapter, all the proofs are original. Some of them result from joint
work with D.-T. Pham.

Part of the material presented in this chapter was or will be published in the
following papers (see Appendix B, p. 279): JP1, JA1 (results about Shannon’s
entropy) JA2, JA3, ICB6, ICP10(results about the support and the range) JS1,
ICTBS1 (results about Rényi entropies).

Organization of the chapter. The chapter is organized as follows. After
having reminded useful results for building BSS contrast functions, we study two
specific cases of extended Rényi’s entropy (ERE): Shannon’s entropy (r = 1) and
the Lebesgue log-measure of the support convex hull, also known as the “range”
(r = 0); they are addressed in Section 2.2 and Section 2.3 respectively. Then,
in Section 2.4, the extended Rényi entropy (ERE) is analyzed in its generalized
form, without a priori fixing the value of r > 0, r 6= 1. The proofs are relegated
to an appendix at the end of the Chapter for clarity (Section 2.6).

2.1 SOME TOOLS FOR BUILDING CONTRAST FUNCTIONS

The first method that comes in mind for showing that a criterion is a BSS
contrast function for simultaneous, deflation or partial separation is to look at
the contrast function definition, and to prove that the global maximum of the
criterion corresponds to non-mixing transfer matrices. From Figure 2.1., this is
equivalent to check if a given functional f is in the set FC defined as the set
of functions matching the contrast function property. However, this might be
quite heavy in some cases. An alternative approach consists in verifying other
conditions implying the contrast property. For instance, a given functional is a
contrast if sufficient conditions that guarantee that the contrast property holds
are met. This is equivalent to checking if f is in a set F̃C satisfying F̃C ⊂ FC . The
advantage of the second approach compared to the first one is that the latter
condition might be easier to check even if, in counter part, the conditions are
unnecessarily strong. This is illustrated in Figure 2.1.

The next subsection gives two results ensuring that specific functionals are
BSS contrast functions without analyzing the global maximum point of the func-
tionals.

2.1.1 From orthogonal deflation to orthogonal partial separation

Under some conditions, one can guarantee that a sum of deflation (D-BSS) con-
trasts yields partial (P-BSS) and/or simultaneous (S-BSS) contrasts. This was
stated and proved in [Cruces et al., 2004].
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Figure 2.1. If f ∈ F̃C then f ∈ FC and the functional is a contrast function as
sufficient conditions are met.

Theorem 7 (Cruces, Cichocki and Amari) Let us give K constants α1 >
α2 > . . . > αK and a deflation contrast C(·) (in the sense of Def. 13, p. 21)
satisfying the following properties:

• C(b) > 0 with equality if and only if bX is Gaussian;

• C(·) satisfies a weak form of strict convexity: if Y1 =
∑K

i=1W1iSi and∑K
i=1W

2
1j = 1, then

C(b1) 6
K∑

i=1

W 2
1iC(eiA

−1) (2.1)

where, for C(b1) > 0, the equality holds true if and only if b1 ∝ eiA
−1.

Assume further than the sources are ordered with respect to this contrast as

C(e1A
−1) > . . . > C(eP A−1) > C(eP+1A

−1) > . . . > C(eKA−1) (2.2)

Then, if C(eP A−1) > 0, the objective function

C(B) =
P∑

i=1

αiC(bi) subject to Cov[Y] = IP (2.3)

is a P-BSS contrast function whose global maxima correspond to the extraction of
the first P sources from the mixture. If, additionally, C(e1A

−1) > C(e2A
−1) >

. . . > C(eP A−1) and α1 > α2 > . . . > αP then the global maximum is unique
and corresponds to the ordered extraction of the first P sources of the mixture,
i.e. the global maximum yields Y = [S1, . . . ,SP ]T if A7 (i.e. Cov[S] = IP ) holds.

Several comments can be formulated about this theorem.

Remark 4 Note that it is further assumed in this theorem that the mixing matrix
A is orthogonal; this is equivalent to suppose that the mixtures have been whitened
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by a whitening matrix V and that A has been replaced by VA. In other words,
the obtained partial contrast is actually an orthogonal partial contrast since:

Cov[Y] = IP (2.4)

= E[BAS(ABS)T] (2.5)

= BCov[X]︸ ︷︷ ︸
IK

BT (2.6)

= BBT . (2.7)

Clearly, the obtained criterion is an orthogonal S-BSS contrast if P = K.

Remark 5 Note that if the αi take different values, the obtained “contrast”
becomes sensitive to permutation. Observe further that the permutation problem
is not solved, it is only constrained to be no more arbitrary: the sources Si are
ordered with respect to their deflation contrast value, not necessarily up to their
initial order in S (if this notion makes sense, which is not clear at all as it is a
simple mathematical notation). Finally, regarding the scale indeterminacy, we
remind that it is only avoided because the sources are supposed to be known (by
A7).

Remark 6 We should probably point out the fact that the equality “Y =
[S1, . . . ,SP ]T” is too restrictive. If the contrast is sign-invariant, if a global
maximum exists at Y? = [S1, . . . ,SP ]T, then a local maximum should also ex-
ist at e.g. −Y?, provided that such an output can be obtained in spite of the
BBT = IP constraint. Clearly, this is the case. An identity matrix of order
P in which a number of rows have been sign-inverted, noted M, would satisfies
MB(MB)T = IP since M ∈ O(P ). Clearly, each component of BX equals a
component of MBX, but possibly only up to its sign.

Remark 7 It results from a quick look at the proof of the above theorem that
C(eP A−1) > C(eP+1A

−1), a condition which indicates that P cannot be arbi-
trary chosen in {1, . . . ,K}, is not necessary for the obtained global criterion to
be a contrast. If this inequality is not strict, the global maximum is attained if
the P sources with the larger value of the criterion are extracted. The estimated
sources are ordered with respect to their deflation contrast value; any pair of
sources sharing a same value of the deflation contrast can be permuted without
affecting the value of the global contrast.

2.1.2 Huber’s superadditivity concept: a simple tool for building

simultaneous and partial contrast functions

An additional interesting result, due to Pham in 2001, exists regarding the con-
trast function property of a criterion:
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Theorem 8 (Pham [2001a, 2006a]) Suppose that Q is a class II superaddi-
tive functional in the sense of Huber [Huber, 1985], i.e. that for any pair of
independent random variables X,Y and two scalar number α, β:




Q(αX + β) = |α|Q(X) , (Huber 1)

Q2(X + Y) > Q2(X) +Q2(Y) (Huber 2)

and the strict equality holds in the last expression if and only if X and Y are
Gaussian. Then, any criterion of the form

f�(B)
.
= log |detB| −

K∑

i=1

logQ(biX) , (2.8)

bi being the i-th row of B, is a contrast function over the set M(K) of full-row
rank K ×K matrices for simultaneous separation. In other words, it reaches its
global maximum point if and only if BA ∈ W(K) or, equivalently, if and only if
B ∼ A−1. Similarly , under the same condition on Q(.), any functional f(B)
of the form

f(B)
.
=

1

2
log |det(BΣXBT)| −

P∑

i=1

logQ(biX) , (2.9)

where P 6 K, ΣX
.
= Cov[X] is the covariance matrix of X = AS, is a partial

contrast function over the setMP×K of full-row rank P ×K matrices; it reaches
a global maximum point only if BA ∈ WP×K or equivalently, only if B ∼u A−1.

Remark 8 Note that in the above theorem, it is implicitly required that Q(·)
must be strictly positive in order that logQ(·) exists, and max(Q(X), Q(Y)) <∞.

Remark 9 Observe that in Eq. (2.9), one may freely replace |det(BΣXBT)| by
det(WWT) with W

.
= BA since

BΣXBT = BAΣS(BA)T
A7= WWT , (2.10)

and because WWT is positive definite and the determinant of a positive definite
matrix is always positive.

It is easy to further characterize the set of the global maximum points of f(B)
(the first “if” in the “if and only if” expression is missing in the second claim of
the theorem): from A7 (i.e. ΣS = I) and if the sources are ordered according to
Q(·) as

Q(S1) 6 Q(S2) 6 . . . 6 Q(SK) , (2.11)

for the sake of simplicity, one gets the following corollary (the proof is given in
the Appendix of the Chapter, Section 2.6.1, p. 84).
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Corollary 6 (Characterization of global maximizer set of f) Let us de-
fine Pm .

= min{i ∈ {1, . . . , P} : Q(Si) = Q(SP )} − 1, and PM .
= max{i ∈

{P, . . . ,K} : Q(Si) = Q(SP )}. The global maximum points of f over the set
MP×K are the matrices B such that BA ∈ WP×K

P , where WP×K
P ⊂ WP×K

is the set of matrices with exactly one non-zero element per row, at most one
non-zero element per column and with Pm rows having a single non-zero element
with column index in {1, . . . , Pm}. The remaining rows have a single non-zero
element with column index in {Pm + 1, . . . , PM}.

Example 6 Assume K = 5, P = 2 and Q(S1) < Q(S2) = Q(S3) < Q(S4) 6
Q(S5). Then, Pm = 1, PM = 3 and if we define

M1 =

[
1 0 0 0 0
0 1 0 0 0

]
, M2 =

[
1 0 0 0 0
0 0 1 0 0

]

we haveW2×5
2 = {ΠΛM1∪ΠΛM2 : Π ∈ P(2),Λ ∈ D(2)}. As another example,

if K = 5, P = 3 and Q(S1) < Q(S2) = Q(S3) = Q(S4) < Q(S5), then Pm = 1,
PM = 4, and with

M1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0


 , M2 =




1 0 0 0 0
0 1 0 0 0
0 0 0 1 0


 ,

M3 =




1 0 0 0 0
0 0 1 0 0
0 0 0 1 0




we have W3×5
3 = {ΠΛM1 ∪ΠΛM2 ∪ΠΛM3 : Π ∈ P(3),Λ ∈ D(3)}.

As it will be shown further, Theorem 8 is very useful for showing the contrast
property of a given criterion of the form given in the theorem; it suffices to prove
Huber’s superadditivity of the functional Q used in the criterion.

2.2 SHANNON’S ENTROPY CONTRAST

Shannon’s entropy is a criterion from which it is known that contrast functions
can be built. We briefly recall them here, and mention the theoretical arguments
used to prove the contrast properties.

2.2.1 Simultaneous approach

The contrast property of

Ch(B)
.
= log |detB| −

K∑

i=1

h(Yi) , (2.12)
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B ∈ RK×K , can be proved by two simple ways. First, it is known that the
opposite of KL(Y) =

∑K
i=1 h(Yi) − h(Y) is a contrast function [Comon, 1994]

(this is easily checked from Proposition 2 p. 16 and Corollary 3 p. 20). Hence,
since h(Y) = h(X) + log |detB| from Eq. (1.74), −KL(Y) equals log |detB| −∑K

i=1 h(Yi) up to a term not depending on B, and Ch(B) benefits from the
same contrast properties as −KL(Y). A second simple way to prove the contrast
properties of Ch(B) is to use Huber’s superadditivity of 2h(.) resulting from the
EPI theorem, Theorem 6 p. 38 (if Shannon’s entropy is expressed in bits, or eh(.)

if the nat unit is chosen instead) ; indeed,

Ch(B) = log |detB| −
K∑

i=1

log(2h(Yi)) . (2.13)

Obviously, all the non-mixing maximizers of the simultaneous contrast Ch(B) are
global ones because the K ×K non-mixing matrices are all PD-equivalent and
because a S-BSS contrast is invariant under PD-equivalence preserving trans-
forms. In the specific case where B is constrained to be in O(K), the orthogonal

version C⊥h (B) of Ch(B) simply reduces to −∑K
i=1 h(Yi).

Remark 10 (From information theory to estimation theory) Maximum
likelihood is a technique in estimation theory for finding the optimal value of a
model parameter Θ, in the sense that with this value of Θ, the obtained model
makes the observations the most likely; with this value of the parameter, the prob-
ability that the outcome of the model yields the observed output is maximized. If
B = A−1, the probability of X can be rewritten as (see Eq. (1.76)):

pX(X(t)) = |detB|
K∏

i=1

pSi
(biX(t)) , (2.14)

where Si(t) = biX(t): bi is the i-th row of B. The likelihood of B is given by

L(B) =

N∏

t=1

(
|detB|

K∏

i=1

pSi
(biX(t))

)
. (2.15)

Since argmaxB L(B) is equal to argmaxB 1/N logL(B), maximizing the likeli-
hood is equivalent to maximizing

log |detB|+ 1/N

N∑

t=1

K∑

i=1

log pSi
(Yi(t)) . (2.16)

This result is very close to the empirical counterpart Ĉh(B) of Ch(B) as defined
in Eq. (2.12) but where the theoretical expectation is replaced by the sample mean

Ĉh(B)
.
= log |detB|+ 1/N

N∑

t=1

K∑

i=1

log pYi
(Yi(t)) , (2.17)
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except that the argument of the logarithm is the marginal density of Si evaluated
at the given outcomes biX. Because the source densities are unknown, they have
to be, in practice, either a priori assumed or guessed from the samples. If the
criterion (2.16) is maximized by guessing at each step pSi

← pYi
, maximizing

the likelihood is equivalent to minimizing the mutual information between the
outputs. Hence, if the log-likelihood reaches its maximum value when B = A−1

as it should, then

1/N logL(B) ' − log |detA| −
K∑

i=1

h(Si) . (2.18)

In practice, when using the maximum likelihood estimation principle, the
source densities have to be guessed. Consequently, a natural question is the
following : “how rough can be the model of the source densities ?”. Actually,
there exists a theoretical result which says that the maximum likelihood method is
very robust to a departure of the source densities model (called target densities)
from the true source densities. Except in some rare cases, it suffices to guess
the sign of a non-polynomial moment of the source (i.e. if its density is sub- or
super-Gaussian). More precisely, one can restrict the set of the target densities
to only two well-chosen densities for the estimator to be locally consistent when
one of them is used as the assumed source density. This is because whatever is
the true density, these functions yield opposite sign for the non-polynomial mo-
ment [Hyvärinen, Karhunen, and Oja, 2001]. The choice between these functions
can be done on-line, during the likelihood maximization.

To be complete, we point out without giving details that the maximum-
likelihood method is equivalent to the Infomax approach [Bell and Sejnowski,
1995]; this was shown in [Cardoso, 1997].

2.2.2 Deflation approach

2.2.2.1 The contrast property

The deflation contrast property of Shannon’s entropy is often badly under-
stood using the Central Limit Theorem (CLT).

Basically, the CLT states that the distribution (i.e. the cumulative distribu-
tion function, cdf) of the sum of a collection of random variables converges to
that of a Gaussian variable. Its simplest form deals with a sequence of i.i.d.
random variables (see e.g. [Gray and Davisson, 2004]).

Theorem 9 (Central Limit Theorem (CLT)) Let X1, . . . ,XK be a se-
quence of i.i.d. random variables with finite mean µ and variance σ2 and common
distribution PX(x). Then,

SK =
1√
K

K∑

i=1

(Xi − µ)
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converges in distribution1 to a zero-mean Gaussian random variables with vari-
ance σ2.

In the above theorem, the convergence in distribution has to be well understood.

Definition 21 (convergence in distribution of SK) Let PS (resp. PSK
) de-

note the cdf of S (resp. SK). Then the random variable SK “converges in distri-
bution” to S if limK→∞ PSK

(x) = PS(x) for all x where PS(x) is continuous.

Clearly, SK in the above theorem resembles an arbitrary output Yi as Yi =∑K
j=1WijSj , where the Sj are independent rv. However, we are facing a weighted

sum, i.e. a sum of rv WijSj having possibly different variances. Moreover, a
major limitation of the theorem is that the summed variables may not have
different densities, but must necessarily share the same cdf. This requirement is
not really necessary as an extended form of the CLT (due to Lindeberg in 1922,
see [Feller, 1966, Rényi, 1966, Cramér, 1946]) allows one to deal with summed
variables having arbitrary densities (as well as arbitrary variances, i.e. arbitrary
mixture weights). Hence, the CLT matches our mixture model.

In our BSS context, it is thought that the CLT tells us that minimizing Shan-
non’s entropy (i.e. make the output “different” from a Gaussian, where entropy
is used as a ‘the non-Gaussianity index) gives the original, unmixed source sig-
nals (still under a fixed-variance constraint). However, this intuitive reasoning
does not constitute an absolute proof because the CLT is a limit theorem. To
our knowledge, there is no formal proof that, whatever the non-Gaussianity in-
dex (which is a concept that is not clearly defined), the finite number of samples
and the finite number K of sources (most often relatively few), the index will
decrease until a satisfactory solution is found.

Nevertheless, the suitable use of Shannon’s entropy for BSS can be proved
using the EPI which is definitely and fortunately not a limit theorem, under
fixed variance that is, under fixed norm for ‖w‖ because

Var[wS] =

K∑

i=1

w2
i Var[Si]

A7= ‖w‖2 . (2.19)

Indeed, remind that the following result can be proved in Lemma 5 (p. 38):
if h(wS) reaches its minimum value, then wX ∝ Sj for j ∈ {argmin

k
h(Sk)}.

Let us define the following criterion

Ch(bi)
.
=

1

2
log Var[biX]− h(biX)

= −h

(
Yi√

Var[Yi]

)
, (2.20)

1Observe that we can say that the distribution (resp. the characteristic function) of the
normalized sum converges to the distribution (resp. characteristic function) of a Gaussian rv,
but this may not be true for the pdf, as the summed rv might be discrete.
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whose maximization, with wi = biA and thus Yi = wiS is equivalent to that of

C̃h(wi)
.
= Ch(bi)

= −h

(
wiS√

Var[wiS]

)
. (2.21)

Observe in passing that, from Eq. (2.19), C̃h(wi) = −h
(

wi

‖wi‖S
)

and does not

depend on the magnitude of the transfer vector wi.
Then, in order to prove that Ch(bi) is a D-BSS contrast, it is sufficient to

prove the associated contrast property of C̃h(wi). This is clearly the case as
stated by Lemma 5 and the following corollary, which results from Eq. (2.19).

Corollary 7 Minimizing h(wS) subject to w ∈ S(K) is equivalent to minimiz-

ing the unconstrained entropy h
(
wS/

√
Var[wS]

)
since both approaches consist

in minimizing the entropy of a unit-variance output with respect to the mixture
weights.

More concretely, we have proven the following theorem (see the related paper
of [Vrins et al., 2007b]).

Theorem 10 (Global maximum of Ch, deflation approach) Suppose that

h(S1) = . . . = h(Sk) < h(Sk+1) 6 . . . 6 h(SK) .

Then,
argmax

w s.t. ‖w‖ = λ
C̃h(w) = {±λ.e1, . . . ,±λ.ek} . (2.22)

Note that the minimization of h
(
Yi/
√

Var[Yi]
)

is equivalent to the maxi-

mization of the negentropy index h[φYi
]− h(Yi); denoting by φX the density of

a centered rv with Gaussian density with same variance σ2 of X, i.e.

φX(x)
.
=

1√
2πσ2

e
−x2

2σ2 , (2.23)

then

h[φYi
]− h(Yi) =

1

2
log(2πe) +

1

2
log Var[Yi]

−
(

h

(
Yi√

Var[Yi]

)
+

1

2
log Var[Yi]

)

= −h

(
Yi√

Var[Yi]

)
+ cst . (2.24)

Let us now turn to the non-mixing local maxima of Ch(w), under the w ∈ S(K)
constraint.
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Remark 11 A natural question is the following: “what are the connections
between Shannon’s entropy (and more specifically, the EPI Theorem) and the
CLT?”. Answering this question is not an easy task, actually. Shannon’s en-
tropy is known to be a non-Gaussianity index in the sense that the entropy of
a random variable is upper bounded by the entropy of a Gaussian variable with
the same variance, see Theorem 5 p. 34 (just like the absolute or square kurtosis
reach their minimum value for Gaussian functions under a fixed-variance con-
straint). Sometimes, it is said that the “essence of the EPI is to express that the
sum of independent variables tends to be more Gaussian than each of the individ-
ual components” (see e.g. [Verdu and Guo, 2006]); if this reveals to be true, here
is the seeked connection: the EPI would be a non-asymptotic form of the CLT, in
the sense that it holds for a finite number of variables. Unfortunately, we believe
that this viewpoint should be explained in more detail: the entropy is sensitive to
the variance and for independent random variables, the variance of a sum is the
sum of the variances of the random variables involved in the sum; the “increase

of entropy” corresponding to the difference 22h(ΣK
i=1Si) −∑K

i=1 22h(Si) could thus

either result from a “‘Gaussianization” of the density shape of
∑K

i=1 Si compared
to those of the individual sources (which correspond to the essence of the CLT),
but also from the variance increase, or both. Letting S = ΣK

i=1Si, is the entropy
of S larger than each of the individual entropies because the entropy of the unit-
variance random variable S/

√
Var[S] increases, because for all i Var[S] > Var[Si]

or because of a joint effect? Only the occurrence of the first situation would ex-
press a connection between EPI and CLT: entropy is a non-Gaussianity index
under a same-variance constraint. For instance comparing the entropy of two
variables with different variances does not tell anything about how close their
distribution functions are from the Gaussian cdf, it is simply a non-sense !

We know from the CLT that (with a slight abuse of notation that has the
advantage to be illustrative)

lim
][I(w)]→∞

h(wS) =
1

2
log 2πe . (2.25)

This result is not so strong as it is again a limit result in terms of (here) the num-
ber of sources. The hot question is the following: is this convergence monotonic
in ][I(w)]? This would solve a long-standing conjecture ! In the simplest case,

the answer has recently been proved to be positive: the entropy of 1/K
∑K

i=1 Si

(where the Si are i.i.d.) is a non-decreasing sequence for every K [Madiman and
Barron, 2006, Artstein et al., 2004]. More specifically:

h

(
S1 + . . .+ SK√

K

)
> h

(
S1 + . . .+ SK−1√

K − 1

)
. (2.26)

This key result would clearly make sense to the näıve CLT-based justification
to Shannon’s entropy contrast for deflation provided that it extends to non
i.i.d. variables (there exists a non-i.i.d. version of the above result, but it
is more complicated to interpret). Note that a less general result (but more
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general than the CLT except about the i.i.d. assumption) showed that if the
Si are i.i.d. with pdf pS (and assume unit-variance to simplify the notations)
KL(wS,wS̃) 6 KL[pS‖φ] where S̃ is a vector with independent Gaussian stan-
dardized components. The inequality is strict unless pS ≡ φ almost everywhere or
][I(w)] = 1. This means indeed that mixing Gaussianizes: if all the sources share
the same pdf, a given output is more Gaussian than a source in the KL-sense,
and even for finite K (this is the improvement compared to the CLT) [Zamir and
Feder, 1993].

For more details about the connections between the EPI and the CLT, we refer
the reader to the papers [Zamir and Feder, 1993, Madiman and Barron, 2006,
Barron, 1984, 1986, Artstein et al., 2004]

2.2.2.2 Non-mixing local maxima

In subsection 2.2.2.1, it was shown that the Shannon entropy-based criteria
for BSS is i) not sensitive to scaling and ii) reaches its global maximum point
if and only if the lowest entropic source has been recovered. But at this step,
nothing is known about the possible existence of non-mixing maximum points.

In order to check if a unit-norm vector w = ei is a local maximum point of the
entropy, we shall analyze a second order development of Shannon’s entropy. We
set ‖w‖ = 1 for convenience. The starting point is an expansion up to second
order of the entropy of a random variable Y slightly contaminated with another
variable δY, possibly dependent from Y, which has been established in [Pham,
2005]:

h(Y+δY) ≈ h(Y)+E[ψY(Y)δY]+
E
[
Var[δY|Y]ψ′

Y(Y)− (E[δY|Y])′ 2
]

2
. (2.27)

In this equation, ψY is the score function of Y, defined as2

ψY(Y)
.
= −(log pY(Y))′ = −p′

Y(Y)

pY(Y)
, (2.28)

and pY is the pdf of Y, ′ denotes the derivative (here, with respect to Y),
and E[·|Y] and Var[·|Y] = E[·2|Y] − E2[·|Y] denote the conditional expectation
and conditional variance given Y, respectively. The score function satisfies the
following.

Property 4 For well behaved densities, the score is a zero-mean function,
satisfying E[XψX] = 1 and E[ψ′

X] = E[ψ2
X]. Furthermore, the inequality

E[ψ2
X]Var[X] > 1 holds with equality if and only if X is Gaussian.

This proposition is proved in Section 2.6.2, p. 84.

2In this work, we use the score function definition presented in [Pham, 2002]. However, several
authors define this function with the opposite sign. The reader should keep this difference in
mind.
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Theorem 10 (p. 55) tells us that Ch(b) is a D-BSS contrast. Based on the next
theorem, Corollary 9 states the complete extraction property of the contrast.

Theorem 11 (Subset of local maximum point of C̃h(w)) The constrained
entropy h(wS) s.t. w ∈ S(K) reaches a local minimum at w = ±ej, i ∈
{1, . . . ,K}, the j-th row of the K × K identity matrix, if Sj is non-Gaussian,

or a global maximum otherwise. In other words, the criterion C̃h(w) subject to
the ‖w‖ = λ constraint is stationary when w ∈ {±λe1, . . . ± λeK}. Further, if

˜argmax(·) (resp. ãrgmin(·)) denotes the set of local maximum (resp. minimum)
points of · and IG denotes the set of indexes of the Gaussian sources,

˜argmax
w s.t. ‖w‖ = λ

C̃h(w) ⊇ {±λei : i ∈ {1, . . . ,K} \ IG} , (2.29)

and
ãrgmin

w s.t. ‖w‖ = λ
C̃h(w) = {±λei : i ∈ IG} . (2.30)

The proof of this Theorem is given in the Appendix of the Chapter, in Sec-
tion 2.6.3 (p. 86). Note that, by Theorem 10, the global maximum of Ch(b) s.t.
‖w‖ = λ is reached at ±λek where k ∈ argmini h(Si).

2.2.3 Partial approach

Proving the partial contrast property of

Ch(B)
.
= log |det(BΣXBT)| −

P∑

i=1

h(Yi) , B ∈ RP×K (2.31)

is immediate. This results from the superadditivity of Q = 2h(.), which is a
consequence of the EPI given in Section 2.2.1. The notation of the entropic
partial contrast is the same as the simultaneous one because they are identi-
cal when P = K; in this case, maximizing log |detB| −∑K

i=1 h(Yi) is equiv-

alent to maximizing log det(BΣXBT) − ∑K
i=1 h(Yi) with respect to B since

1
2 log |det(BΣXBT)| = log |detB|+ cst. A recent result [Pham, 2006b], recalled
in the next theorem, states the stationarity of

C̃h(W)
.
= log det(WWT)−

P∑

i=1

h(Yi) , W = BA ∈ RP×K (2.32)

at non-mixing points.

Theorem 12 (Subset of stationary points of C̃h(W)) The non-mixing ma-
trices W ∈ WP×K are stationary points of C̃h(W). More precisely, these ma-
trices W are local maximum points of the criterion if none of the wiS (that are
proportional to distinct sources) is Gaussian.
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To see how this result extends to the non-mixing points of Ch(B), observe that
both criteria are equal up to a possible constant term:

log |det(BΣXBT)| = log |det(BAΣS(BA)T)|
= log(det(WWT) detΣS)

= log det(WWT) +

K∑

i=1

log Var[Si] . (2.33)

The last equality results from the diagonal form of matrix ΣS (equal to the
identity matrix if the independent sources have unit variances). Note that the
absolute values vanish as both WWT � 0 and ΣS � 0. In particular, we have

˜argmax
B∈MP×K

Ch(B) = ˜argmax
B:BA∈MP×K

C̃h(BA) (2.34)

Hence, we have the following corollary.

Corollary 8 (Subset of stationary points of Ch(B)) The demixing matri-
ces B ∼u A−1 are stationary points of Ch(B). More precisely, these matrices B
are local maximum points of the criterion if none of the biX (that are propor-
tional to distinct sources since B ∼u A−1) is Gaussian.

Remark 12 The first result suggesting the use of the opposite of the sum of the
marginal entropies of P 6 K outputs for the extraction of P 6 K signals can
be found in [Cruces et al., 2001]. However, in this specific case, the contrast
is orthogonal as the mixing matrix is supposed to be orthogonal, and hence the
demixing matrix B is forced to be semi-orthogonal, that is BBP = IP implying
that so is W (see Remark 4 p. 48). This is also proved by the same authors in
[Cruces et al., 2004] by using the negentropy instead of the entropy. Negentropy
always satisfies the positivity requirement with equality if and only if the output
is Gaussian and the weak form of convexity results from the EPI. The result
obtained through Pham’s approach is more general in the sense that the constraint
is included in the criterion.

2.3 MINIMUM RANGE CONTRAST

Shannon’s entropy was seen to be the extended Rényi’s entropy (ERE) with
r = 1. Another remarkable case of the ERE is h0,Ω̄ (see Eq. (1.109)). This
section aims at analyzing the contrast properties of this criterion.

2.3.1 Support and Brunn-Minkowski Inequality

Clearly, if Q(X) = µ[Ω(X)], then

Q(αX) = |α|µ[Ω(X)] , (2.35)
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which shows that the first requirement of Huber’s superadditivity given in The-
orem 8 p. 50 is fulfilled. To prove the second requirement, we consider the
so-called Brunn-Minkowski Inequality (BMI) [Gardner, 2002].

Theorem 13 (Brunn-Minkowski Inequality (BMI)) If X and Y are two
compact convex sets with nonempty interiors (i.e. mesurable) in RK , then for
any α, β > 0:

Vol1/K [αX + βY] > αVol1/K [X ] + βVol1/K [Y] . (2.36)

The operator Vol[.] stands for volume. The operator “+” is defined on sets as
X +Y = {x+ y : x ∈ X , y ∈ Y}. The equality holds when X and Y are equal up
to translation and dilatation (i.e. when they are homothetic).

In 1990, Dembo gave a simultaneous proof of the EPI and BMI theorems [Dembo,
1990].

We use here one-dimensional sets (the support of one-dimensional signals)
and the Lebesgue measure µ[.] as the volume Vol[.] operator.

Inequality (2.36) has been extended in [Costa and Cover, 1984, Cover and
Thomas, 1991] to non-convex bodies; in this case however, to the author’s knowl-
edge, the strict equality and strict inequality cases were not discussed in the
literature. Therefore, the following lemma, which is an extension of the BMI
theorem in the specific K = 1 case, states the conditions for the strict equality
to hold. A restricted form of this lemma appeared in [Vrins et al., 2006].

Lemma 6 (Extended BMI) Consider two independent bounded random vari-
ables X and Y. Suppose that µ[Ω(X)] > 0, µ[Ω(Y)] > 0, with Ω(X) ⊂ R,
Ω(Y) ⊂ R. Then:

µ[Ω(X + Y)] > µ[Ω(X)] + µ[Ω(Y)] ,

with equality if and only if µ[Ω(X) \ Ω(X)] = µ[Ω(Y) \ Ω(Y)] = 0, where Ω(·)
denotes the convex hull of Ω(·), that is, the smallest interval including the one-
dimensional support Ω(·).
The proof is given at the end of the Chapter, in Section 2.6.4 (p. 87). Clearly,
since the support measure is a positive quantity and since the second power is a
monotonously increasing mapping, the above lemma states the second require-
ment of Huber’s superadditivity given in Theorem 8 (p. 50).

2.3.2 Properties of the range

The range is a specific case of the support measure. The range R(X) of a random
variable X is the measure of the convex hull of Ω(X):

R(X)
.
= µ[Ω(X)] , (2.37)

implying R(αX) = |α|R(X).
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Then, considering the range criterion instead of the support is exactly the
same as working with the support if the source supports are convex sets. Ac-
tually, the range possesses a stronger property. Assume that X and Y are two
independent random variables, then, from the Extended BMI lemma:

R(X + Y) = R(X) +R(Y) . (2.38)

The last result can also be seen as a consequence of the fact that pX+Y is the
convolution of pX and pY [Hirschman and Widder, 1955, Feller, 1966].

�

Because both R(X) > 0 and R(Y) > 0, Eq. (2.38) implies the strict superaddi-
tivity

R2(X + Y) > R2(X) +R2(Y) (2.39)

for any pair of independent bounded random variables X and Y. This results
from the strict equality in the Extended BMI lemma (Lemma 6).

Hence, one has:

R(biX) = R(biAS) =

K∑

j=1

|Wij |R(Sj) . (2.40)

The above properties will be useful for proving the contrast properties of
range-based criteria in the three extraction schemes (simultaneous, deflation and
partial separation).

2.3.3 Simultaneous approach

The minimum range approach for the simultaneous extraction of bounded sources
has been first introduced in [Pham, 2000]. The following criterion CR(B) was
proposed:

CR(B)
.
= log |detB| −

K∑

i=1

logR(biX), (2.41)

which has the same form as the one given in Theorem 8 (p. 50) with Q(·) = R(·).
As usual, this criterion has to be maximized with respect to the demixing

matrix B.
It has been shown in [Pham, 2000] that CR(B) is a S-BSS contrast. Note

that the proof is trivial using the superadditivity of the range combined with
Theorem 8.

Similarly to the Shannon entropy-based criterion with W = BA, maximiz-
ing CR(B) over the set M(K) of K ×K non-singular matrices is equivalent to
maximizing

C̃R(W)
.
= log |detW| −

K∑

i=1

log
[ K∑

j=1

|Wij |R(Sj)
]
, (2.42)
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also overM(K) because of Eq. (2.40) and log |detB| = log |detW|−log |detA|.
In particular,

˜argmax
B∈M(K)

CR(B) = ˜argmax
B:BA∈M(K)

C̃R(BA) . (2.43)

A point B maximizing CR is related to a given point W maximizing C̃R by the
relation W = BA.

2.3.4 Deflation approach

We present here our results showing that −R(Yi) can be used as a deflation
contrast if Var[Yi] is kept constant (these results can be found in [Vrins et al.,
2007a]). However, we would like to point out that another proof, based on infor-
mation theory, has been provided simultaneously and independently in [Cruces
and Duran, 2004] (see the related comment in Section 2.3.6).

Let us first observe that R(biX) = R(wiS). Then, the range of the fixed

variance i-th output equals R
(
wiS/

√
Var[Yi]

)
= R(wiS)/

√
Var[Yi], which does

not depend on the magnitude of Yi. Based on the above contrast forms, we define
the following criterion:

CR(bi)
.
= −R

(
biX/

√
Var[biX]

)
. (2.44)

Clearly, maximizing CR(bi) with respect to bi is equivalent to maximizing

C̃R(wi)
.
= −R

(
wiS/

√
Var[wiS]

)
, (2.45)

where wi = biA.
Note that the above denominators, that are equal to

√
Var[Yi], can be omitted

if wi is constrained to have a fixed norm because of Eq. (2.19). In the following,
we omit the index of w as it does not matter if we focus on an arbitrary output
Y = bX = wS. Further, since R(Y) is not sensitive to the sign of the elements
of b, we can freely assume w ∈ Vλ

K where

Vλ
K
.
= {w ∈ RK s.t. ‖w‖ = λ, w(j) > 0 ∀ 1 6 j 6 K} (2.46)

is nothing but the intersection of RK
+ with the centered K-dimensional sphere of

radius λ. Consider now the following theorem.

Theorem 14 (Global maximum of CR, deflation approach) Suppose that

R(S1) = . . . = R(Sk) < R(Sk+1) 6 . . . 6 R(SK) . (2.47)

Then, for any vector w in Vλ
K , one gets

argmax
w∈Vλ

K

C̃R(w) = {λ.e1, . . . , λ.ek} .
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Proof: The proof is very similar to that of the Shannon entropy case by setting
2h → R and using the BMI instead of the EPI (see pp. 38 and 39). Recall that
I(w) is the vector containing the position indexes of the non-zero entries of w
(Eq. (1.96)); assume that wS is not proportional to a source, i.e. ][I(w)] > 2.
By the extended BMI, we have

R2(wS) >
∑

i∈I(w)

w2
iR

2(Si)

(a)
= R2(Sk′) +

∑

i∈I(w)\{k′}
w2

i

(
R2(Si)−R2(Sk′)

)

︸ ︷︷ ︸
>0

> R2(Sp) (2.48)

where k′ ∈ argmini∈I(w)R(Si) and p ∈ {1, . . . , k}.
In the above chain of inequalities, (a) results from the ‖w‖ = 1 constraint

(which is equivalent to assume Var[Si] = Var[wS] = 1). On the other hand, it is
obvious that in the ][I(w)] = 1 case, the strict inequality holds except if I(w) ∈
{1, . . . , k}. Hence, the strict equality case occurs if and only if I(w) ∈ {1, . . . , k}
(implying ][I(w] = 1), i.e. when wS ∝ Si, i ∈ {1, . . . , k}.

�

Another proof is given in the Appendix at the end of the Chapter, in Section
2.6.5 (p. 89).

The above theorem guarantees that C̃R(w) and CR(b) reach their global max-
imum point when and only when one of the sources with the lowest range has
been extracted. Because of the scale invariance, one can set λ = 1 in the analysis
of C̃R(wS) even though the mathematical developments can easily be extended
to other values of λ.

Theorem 15 (Subset of local maxima of CR, deflation approach) The func-
tion C̃R(w), subject to w ∈ V1

K , admits a local maximum for w = ei, 1 6 i 6 K.
In other words,

˜argmax
w∈V1

K

C̃R(w) ⊇ {ei : i ∈ {1, · · · ,K}} . (2.49)

Sketch of proof: Consider two vectors p ∈ V1
K , q ∈ V1

K , and let us introduce the
associate contrast difference ∆C̃R(p,q) defined as:

∆C̃R(p,q)
.
= C̃R(p)− C̃R(q) . (2.50)

The proof shows that for any êi ∈ V1
K sufficiently close to (but different from)

ei, we have ∆C̃R(ei, êi) > 0. The detailed proof is given in the Appendix at the
end of the Chapter, in Section 2.6.6 (p. 90).



64 CONTRAST PROPERTY OF ENTROPIC CRITERIA

Corollary 9 (Complete extraction) Assuming that the first p − 1 sources
have already been extracted; then, the global maximum of C̃R(wp) subject to wp ∈
V1

K and wpw
T
r = 0 for all 1 6 r < p is obtained for wp ∈ {ei : C̃R(ei) = C̃R(ep)}.

By Theorem 15, we know that C̃R(w) s.t. w ∈ V1
K reaches a local maximum

if w ∈ {e1, . . . , eK}. Then, assuming that the first p − 1 sources have already
been extracted, a p-th source can be found by updating wp where wp(1) = . . . =
wp(p−1) = 0. Next, discarding the first p−1 sources and setting K ← K−p+1,

Theorem 14 is used to prove that the global maximum of C̃R(w), w ∈ V1
K equals

now C̃R(ep) and is reached for w ∈ {ei : C̃R(ei) = C̃R(ep)}, p 6 i 6 K.

2.3.5 Partial approach

This case is exactly similar to that of the simultaneous contrast, and from the
second claim of Theorem 8 (p. 50) with Q(.) = R(.), we define the following
contrast overMP×K (the set of P ×K matrices with row-rank equal to P 6 K)

CR(B)
.
= log det(BΣXB)T −

P∑

i=1

logR(biX) , (2.51)

whose maximization is equivalent to the maximization of

C̃R(W)
.
= log det(WWT)−

P∑

i=1

log
[ K∑

j=1

|Wij |R(Sj)
]

(2.52)

over the same subset of RP×K (see Section 2.2.3 and Eq. (2.40)). In particular,

˜argmax
B∈MP×K

CR(B) = ˜argmax
B:BA∈MP×K

C̃R(BA) . (2.53)

Clearly, the contrast property combined to Corollary 6 (p. 50) with Q(·) = R(·)
tells us that the two above criteria reach their global maximum points if and only
if W = BA ∈ WP×K

P , where the last set is defined as in Corollary 6. However,
there is no information regarding the possible non-mixing local maxima of the
criterion, i.e. the local maximum points corresponding to W = BA ∈ WP×K

(and not only in WP×K
P ⊂ WP×K).

Even though it was true for Q(·) = 2h(·), we do not claim that, generally
speaking, f(B), as given in Theorem 8 (p. 50), is locally maximized once BA ∈
WP×K , even under the class II superadditivity assumption on functional Q.
Nevertheless, this result holds true for the Q(·) = R(·) case, just as for Shannon’s
entropy power. This is indicated by the following theorem [Vrins and Pham,
2007], proved in the Appendix of the Chapter, in Section 2.6.7 (p. 91).

Theorem 16 (Non-mixing matrices are local maximum points of CR)
The criterion CR(B) admits a local maximum at any point B for which BA ∈
WP×K (i.e. B ∼u A−1).
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Consequently, CR(B) reaches a global maximum if and only if BA ∈ WP×K
P

(Theorem 8 p. 50 and Corollary 6 p. 50) and a local maximum point if BA ∈
WP×K (Theorem 16).

Remind that the local maximum points W ∈ WP×K are called non-mixing
because they correspond to non-mixing transfer matrices from S to Y and thus
to the recovering of P distinct sources. By contrast, the non-existence of mixing
maxima (i.e. the maximum points satisfying W ∈MP×K \WP×K) remains to
be proved. Such a property, addressed in Chapter 3, ensures the equivalence
between the local maximization of CR(B) and partial source separation.

2.3.6 Support versus Range

As indicated in the beginning of Section 2.3.4, some results similar to those pre-
sented in the above subsection have been derived independently in [Cruces and
Duran, 2004]. In their paper, the authors use an information theoretic approach
to prove that under the ‖w‖ = 1 constraint, µ[Ω(Yi)] reaches its minimum value
when Yi ∝ Sj . From this, one can conclude that −µ[Ω(Yi)] is a deflation con-
trast. Clearly, this extends to CR(bi) since it is equivalent to apply −µ[Ω(Yi)] on
sources with convex support. From this viewpoint, Cruces’ approach seems to
be more interesting, because more general. However, there is no a priori reason
to prefer using the support than the range. On the contrary, i) estimating the
support is generally speaking more difficult than estimating the range because
support estimation requires the computation of the extreme values of the rv (as
for the range) as well as the location of the possible holes inside the support (not
needed for the range computation), and ii) the range-based contrast benefits
from an interesting property (namely, the discriminacy property) not shared by
the support, as it will be shown in Chapter 3. This discriminacy property of the
range-based criterion (in the sense used in this work), which was not mentioned
in [Cruces and Duran, 2004] but first appeared in [Vrins et al., 2005a], shall be
proved by using a kind of proof similar to those used in the above subsection.

2.3.7 A tool for building a D-BSS contrast based on Huber

In Section 2.1, Theorem 7 (p. 48) gives a result for building an orthogonal par-
tial BSS contrast from deflation BSS contrasts and Theorem 8 (p. 50) gives
two results for building simultaneous and partial BSS contrast functions from
superadditive functionals. However, it is possible to extend the last results to

deflation contrasts. For proving that −h
(
Y/
√

Var[Y]
)

is a contrast function

for deflation, two properties of the entropy power 2h(·) have been used: the
EPI (Theorem 6 p. 38) and the fact that 2h(αY) = |α|2h(Y). Therefore, since
−h(Y/

√
Var[Y]) is a contrast, we have that for any strictly decreasing function

Ψ, Ψ
[
h
(
Y/
√

Var[Y]
)]

is a contrast and we conclude the following:
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Corollary 10 Let Q(·) be a positive-valued class II superadditive functional in
the sense of Huber as stated in Theorem 8 (p. 50). Then, for any strictly de-
creasing real-valued function Ψ,

f(b) = Ψ
[
Q
(
bX/

√
Var[bX]

)]
(2.54)

is a deflation contrast. In particular, taking Ψ[·] = − log[·],
f(b) = 1/2 log Var[bX]− logQ(bX) . (2.55)

The global maximum is attained when w ∝ ek, where k
.
= argmin

i∈{1,...,K}
Q(Si), that

is if bX ∝ Sk. Note that the w ∈ S(K) constraint implies Var[bX] = 1 under
the unit-variance assumption on the sources A7.

The proof of the corollary is similar to the proof of Lemma 5 (p. 38).
Setting Q(·) = 2h(·) and Ψ[x] = − log[x], we find the deflation contrast Ch(b)

given in Eq. (2.20) (remind that (Huber 1) results from Eq. (1.74) and (Huber
2) results from the EPI theorem, Theorem 6 p. 38). Taking Q(·) = R(·) and
Ψ[x] = −x, this proves the deflation contrast property of the range functional
given in Eq. (2.44), which was previously proved in Theorem 14 p. 62 (remind
that (Huber 1) results from Eq. (2.35) and (Huber 2) results from the BMI
theorem, Theorem 13 p. 60). By setting Ψ[x] = − log[x], we recover the deflation
version of the simultaneous and partial range-based criteria given in Eq. (2.41)
and Eq. (2.51), respectively.

2.4 RÉNYI’S ENTROPY CONTRAST

The use of a generalized form of Shannon’s entropy, called Rényi’s entropy, has
been proposed in Information Theoretic Learning because of its computational
advantage on Shannon’s entropy for specific values of r 6= 1 [Haykin, 2000],
especially in speech [Flandrin et al., 1994] and image processing [Sahoo et al.,
1997] as well as clustering [Jenssen et al., 2003], feature extraction [Hild et al.,
2006a]. In particular, it has been proposed to solve the BSS problem [Erdogmus
et al., 2002a, Hild et al., 2001, 2006b]. The motivation for doing so comes from
the fact that support measure and Shannon’s entropy are two specific cases of
Rényi’s entropy (with r = 0 and r = 1, respectively), and that setting r = 2 may
help to simplify some calculations when Parzen windowing is used for density
estimation [Parzen, 1962]. Indeed, if the pdf p(x) is approximated by a sum of
N Gaussian kernels

φ(x) =
1√
2π

e−x2/2 , (2.56)

and

p̂(x) =
N∑

n=1

φ
(

x−µn

σn

)

σn
, (2.57)



RÉNYI’S ENTROPY CONTRAST 67

then

h2[p] = − log

∫
p2(x)dx

≈ − log

∫
p̂2(x)dx

= − log


N−2

N∑

i=1

N∑

j=1

1

σiσj

∫
φ

(
x− µi

σi

)
φ

(
x− µj

σj

)
dx




= 2 logN − log




N∑

i=1

N∑

j=1

1√
σ2

i + σ2
j

φ


 µi − µj√

σ2
i + σ2

j




 ; (2.58)

the integration vanishes because of the properties of Gaussian functions (see
Section 2.6.8, p. 92). The main problem of this approach is that theoretical
proofs ensuring that the sources will be recovered through the maximization of
a criterion related to hr, r /∈ {0, 1}, are lacking; the justification of considering
the general Rényi entropy as a BSS criterion is only based on simulation results.
By using this general Rényi’s entropy in BSS, several authors have implicitly
conjectured that this quantity (with any r > 0) is a contrast function.

However, the use of the functionals −h0 and −h1 yields to contrast functions,
because of the class II superadditive property of these functions (proved using
the BMI and EPI, respectively). Therefore, it was first our hope to find a
generalized form of these inequalities that would ensure that ehr(.) and/or ehr,Ω̄(.)

with arbitrary r > 0 would be a class II superadditive functional; if it was the
case, one could take Q(.) = ehr(.) or Q(.) = ehr,Ω̄(.). Unfortunately, we were not
able to find such a unifying theorem. Then, a more neutral point of view had to
be adopted: it is not a priori hoped that Rényi’s entropy based criteria, generally
speaking, can benefit from the contrast property. Instead of trying to prove that
Rényi’s entropy is a contrast, we shall check if some necessary conditions can
be violated, preventing Rényi’s entropy criteria to be contrast functions. In
the deflation case, the criterion evaluated at a point b? corresponding to the
extraction of the source with the lowest index value Q(.) (i.e. b?X ∝ Sj where
j = argmini∈{1,...,K}Q(Si)) must have a local maximum. Equivalently, for the
simultaneous approach, the related criteria must face a global (i.e. at least a
local) maximum at any point W ∈ W(K). This study is handled in the next
section via a Taylor development of the criteria and analyzing the two first-order
terms. Note that as the r = 0 case has been studied separately, we can focus on
r ∈ R0

+, implying hr = hr,Ω = hr,Ω̄.

2.4.1 Taylor development of Rényi’s entropy

In this section, we adopt a similar approach as in [Pham, 2005] to extend the
expansion of Shannon’s entropy to the expansion of Rényi’s entropy, which is
obviously supposed to be finite.
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Let Z be a random variable, possibly depending on Y, and ε be a small scalar.
From the definition of Rényi’s entropy given in Eq. (1.106), it comes that Rényi’s
entropy of Y + εZ is

hr(Y + εZ) =
1

1− r log

∫
pr

Y+εZ(ξ)dξ , (2.59)

where the density pY+εZ reduces to, up to first order in ε [Pham, 2005]:

pY+εZ(ζ) = pY(ζ)− ε(E[Z|Y = y]pY(y))′|y=ζ + o(ε) . (2.60)

In the above equation, we have used the “small o(.)” Landau notation, where
the argument is implicitly supposed to tend to zero: we say that a(x) = o(x) if
limx→0 a(x)/x→ 0 (i.e. a(x) tends faster to zero than x). Similarly, the “big O”
Laudau notation will be used in this work: a(x) = O(x) means | limx→0 a(x)/x| <
∞ (as an example, 3x2 = o(x) and 2x = O(x)).

In Eq. (2.60), (E[Z|Y = y]pY(y))′|y=ζ stands for the derivative of E[Z|Y =
y]pY(y) with respect to y evaluated at y = ζ. Hence, noting that:




log(1 + ε) = ε+ o(ε) ,

pr
Y+εZ(ζ) = pr

Y(ζ)− rεpr−1
Y (ζ)(E[Z|Y = y]pY(y))′|y=ζ + o(ε) ,

equations (2.59) and (2.60) yield

hr(Y + εZ) =
1

1− r log

{∫
pr

Y(ξ)dξ

−
∫
rεpr−1

Y (ξ)(E[Z|Y = y]pY(y))′|y=ξdξ

}
+ o(ε)

=
1

1− r log

∫
pr

Y(ξ)dξ

+
1

1− r log

{
1− εr

∫
pr−1

Y (ξ)(E[Z|Y = y]pY(y))′|y=ξdξ∫
pr

Y(ξ)dξ

}
+ o(ε)

= hr(Y)− εr

1− r

∫
pr−1

Y (ξ)(E[Z|Y = y]pY(y))′|y=ξdξ∫
pr

Y(ξ)dξ
+ o(ε) (2.61)

where we have used log(1 + aε + o(ε)) = log(1 + aε) + log(1 + o(ε)) = aε + o(ε)
when ε → 0. Note that this chain of equality requires that one can exchange
limit and integration, see Rem. 13.

By integration by parts, one gets for well-behaved densities

1

r − 1

∫
pr−1

Y (ζ)(E[Z|Y = y]pY(y))′|y=ζdζ = −
∫

pr−1
Y (y)E[Z|Y = ζ]p′

Y(ζ)dy ,

(2.62)
yielding

− ε r

1− r

∫
pr−1

Y (ξ)[E[Z|Y]pY(Y)]′(ξ)dξ∫
pr

Y(ξ)dξ
= −εr

∫
pr−1

Y (ξ)E[Z|Y = ξ]p′
Y(ξ)dξ∫

pr
Y(ξ)dξ

.

(2.63)
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From the general iterated expectation lemma (p. 208 of [Gray and Davisson,
2004]), the right-hand side of the above equality equals

− εrE[pr−2
Y (Y)p′

Y(Y)Z]∫
pr

Y(y)dy
= εE[ψY,r(Y)Z] , (2.64)

if we define the r-score function ψY,r(Y) of Y.

ψY,r(y)
.
= −rp

r−2
Y (y)p′

Y(y)∫
pr

Y(y)dy
= − 1

pY(y)

(pr
Y)′(y)∫

pr
Y(y)dy

. (2.65)

Using the last equality, we observe that the r-score shares two major properties
(see Property 4 p. 57) of the 1-score defined in Eq. (2.28); namely:





E[ψY,r(Y)] = 0 ,

E[ψY,r(Y)Y] = 1 .

We have thus a first-order expansion of Rényi’s entropy, expressed as a function
of the r-score:

hr(Y + εZ) = hr(Y) + εE[ψY,r(Y)Z] + o(ε) . (2.66)

We now perform a second-order expansion of hr. To this end, consider the
second-order expansion of pY+εZ provided in [Pham, 2005] (Z is temporarily
assumed to be zero-mean, but definitely supposed to be independent from Y in
order to make the development easier):

pY+εZ(ζ) = pY(ζ) +
1

2
ε2E[Z2]p′′

Y(ζ) + o(ε2) , (2.67)

and

pr
Y+εZ(ζ) = pr

Y(ζ) +
1

2
rpr−1

Y (ζ)ε2E[Z2]p′′
Y(ζ) + o(ε2) . (2.68)

Therefore, since Rényi’s entropy is not sensitive to translation we have, for r > 0:

hr(Y + εZ) =
1

1− r

[
log

∫
pr

Y(y)dy

+ log

{
1 +

1/2rε2
∫

pr−1
Y (y)E[Z2]p′′

Y(y)dy∫
pr

Y(y)dy

}]
+ o(ε2)

= hr(Y) +
ε2

2

r

1− r

∫
pr−1

Y (y)p′′
Y(y)dy∫

pr
Y(y)dy︸ ︷︷ ︸

.
=Jr(Y)

Var[Z] + o(ε2) , (2.69)

where Jr(Y) is called the r-th order information of Y (see Rem. 13). By inte-
gration by parts, we have that

Jr(Y ) = r

∫
pr−2

Y (y)(p′Y (y))2dy∫
pr

Y (y)dy
, (2.70)
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which is a positive quantity whatever is r > 0. Observe that the first order in-
formation reduces to J1(Y) = E[ψY(Y)2], which is precisely Fisher’s information
[Cover and Thomas, 1991].

Remark 13 (On approximating integral of functions) Equation (2.61)
says that there exists a function φ(ε, ζ) such that

pr
Y+εZ(ζ) = pr

Y(ζ)− rεpr−1
Y (ζ)(E[Z|Y = y]pY(y))′|y=ζ + φ(ε, ζ) ,

where limε→0 φ(ε, ζ)/ε = 0 (because φ(ε, ζ) = o(ε)). By integrating both sides of
the above equation, we find that

∫
pr

Y+εZ(ζ)dζ equals
∫

pr
Y(ζ)dζ − rε

∫
pr−1

Y (ζ)(E[Z|Y = y]pY(y))′|y=ζdζ +

∫
φ(ε, ζ)dζ .

Therefore, we have implicitly conjectured in Eq. (2.61) that
∫
φ(ε, ζ)dζ = o(ε).

However, this is not true whatever φ(ε, ζ) is. The possible problem is that we
have no guarantee that φ(ε, ζ)/ε converges uniformly to zero; the convergence
could be only pointwise. Formally, in order to prove that limε→0

∫
φ(ε, ζ)dζ/ε =

0 knowing φ(ε, ζ) = o(ε), it suffices, by the Lebesgue Dominated Convergence
Theorem, that there exist ε∗ > 0 and an integrable function δ(ζ) > 0, such that
for all ζ ∈ IR and all |ε| < ε∗, |φ(ε, ζ)/ε| < δ(ζ).

In Eq. (2.61), this additional requirement is actually implicitly assumed to be
fulfilled, but this might require conditions on the pdf of the random variables Y
and Z, that are not detailed here (same applies to second-order considerations).
However, when the expanded function is a “well-behaved density”, we conjec-
ture that this should be true in most of cases; in particular, observe that the
results found via theoretical considerations are confirmed by specific numerical
experiments.

Note that the permutation between the integral and limit signs corresponds to
the condition under which, practically, approximating the integral of a function
can be done via integration of an approximated form of the function. Actually,
this is what people do when they compute entropies via density estimation; gen-
erally, one guesses hr(Y) ≈ 1

1−r log
[∫

p̂r
Y(y)dy

]
, i.e. that hr[p̂Y ] can be rend as

close as possible to hr[pY] provided that p̂r
Y(y)dy is sufficiently close to pr

Y(y)dy.

2.4.2 Deflation approach

In this subsection, we consider the scale invariant criterion

Chr
(b)

.
= −hr

(
bX√

Var[bX]

)
. (2.71)

Clearly, maximizing the above quantity with respect to b is equivalent to maxi-
mizing

C̃hr
(w)

.
= −hr

(
wS√

Var[wS]

)
(2.72)
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if w = bA.
Note that in both criteria, the denominator can be omitted under the w ∈

S(K) constraint since Chr
(b) = C̃hr

(bA) = −hr

(
w

‖w‖S
)
.

Based on the Taylor expansion of Rényi’s entropy, which is proved to have a
null first-order term when Y and Z are independent (see Eq. (2.64)), we find the
following result, proved in the Appendix of the chapter (Section 2.6.9, p. 93).

Lemma 7 (Basis vectors are stationary points of Chr
) The criterion C̃hr

admits a stationary point when w ∈ {±e1, . . . ,±eK}.
A sufficient argument for proving that Chr

is not a deflation contrast function
is to prove that one of the stationary points of Lemma 7 is a local minimum.
Indeed, if this occurs, the associated source will never be extracted through its
maximization.

Actually, a necessary condition for the function C̃hr
(w) over the set S(K) to

admit a local maximum at ±ej is that Jr(Sj) > 1 and a sufficient condition is
that this inequality is strict. More generally, one can write these conditions as
Jr(Sj)Var[Sj ] > 1 and Jr(Sj)Var[Sj ] > 1, which are then independent from the
source variances. To see that Jr(S)Var[S] is invariant to the scale of S, it suffices
to note S = σSS? where σ2

S = Var[S] and S? is the unit-variance copy of S. Then,
using the density of a transformation given in Eq. (1.76) and from the definition
of Jr in Eq. (2.69), we find

Jr(S) =
1

σ2
S

Jr(S
?) . (2.73)

Observe that in the specific r = 1 case, the sufficient condition J(Sj)Var[Sj ] > 1
is always satisfied for non-Gaussian sources (see Property 4, p. 57).

From the second order development of Rényi’s entropy, one gets the following
lemma (see the proof in Section 2.6.10, p. 94).

Lemma 8 (Contrast condition for Chr
, deflation approach) The criterion

Chr
(b) under the constraint Var[biX] = 1 is not a contrast if Jr(Si)Var[Si] < 1

where

i ∈ argmax
k∈{1,...,K}

−hr

(
Sk√

Var[Sk]

)
. (2.74)

2.4.3 Simultaneous approach

The simultaneous criterion associated to hr(.) is

Chr
(B)

.
= log |detB| −

K∑

i=1

hr(biX) . (2.75)

The criterion is subject to the normalization constraint that biΣXbi
T = 1 (this

is only to enforce the recovering of unit-variance outputs, the above criterion is
not sensitive to the scale of bi).
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We have the following result (see Section 2.6.11, p. 95 in the Appendix of the
chapter):

Lemma 9 (Stationary points of Chr
, simultaneous approach) The crite-

rion Chr
admits a stationary point when BA ∈ W(K) or, equivalently, when

B ∼ A−1.

We now derive in the next lemma (proved in Section 2.6.12, p. 95) a necessary
and sufficient condition for the criterion Chr

(B) to attain a local maximum at the
point B ∼ A−1 (and consequently, a sufficient condition ensuring that Chr

(B) is
not a contrast function).

Lemma 10 (Contrast condition for Chr
, simultaneous approach) The

criterion Chr
(B) is not a contrast if the sources share a same density pS and

Jr(S)Var[S] < 1 where S is a random variable with density pS.

2.4.4 Partial approach

As the simultaneous and deflation approaches are particular cases of the partial
separation, the results presented in the above subsections show that, generally
speaking, ERE is not a contrast function for BSS.

2.4.5 Numerical simulation and detailed calculation on specific examples

Lemma 8 p. 71 and Lemma 10 p. 72 give sufficient conditions ensuring that the
above deflation and simultaneous criteria are not contrast functions: maximizing
them will not lead to recover the sources if these conditions are met. It is shown
in this section that these conditions can easily be encountered for densities close
to (but different from) Gaussian functions and for specific values of Rényi’s
exponent r.

Consider the case where the common density of the source admits a density
of the form

pS(s) = Ce(−|s/λ|a/a) , (2.76)

where a is a positive parameter, λ is a positive scale parameter and C is the
normalizing constant. Then, S denoting a random variable with density pS and
denoting the r-score function of S evaluated at the point y by ψS,r(y), simple
manipulations yield

ψS,r(y) =
r sign(y)|y|a−1λ−a

Ce[−(1− r)|y/λ|a/a]
∫

e(−r|u/λ|a/a)du , (r > 0). (2.77)
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In particular, ψS,1(y) = sign(y)|y|a−1λ−a. Further

Jr(S) =
r
∫
|s|2a−2λ−2ae(−r|s/λ|a/a)ds∫

e(−r|s/λ|a/a)ds (2.78)

=
r
∫
|u|2a−2e(−r|u|a/a)du
λ2
∫

e(−r|u|a/a)du (2.79)

=
r2/a−1

λ2

∫
|z|2a−2e(−|z|a/a)du∫

e(−|z|a/a)dz =
r2/a−1

λ2
E|Z|2a−2 (2.80)

where Z = S/λ is a random variable with density e(−|z|a/a)/
∫

e(−|u|a/a)du.
Since Var[S] = λ2E[Z2], one has

Jr(S)Var[S] = r2/a−1 E[|Z|2a−2]E[Z2]︸ ︷︷ ︸
.
=g(a)

, (r > 0), (2.81)

which is independent from the scale parameter λ as it should be. In particular,
for a = 2, which corresponds to S and Z being Gaussian with E[Z2] = 1, one has
Jr(S)Var[S] = 1,∀r > 0.

Put g(a) = E[|Z|2a−2]E[Z2], which from the above result equals J(S)Var[S]
where J(S) = J1(S) is no other than Fisher’s information of S. But we know
that J(S)Var[S] > 1 with equality if and only if S is Gaussian, that is a = 2. Thus
g admits a global minimum equal to 1 at a = 2. Explicitly from the definition
of the gamma function: Γ(α) =

∫∞
0
tα−1e−tdt, one has

E[|Z|β ] =

∫∞
0

e(−za/a)zβdz∫∞
0

e(−za/a)dz

=

∫∞
0

e(−t)(at)(β+1)/a−1dt∫∞
0

e(−t)(at)1/a−1dt

= aβ/a Γ[(β + 1)/a]

Γ(1/a)
. (2.82)

Therefore, defining

g(a) = E[|Z|2a−2]E[Z2] = a2 Γ(2− 1/a)Γ(3/a)

Γ(1/a)2
, (2.83)

one can check that g admits indeed a global minimum at a = 2.
Finally Jr(S)Var[S] < 1 if and only if

r < g(a)1/(1−2/a) < 1 in the case a < 2 , (2.84)

r > g(a)1/(1−2/a) > 1 in the case a > 2 . (2.85)

One concludes that for source densities of the form pS(s) = Ce(−|s/λ|a/a), if
a < 2 then the criteria are not contrasts for r < g(a)a/(a−2) and if a > 2, they
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(a) Densities given by Eq. (2.76) with a = 4
(solid) and a = 1 (dashed); the parameter
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Figure 2.2. Discussion example (see text).

are not contrasts for r > g(a)a/(a−2). In particular, for bilateral exponential
sources, which correspond to a = 1, one has g(a) = 2 and thus the criteria
are not contrasts for r < 1/2. For a = 4, g(a)1/(1−2/a) = 1.8792 and thus the
criteria are not contrasts for r > 1.8792, in particular for r = 2. The densities
(2.76) with a = 1 and a = 4 as well as the functions g(a) and g(a)1/(1−2/a) are
illustrated in figures 2.2.(a) and 2.2.(b)

The approximated Rényi entropy h̄r(Yθ) (see Rem. 14 below) where Yθ = wθS

as a function of the transfer angle θ for the two above examples is illustrated in
figures 2.3.(a) and 2.3.(b) The two unit-variance sources share the same density
: pS1

= pS2
= pS where pS is given by Eq. (2.76). Figure 2.4. shows the case

where the source shape parameters are different: aS1
= 4 and aS2

= 1.

Remark 14 (Some details regarding the simulation method) The esti-
mation h̄r(Yθ) of hr(Yθ) is defined as

h̄r(Yθ) =





1
1−r log

∑
∆ [psin θS ∗ pcos θS]

r
if θ /∈ {kπ/2, k ∈ Z}

1
1−r log

∑
∆ pr

S?
i

otherwise (i? depends on θ),

where the
∑

∆ symbol denotes the Riemannian approximation of the exact in-
tegral (the step ∆ is taken equal to 10−3 and the grid size is chosen large
enough to ensure that the integration error is limited, max(|1−∑∆ psin θS|, |1−∑

∆ pcos θS|) < τ , τ = 1E−4 and similarly, the variance deviation error is also
controlled max(|1−(

∑
∆ s

2psin θS(s))|, |1−∑∆ s
2pcos θS(s))| < τ). The exact the-

oretical expressions of psin θS and pcos θS have been dealt with and the convolution
operation is performed via the Matlab conv command. When computing (2.86),
the summation inside the log is only computed on discrete points s0 satisfying
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(a) a = 1: the criterion −hr(Yθ) is not a
contrast for r < 1/2; the curves are shown
for r ∈ {0.1, 0.25, 0.5, 1.9, 10}
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(b) a = 4: the criterion −hr(Yθ) is not
a contrast for r > 1.8792; the curves are
shown for r ∈ {0.1, 0.25, 1, 1.7, 4, 10}

Figure 2.3. Evolution of h̄r(Yθ) where pS1 = pS2 = pS is given by Eq. (2.76) with
λ = 1; (remind that hr is decreasing in r).
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Figure 2.4. Evolution of h̄r(Yθ) where pS1 by Eq. (2.76) with a = 4 and pS2 by Eq.
(2.76) with a = 1. The kind of non-mixing optimum of the criterion −hr(Yθ) depends
on the source that is extracted; the curves are shown for r ∈ {0.1, 0.5, 1, 1.9, 10} (remind
that hr is decreasing in r).

pYθ
(s0) > τ in order to avoid to face numerical problems resulting from a value

close to log(0).

Remark 15 Consider the function a 7→ r2/a−1g(a) = Jr(S)Var[S]. It takes the
value 1 at 2 and its logarithmic derivative is −2a−2 log r + g′(a)/g(a), which
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takes the value − 1
2 log r at a = 2 (since g is minimum at 2). Thus, for r < 1,

this function is increasing in a neighborhood of 2, hence there exists an a < 2 for
which Jr(S)Var[S] < 1. Similarly, for r > 1, this function is decreasing in the
neighborhood of 2, hence there exists an a > 2 for which Jr(S)Var[S] < 1. Thus
for any r 6= 1, r > 0, there exists a sources density of the form Ce(−|s/λ|a/a)
for some a for which the criterion is not a contrast. As Rényi’s entropy power
is a class II functional and because this condition combined with its possible
strict superadditivity necessarily implies that Chr

is a contrast function (from
Theorem 8, p. 50), we conclude the following:

Corollary 11 For any r > 0, r 6= 1, there always exists a pair of i.i.d. random
variables with common density belonging to the generalized exponential family
(but differing from the Gaussian function) such that the r-Rényi entropy power
cannot be a superadditive functional for these variables.

Remark 16 Figures 2.3. and 2.4. seem to indicate that even if the kind of the
extremum points changes with r (maximum or minimum), their location is con-
stant with respect to Rényi’s exponent. This is not the case, generally speak-
ing. Let us focus on the deflation criterion with K = 2 and restrict ourselves
to θ ∈ [0, π/2]. It has been shown that a stationary point always exists when
θ = π/2, whatever r. Simple calculations yield:

Yθ+δθ = Yθ + [δθ cos θ,−δθ sin θ]S + o(δθ) . (2.86)

From Eq. (2.132), this leads to

hr(Yθ+δθ) = hr(Yθ)− δθ(cos θE[ψYθ,r(Yθ)S1]− sin θE[ψYθ,r(Yθ)S2]) + o(δθ) .
(2.87)

Consequently, hr(Yθ) admits a stationary point at θ? if

tan θ? =
E[ψYθ,r(Yθ)S1]

E[ψYθ,r(Yθ)S2]
+ o(δθ) (2.88)

=

∫
(pr

Yθ
)′(y)E[S1|Yθ = y]dy∫

(pr
Yθ

)′(y)E[S2|Yθ = y]dy
+ o(δθ) . (2.89)

The value of θ?, generally speaking, depends on r. But if pS1|Yθ? = pS2|Yθ? ,
the above conditional expectations are identical and the ratio in the right-hand
part of the above equation is always equal to one. This indicates that a stationary
point exists at θ? = π/4 if pS1

= pS2
, whatever is r > 0.

As a last example, consider the case where the common density of the sources
has the triangular density pT(s) = 1 − |s| if |s| 6 1,= 0 otherwise. Then,
denoting by S a random variable with the triangular density pT , we have

Var[S] = 2

∫ 2

0

(1− s)s2ds =
1

6
, (2.90)
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Figure 2.5. Evolution of estimated Rényi’s criterion −h̄r(Yθ) − h̄r(Yπ/2−θ) as a
function of the transfer angle θ where the two sources share the same triangular density
pT . The criterion with r = 2.5 and r = 5 is not a contrast function.

and

Jr(S) = r

∫ 1

0
(1− s)r−2ds
∫ 1

0
(1− s)rds

= r

∫ 1

0
ur−2du
∫ 1

0
urdu

=

{
r(r + 1)/(r − 1) if r > 1
∞ if r 6 1

.(2.91)

Thus Jr(S)Var[S] < 1 if and only if r > 1 and r(r + 1)/[6(r − 1)] < 1. But for
r > 1, the last inequality is equivalent to 0 > r(r+1)− 6(r− 1) = (r− 2)(r− 3).
Therefore Jr(S)Var[S] < 1 if and only if 2 < r < 3. We conclude that for
triangular source, the criteria are not contrast functions if 2 < r < 3.

Regarding the simultaneous criterion, the last two plots of Figure 2.5. clearly
indicate that the problem could be emphasized too. On top of the figure (r = 1),
the criterion Chr

(B) = Ch(B) is a contrast function, as expected. On the middle
plot (r = 2.5), C̃hr

(B) admits a local minimum point when θ ∈ {kπ/2 : k ∈ Z}
(this results from Jr(S)Var[S] < 1), and thus violates a necessary requirement
for a contrast function. Finally, on the last plot (r = 5), the criterion is not a
contrast even though Jr(S)Var[S] > 1 since the set of global maximum points of
the criterion does not correspond to the set W(K).

Remark 17 (On the nature of Hartley’s and Shannon’s entropies)
Some arguments have been given in the literature to emphasize the specific prop-
erties of Shannon and/or Hartley’s entropies in the class of the generalized en-
tropies. Some are based on “question-assertion” considerations [Knuth, 2005],
others on average information gain/loss [Rényi, 1976b] or yet on related inequal-
ities [Costa and Cover, 1984]. Without entering the details, it is explained in
[Aczel et al., 1974] that, only linear combinations of Shannon and Hartley’s en-
tropies correspond to a “natural behavior”. Unfortunately, all those explanations
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rely on discrete processes only. Moreover, their connections with the aforemen-
tioned “complexity measure meaning” remains unclear. Up to now, there is no
really convincing “philosophical” results explaining why Shannon and Hartley’s
entropies differ from other ones in the BSS context.

2.5 CONCLUSION OF THE CHAPTER

2.5.1 Summary of results

It was suggested in Chapter 1 that just as “independence measures” can yield
contrast functions, the generalized form of Rényi’s information measures can
also be the genesis of new contrast functions. This was motivated by the suitable
“complexity measure” behavior of Shannon’s entropy; it was proposed by several
authors in the past, even if a detailed theoretical study was missing. Therefore,
Chapter 2 aims at filling this lack and thus at analyzing the entropic criteria,
and more explicitly, their global maximum points. Indeed, the main property of
contrast functions concerns the location of these global maximum points. For
the deflation and partial separation schemes, a more general study of the local
maximum points corresponding to transfer vectors proportional to basis vectors
or to transfer matrices subPD-equivalent to the identity matrix was managed.

Instead of showing that the global maximum of a criterion corresponds to
a non-mixing point, some specific tools can be used, such as Pham’s theorem
(Theorem 8 p. 50): it suffices that the criterion has a specific form and satisfies a
superadditivity condition to ensure that the criterion is a contrast. The criteria
based on Shannon’s entropy, on the support or on the range are shown to fulfill
this criterion. Further, the superadditivity conditions directly result from well-
known inequalities: the entropy power inequality (Shannon’s entropy) and the
Brunn-Minkowski inequality (range and support). In a more general way how-
ever, we were not able to find an extension of the EPI and BMI suggesting the
superadditivity of Rényi’s entropy powers whatever the value of Rényi’s exponent
r. Afterwards, this is logical. Based on a Taylor expansion of Rényi’s entropy,
a sufficient condition for Rényi’s entropy-based criteria not being contrast func-
tions was found, and some counter-examples illustrate that this condition is met
in simple situations. Whatever is r /∈ {0, 1}, there always exist a non-Gaussian
density (a 6= 2) of the generalized exponential family such that the r-Rényi
entropy-based criterion is not a contrast function if the sources follow this den-
sity; this was stated in Rem. 15 (p. 76). Surprisingly, this gives a partial answer
to the question about the possible superadditivity of Rényi’s entropy, that re-
mained an open question up to now. These results are summarized in Table 2.1.
The “KO” results are proved via theoretical counterexamples showing that the
corresponding property might be violated in some cases (even under the usual
non-Gaussianity assumption). The “−” superscript indicates that these results
are unexpected (but not contradictory) compared to the literature.
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Deflation Simultaneous Partial

Shannon (r = 1) OK OK OK
Hartley (r = 0) OK OK OK

Rényi (r > 0, r 6= 1) KO− KO− KO−

Range (ext. Hartley) OK OK OK

Table 2.1. Summary of the results of Chapter 2: analysis of the contrast
property of entropy-based criteria for the deflation, simultaneous and partial BSS.
It is rigorously proved that Shannon, Hartley and extended Hartley entropies all
yield to contrast function for the three separation schemes. By contrast, it always
exist counter-examples showing that Rényi’s entropy might be not a contrast
function whatever is r > 0, r 6= 1. Original results are boldfaced, alternative proofs
have been used to prove the known results.

2.5.2 Use of Rényi entropies in blind separation/deconvolution

How do our conclusions match with existing results ? The general form of Rényi’s
entropies have been proposed for blind source separation in [Erdogmus et al.,
2002a, Hild et al., 2001, 2006b, Principe et al., 2000]. Computational convenience
and close relationship with Shannon’s entropy were the principal motivations and
justifications for their use. Our conclusions seem to be in complete contradiction
with these results. Indeed, even if Rényi’s exponent is set to its more convenient
value r = 2 (corresponding to the so-called quadratic entropy, avoiding thus the
integration of a Gaussian product if Parzen density estimation using Gaussian
kernels is used), some counter-examples show that the associated criterion is not
always a contrast function, depending on some specificities of the source densities.
The apparent contradiction is very simple to explain: whereas the authors of the
above-referenced papers based their conclusions on simulation results (involving
thus specific source densities and Rényi’s exponents), our approach deals with a
more general theoretical development. Therefore, even if in practice specific r-
Rényi’s entropies can be used for BSS (depending on the case), it is not generally
speaking, a good BSS criterion.

Based on arguments that technically sound better, Rényi’s entropies were also
proposed for blind deconvolution [Erdogmus et al., 2002b, 2004, Bercher and
Vignat, 2002]. We sketch below one of the approaches justifying their use, due
to Bercher and Vignat in 2002. The starting point is the strengthened Young’s
inequality [Barthe, 1998, Gardner, 2002]:

Theorem 17 (Strengthened Young’s inequality) Let min(p, q, r) > 0 and
1/p+1/q = 1+1/r, and let f ∈ Lp(IRN ), g ∈ Lq(IRN ) be non-negative functions.

Finally, define Ct
.
=
√

|t|1−t

|t′|1/t′ where t′ is the Holdër complement of t, that is
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1/t+ 1/t′ = 1. Then:

if min(p, q, r) > 1 : ‖f ∗ g‖r 6

(
CpCq

Cr

)N

‖f‖p‖g‖q , (2.92)

if max(p, q, r) 6 1 : ‖f ∗ g‖r >

(
CpCq

Cr

)N

‖f‖p‖g‖q . (2.93)

In this theorem, ‖f‖p .
= p

√∫
fp(x)dx and “∗” denotes the convolution prod-

uct. According to [Gardner, 2002], the first inequality was independently proven
in [Beckner, 1975] as well as in [Brascamp and Lieb, 1976], and the second one
appeared in [Brascamp and Lieb, 1976].

Assume that f and g are the densities of w1S1 and w2S2, respectively, where
the Si are independent non-Gaussian random variables. Then, obviously, hr[f ∗
g] = hr(Y). Setting p = r, q = 1 and noting that ‖g‖1 = 1 because g is a density,
we find log ‖f‖r = −1/r′hr(w1S1), log ‖f ∗ g‖r = −1/r′hr(Y), where r′ is the
Holdër complement of r [Dembo et al., 1991]. As this must remain true when
f and g are exchanged, we find by using the monotonicity of the logarithm and
the class II property of Rényi entropy power that, if the sources are i.i.d. with
common Rényi’s entropy noted hr(S):

hr(Y) > hr(S) + log max |wi| . (2.94)

This is the essence of the inequality (7) in [Bercher and Vignat, 2002]. This
condition is very weak actually. For instance, this inequality is not strong enough
to prove that Rényi’s entropy leads to contrast functions under a fixed variance
constraint on the output. Let us see that. Under a fixed variance constraint, we
can note w = wθ, Yθ = wθS and the above inequality becomes

hr(Yθ) > max (hr(S) + log | sin(θ)|,hr(S) + log | cos(θ)|) . (2.95)

Now, have a look at Figure 2.6.(a), in which the curves hr(sin(θ)S1) = hr(S) +
log | sin(θ)| and hr(cos(θ)S2) = hr(S)+log | cos(θ)| have been plotted as a function
of the transfer angle θ. Inequality (2.94) states that these curves lower-bound
hr(Yθ). This inequality does not imply, unfortunately, that the minimum value
of hr(Y) is reached when θ ∈ {kπ/2|k ∈ Z}, i.e. minimizing hr(Yθ) according to
θ might not lead to source recovering. A simple counter example is provided on
the figure; the shape of the hr(Yθ) curve shown on the figure does not violate
neither the above inequality nor the strict equality condition at the boundaries
of the quadrant. However, the global minimum of this curve does not lead to
Yθ ∈ {±S1,±S2} ! More precisely, provided that the source entropies are finite,
we have max(hr(sin(θ)S1),hr(cos(θ)S2)) < hr(S) for all θ ∈]0, π/2[.

In summary, on the one hand [Erdogmus et al., 2002b, 2004] and [Bercher
and Vignat, 2002] claimed that (2.94) justifies the use of Rényi entropies for the
deconvolution of stationary sources (and indirectly for the separation of i.i.d.
sources from linear instantaneous mixtures) and, on the other hand, we prove
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here that this inequality is not strong enough to validate the method, even
under the i.i.d. assumption on the sources. So, who is wrong ? Actually, the
apparent contradiction between these results comes from a confusion about the
normalization constraint.

To show that inequality (2.94) is of no use, we have rather considered the
inequality (2.95), which is nothing but (2.94) in which the ‖w‖ = 1 constraint
has been plugged. Throughout this chapter, the same constraint was used so
that our conclusion is “Rényi’s entropy under a ‖w‖ = 1 constraint, or similarly,
under a unit-variance constraint on the output should not be used for BSS, even
if the sources are i.i.d.”. In that sense, we disagree with the suggestion made
in [Erdogmus et al., 2002b, 2004], where the authors justify the use of Rényi’s
entropy based on inequality (2.94) combined to the fixed variance constraint
(i.e. based on (2.95) if K = 2). Rigorously speaking however, our results are
not in contradiction with the results of Bercher and Vignat, who proposed to
use Rényi’s entropy but with a different normalization constraint.

Geometrically, our conclusion means that contrarily to the Shannon and (ex-
tended) Hartley cases, minimizing Rényi’s entropy with r > 0, r 6= 1 over the
unit circle (in the space of 1 × K transfer vectors) is not a good idea. But
how does this conclusion extend to other search spaces ? For example, what
if the constraint becomes ‖w‖p = cst with p 6= 2 (remind that by definition,
‖w‖ = ‖w‖2)? In [Bercher and Vignat, 2002], the authors proposed to set
p = ∞. Let us illustrate graphically why this is a priori a good idea. To
that aim, define w◦ ∈ {w : ‖w‖ = 1} and w� ∈ {w : ‖w‖∞ = 1} where
the superscript symbols refer to the geometry of the set of vectors with the
associated p-norm (see Fig. 2.6.(b)). For comparison purpose, we assume that
w◦ = w�/‖w�‖. It is clear that ‖w�‖ > 1, and the equality case corresponds to
vectors w◦ = w� = ±ei. Similarly, we define Y◦ = Yθ = w◦S and Y� = w�S.
Hence:

hr(Y
◦) = hr(w

◦S)

= hr(w
�S)− log ‖w�‖

6 hr(Y
�) (2.96)

because ‖w�‖ > 1. Actually, it is easily seen that hr(wS) s.t. ‖w‖p = cst is
always higher than hr(wS) s.t. ‖w‖q = cst if p > q (the strict equality is attained
if and only if w◦ = ±ek). Hence, the entropy of hr(wS) s.t. ‖w‖p = cst increases
with p for a given direction w. Setting p =∞ yields the ‖w‖p = cst search space
on which hr(wS) is maximum in a given direction. However, this function does
not depend on the value of p at w = ±ei. Therefore, there is some chance that if
some local maximum of hr(wS) occurred on the unit circle at the basis vectors,
they become local minimum points on search spaces of the form ‖w‖p, p > 2,
and the most favorable situation is obviously p =∞.

By the EPI, we know that h1(Y
◦) > mini h1(Si) with equality if and only

if w◦ = ±ek with k = argmini h1(Si). A similar conclusion can be drawn for
r = 0 based on the BMI. The transitivity of the inequality and inequality (2.96)
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(a) Inequality (2.94) is useless on the unit cir-
cle

(b) Norms of w

Figure 2.6. Rényi’s entropies and fixed p-norms search space.

yield h1(Y
�) > mini h1(Si), h0(Y

�) > mini h0(Si), with equality if and only if
w� = ±ek. How does that extend to the general Rényi case ? By (2.94), we
know that hr(Y

�) > hr(S) but, on the contrary, this is no more true when Y◦

is considered instead of Y� in the inequality, as shown in Section 2.4.5.
Figures 2.3.(a) and 2.3.(b) have been redrawn in a 3D space under the

‖w‖∞ = 1 and ‖w‖ = 1 constraints (Fig. 2.7.(a) and Fig. 2.7.(b)) for com-
parison purposes. One can see that the non-mixing local minima (located
by ‘◦’ markers) of hr(Y

�) are strengthened compared to those of hr(Y
◦) and

that the non-mixing local maxima (located by ‘*’ markers) of hr(Y
◦) vanish

when Y� is considered instead of Y◦. Even if this cannot be proved by using
the above inequality (2.94), this extends to the example of Figure 2.4. (where
hr(S1) 6= hr(S2)), as shown in Fig. 2.7.(c)

The question then becomes: how do our results extend from ‖w‖ = cst to
‖w‖∞ = cst ? The existing results provided in [Bercher and Vignat, 2002]
partially answer this question when the sources are i.i.d, but what if they have
very different Rényi entropies ? A preliminary question is the following: is it
possible to perform the optimization over the ‖w‖p = cst constraint ? This is
clearly possible for p = 2 by constraining the output variance to be constant; but
is it possible do that for p =∞ based on the elements of the demixing matrices
only? The answer is negative. The theoretical results of Bercher & Vignat are
correct, but there is no way to fulfill the ‖w‖p = cst in practice (i.e. knowing
the demixing matrix and the mixtures only) if p 6= 2, making their developments
useless. Therefore, our negative conclusions about the use of Rényi’s entropy in
BSS still hold.

The aim of the next chapter is to deal with the more difficult problem of spuri-
ous local maxima, i.e. local maxima at transfer vectors that are not proportional
to any of the basis vectors.
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(a) Example of Fig. 2.3.(a): h̄r(Y�) and h̄r(Y◦)
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(b) Example of Fig. 2.3.(b): h̄r(Y�) and h̄r(Y◦)
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(c) Example of Fig. 2.4.: h̄r(Y�) and h̄r(Y◦)

Figure 2.7. Rényi’s entropy behaves differently depending on the constraint: the
inequality (2.94) is satisfied under ‖w‖∞ = 1 constrain (here, even if the sources have
different densities), but not under the ‖w‖2 = 1. The values of Rényi’s exponent are
r = 0.2, r = 1, r = 5 (remind that hr is decreasing in r). The non-mixing local minima
and maxima of h̄r(Y) s.t. ‖w‖2 = 1 are located by ‘◦’ and ‘*’ markers, respectively.
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2.6 APPENDIX: PROOFS OF RESULTS OF THE CHAPTER

2.6.1 Proof of Corollary 6 (wording p. 50)

From Rem. 9, we are led to evaluate

f(B) =
1

2
log |det(WWT)| −

P∑

i=1

logQ




K∑

j=1

WijSj


 . (2.97)

We know from Theorem 8 that the global maximum point of the above cri-
terion is such that W = BA is in the subset WP×K of P × K non-mixing
matrices. For such matrices W, there exists j(i) ∈ {1, . . . ,K} such that for all

i ∈ {1, . . . , P}, Wij 6= 0 if and only if j = j(i). Then, Q(
∑K

j=1 |Wij |Sj) reduces
to |Wij(i)|Q(Sj(i)) from (Huber 1) and thus:

f(B) =
1

2
log

P∏

i=1

W 2
ij(i) −

P∑

i=1

log |Wij(i)| −
P∑

i=1

logQ(Sj(i))

= −
P∑

i=1

logQ(Sj(i)) . (2.98)

Clearly, this quantity is maximized when
∑P

i=1 logQ(Sj(i)) is minimized that is,
when the P sources with lowest value of Q have been recovered. Formally, if
we define the set JW of the column indexes of W containing a non-zero entry,
JW

.
= {j : ∃i s.t. Wij 6= 0}, then:

argmax
B

f(B) = {B : BA ∈ WP×K , ][{j ∈ JBA : j 6 Pm}] = Pm,

maxJBA 6 PM} , (2.99)

where ] is the cardinal operator. Note that ][JW] = P for any W ∈ WP×K .

�

2.6.2 Proof of Property 4 (wording p. 57)

Remark first that the usual convention for one-dimensional finite-support densi-
ties is to define them on the whole real line, and to set their values outside their
support to zero: pX(x) = 0 for all x ∈ IR \ Ω(X). Let us now turn to the proof
of the score function properties.
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The score function is zero-mean:

E[ψX(X)] =

∫
−pX(x)(log pX(x))′dx

= −
∫

p′
X(x)dx

= −[pX(x)]∞−∞ , (2.100)

where we have used limx→−∞ pX(x) = limx→∞ pX(x) = 0 because pX is a den-
sity, and thus integrable. This chain of equalities is equivalent to impose a
weak regularity condition (used e.g. for proving Cramér -Rao bound [Cover
and Thomas, 1991]) on pX ensuring that one can interchange integration and
differentiation, since:

E[ψX(X)] = −
∫

p′
X(x)dx = −d/dx

∫
pX(x)dx = 0 . (2.101)

On the other hand, by integration by parts,

E[XψX(X)] = −
∫
xp′

X(x)dx

= −[pX(x)x]∞−∞ +

∫
pX(x)dx

= 1 (2.102)

because for well-behaved functions (satisfying the regularity conditions), pX(x)
goes faster to zero than 1/x as x→∞.

Finally, again by integration by parts, E[ψ′
Sj

(Sj)] can be rewritten as

E[ψ2
Sj

(Sj)], which is precisely Fisher’s information [Cover and Thomas, 1991]:
for any random variable X, we have

∫
pX(x)

(−p′
X(x)

pX(x)

)′
= −

∫
p′′

X(x)dx+

∫
pX(x)

(
p′

X(x)

pX(x)

)2

dx

= [p′
X(x)]−∞

∞ + E[ψ2
X] , (2.103)

where the first term is zero for well behaved densities.
To check that the inequality

E[ψ2
X(X)]Var[X] > 1 (2.104)



86 CONTRAST PROPERTY OF ENTROPIC CRITERIA

always holds and that the strict equality case holds true if and only if X is
Gaussian, observe that

E[ψ2
X(X)]Var[X] =

E[ψ2
X(X)]Var[X]

(
E[XψX(X)]− E[ψX(X)]E[X]

)2

=
Var[ψX(X)]Var[X]

Cov2[X, ψX(X)]

=
1

Corr2[X, ψX(X)]

> 1

note that the equality can be reached if and only if Corr[X, ψX(X)] = 1, i.e. when
ψX is proportional to X− E[X], which can only occur when pX is Gaussian.

�

2.6.3 Proof of Theorem 11 (wording p. 58)

Assume that w is close from ej so that its i-th component w(i) is close to 0

for i 6= j. Under the w ∈ S(K) constraint, w(j) =
√

1−∑i6=j w(i)2 and since
√

1− x = 1− 1
2x+ o(x), one can write

w(j) = 1− 1

2

∑

i6=j

w(i)2 + o
(∑

i6=j

w(i)2
)
.

Thus, wS = Sj + δSj with

δSj =
∑

i6=j

w(i)Si −
1

2

(∑

i6=j

w2
i

)
Sj + o

(∑

i6=j

w(i)2
)
.

Therefore, applying (2.27) and dropping higher order terms, one gets that h(wS)
equals

h(Sj) +
(∑

i6=j

w(i)
)
E[ψSj

(Sj)Si]−
1

2

(∑

i6=j

w(i)2
)
E[ψSj

(Sj)Sj ]

+
1

2

{
E
[
Var
[∑

i6=j

w(i)2Si

∣∣∣Sj

]
ψ′

Sj
(Sj)

]
−
(∑

i6=j

w(i)E[Si|Sj ]
)′ 2}

+ o
(∑

i6=j

w(i)2
)
.

Since the sources are mutually independent, any non-linear mapping of them is
uncorrelated so that E[ψSj

(Sj)Si] = 0, for i 6= j. Furthermore E[Si|Sj ] = E[Si] =
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0 for i 6= j, E[ψSj
(Sj)Sj ] = 1, and Var[

∑
i6=j w(i)Si|Sj ] = Var[

∑
i6=j w(i)Si] =

(
∑

i6=j w
2
i )σ2

S where σ2
S denotes the common variance of the sources. Therefore

h(wS) = h(Sj) +
1

2

(∑

i6=j

w(i)2
)
{σ2

SE[ψ′
Sj

(Sj)]− 1}+ o
(∑

i6=j

w(i)2
)
.

One concludes from Property 4 that for any non-Gaussian source
σ2

SE[ψ′
Sj

(Sj)] > 1, that is, h(wS) > h(Sj) for all w sufficiently close to ej if

Sj is non-Gaussian. Thus h(wS) reaches local non-mixing minima at w = ±ej

(since h(−wS) = h(wS)), as long as Sj is non-Gaussian. If Sj is Gaussian then
h(Sj) is a global maximum since Gaussian random variables have the highest
entropy for a given variance. Equality (2.105) is of no use in this case, since the
second term in this equality vanishes.

�

2.6.4 Proof of Lemma 6 (wording p. 60)

Suppose µ[Ω(X)] = µ[Ω(X)] > 0 and µ[Ω(Y)] = µ[Ω(Y)] > 0. This means that
µ[Ω(X) \ Ω(X)] = µ[Ω(Y) \ Ω(Y)] = 0. Therefore, the sets Ω(X) and Ω(Y) can
be expressed as

{
Ω(X) = [inf X, sup X] \ ∪I′

i=1{xi}
Ω(Y) = [inf Y, sup Y] \ ∪J ′

j=1{yj}
(2.105)

where xi, yi are isolated points. Then,

µ[Ω(X + Y)] = µ[Ω(X + Y)]

= (supX + supY)− (inf X + inf Y)

= µ[Ω(X)] + µ[Ω(Y)] ,

which yields the first result of the lemma.
To prove the second claim, suppose that Ω(X) = ∪I

i=1Ωi(X) and Ω(Y) =

∪J
j=1Ωj(Y). Further, X? = ∪I−1

i=1 [Xm
i ,X

M
i ] \ ∪I′

i′=1{xi′}, Y? = ∪J−1
j=1 [Ym

j ,Y
M
j ] \

∪J ′

j′=1{yj′} and X = X?∪ [Xm
I ,X

M
I ]\∪I?

i?=1{xi?}, Y = Y?∪ [Ym
J ,Y

M
J ]\∪J?

j?=1{yj?}
where Xm

i 6 XM
i < Xm

i+1, Ym
i 6 YM

i < Ym
i+1 and Xm

I = XM
I−1 +ε, ε > 0. We first

assume that the right-most intervals constituting Ω(X) and Ω(Y) are not isolated
points, that is have strictly positive measure: ∆X

.
= XM

I − Xm
I = µ[ΩI(X)] > 0

and ∆Y
.
= YM

J −Ym
J = µ[ΩJ (X)] > 0. Hence, we have:

µ[Ω(X + Y)] > µ[Ω(X? + Y)] +
{

(YM
J + XM

I )−max(XM
I−1 + YM

J ,Ym
J + Xm

I )
}
,

where the term into brackets is a lower bound of the sub-volume of Ω(X + Y)
due to the interval [Xm

I ,X
M
I ]; it can be rewritten as min{∆X + ε,∆X + ∆Y}.
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Finally, having the Brunn-Minkowski inequality in mind, one gets:

µ[Ω(X + Y)] > µ[Ω(X? + Y)] + min{∆X + ε,∆X + ∆Y}
> µ[Ω(X)]−∆X + µ[Ω(Y)] + min{∆X + ε,∆X + ∆Y}
> µ[Ω(X)] + µ[Ω(Y)] .

Suppose now that the right-most intervals might reduce to a single point, i.e.
Xm

i = XM
i for I−I? 6 i 6 I, Y m

i = Y M
i for J−J? 6 j 6 J with min(I?, J?) > 1.

Because of the non-zero measure condition on the support sets, I? < I, J? < J .
We rewrite the support set of the random variable as a union of a set having a
strictly positive measure and of isolated points

Ω(X)
.
= Ω(X?) ∪I?

i=1 {ξi} , Ω(Y)
.
= Ω(Y?) ∪J?

j=1 {ζj} ,

such that there exists εx > 0, εy > 0 [sup Ω(X?) − εx, sup Ω(X?)) ⊆ Ω(X?),
[supΩ(Y?)− εy, sup Ω(Y?)) ⊆ Ω(Y?). In other words, each of the isolated points
located on the right of the most right interval of Ω(X) (resp. Ω(Y)) with strictly
positive measure are relegated in the union ∪I?

i=1{ξi} (resp. ∪J?

j=1{ζj}). If such
isolated points exist, one can always proceed to this trick because of the existence
of the above “positive-measure” intervals: by hypothesis µ[Ω(X)] > 0, µ[Ω(Y)] >
0. As isolated points have zero-measure and do not affect the support measure
of X and Y:

µ[Ω(X)] = µ[Ω?(X)] , µ[Ω(Y)] = µ[Ω?(Y)]

By contrast, they influence the support measure of X + Y. Indeed, Ω(X + Y)
can be expressed as a union of subsets:

{x+ y : x ∈ Ω?(X), y ∈ Ω?(Y)}︸ ︷︷ ︸
(a)

∪I?

i=1{y + ξi, y ∈ Ω(Y)}︸ ︷︷ ︸
(b)

∪J?

j=1{x+ ζj , x ∈ Ω(X)}
︸ ︷︷ ︸

(c)

.

But the measure of the left-most set (a) is larger than or equal to the sum
µ[Ω?(X)] + µ[Ω?(Y)] (by the BMI) which precisely equals µ[Ω(X)] + µ[Ω(Y)].
On the other hand, at least one of the other sets cannot be totally included
in (a). For instance, assuming that supΩ(X)

.
= ξS , the term (b) is not totally

contained in (a), and it can be shown that the remaining part “(b)\(a)” has a
strictly positive measure. Indeed, because ξS is an isolated point, there exists
ε > 0 such that ξS = supΩ?(X)+ε and by definition of Ω?(Y), [ξS +supΩ?(Y)−
∆, ξS +sup Ω?(Y)) is included in Ω(X + Y) for all ∆ satisfying 0 < ∆ 6 εy. But
this interval has a strictly positive measure equal to ∆ and is disjoint from (a)
if ξS + supΩ?(Y)−∆ > supΩ?(X) + sup Ω?(Y) that is if ∆ < ε.

Hence, since for sufficiently small ∆ > 0 we have ξS > supΩ?(Y) + ∆, it
comes that

µ[Ω(X + Y)] > µ[Ω(X)] + µ[Ω(Y)] + ∆ ,

for some ∆ > 0.

�
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2.6.5 Proof of Theorem 14 (wording p. 62)

The proof of this theorem will be based on the two next propositions, and assumes
R(S1) = R(S2) = . . . = R(Sk) < R(Sk+1).

Proposition 4 Let us define a p ∈ Vλ
K vector respecting p(r) > 0 for any

k < r 6 K. Consider vector q defined by:





q(r) = 0

q(k′) =
√

p(k′)2 + p(r)2 with 1 6 k′ 6 k
q(j) = p(j) for all 1 6 j 6 K, j /∈ {k′, r}

, (2.106)

Then, q ∈ Vλ
K and C̃R(q) > C̃R(p), i.e. p /∈ {w : w = arg max{w∈Vλ

K} C̃R(w)} .

Proof: It is trivial to show that q ∈ Vλ
K . On the other hand, we have

p(r)2R2(Sk′) < p(r)2R2(Sr) ,

and:

p(k′)2R2(Sk′) + p(r)2R2(Sk′) < p(k′)2R2(Sk′) + p(r)2R(Sr)

+ 2p(k′)p(r)R(Sk′)R(Sr)︸ ︷︷ ︸
>0

R(Sk′)
√

p(k′)2 + p(r)2 < p(k′)R(Sk′) + p(r)R(Sr) (2.107)

Hence, it results from the definition of q that −C̃R(q) < −C̃R(p) and thus
C̃R(q) > C̃R(p).

�

Proposition 5 For any p ∈ Vλ
K vector satisfying p(j) = 0 for all k < j 6 K,

then C̃R(p) 6 C̃R(λej), 1 6 j 6 k with equality if and only if p ∈ {λ.e1, . . . , λ.ek}

Proof: If p(j) = 0 for all j > k, then, because p ∈ Vλ
K , there must exist r 6 k

such that p(r) > 0. On the other hand, for any 1 6 r 6= r′ 6 k, we know that
p(r′) > 0. Hence, by definition of k:

p(r)R(Sr) + p(r′)R(Sr′) = (p(r) + p(r′))R(Sr) . (2.108)

Let us define q by q(j) = p(j) for j /∈ {r, r′}, q(r) =
√

p(r)2 + p(r′)2 and

q(r′) = 0. Then, it is straightforward to show that q ∈ Vλ
K , and that C̃R(q) >

C̃R(p) with equality if and only if p(r′) = 0. To prove the last claim, remark
that: √

p(r)2 + p(r′)2 6 p(r) + p(r′) . (2.109)

with equality only when p(r′) = 0. Hence, by iterating this result setting p← q,
if such a p vector has at least two strictly positive elements, then C̃R(p) <
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C̃R(λej), with 1 6 j 6 k. On the other hand, it is easy to see that if a p
vector satisfying p(k + 1) = . . . = p(K) = 0 and p ∈ Vλ

K has a single non-zero
entry, then p ∈ {λ.e1, . . . , λ.ek}. This concludes the proof of the proposition. By
iterating Proposition 4, for any vector p ∈ Vλ

K such that there exists k < r 6 K
with p(r) > 0 there exists another vector q ∈ Vλ

K , respecting q(j) = 0 for all
k < j 6 K satisfying C̃R(q) > C̃R(p). On the other hand, Proposition 5 shows
that among all those q vectors, only q ∈ {λ.e1, . . . , λ.ek} can maximize globally
function C̃R subjected to q ∈ Vλ

K .

�

2.6.6 Proof of Theorem 15 (wording p. 63)

Suppose that êi ∈ V1
K is a vector close to ei, in the sense that êi = ei + δei

where δei is a “small” vector. Obviously, δei(i) < 0 and δei(j) > 0, for j 6= i.
We note δei(i) = −ε where ε > 0. By the ‖êi‖ = 1 constraint, it comes that:

∑

j 6=i

êi(j)
2 = 1− êi(i)

2

= 1− (1− ε)2 . (2.110)

On the other hand, by Eq. (2.50):

∆C̃R(ei, êi) = (1− ε)R(Si) +
∑

j 6=i

êi(j)R(Sj)

︸ ︷︷ ︸
−C̃R(êi)

− R(Si)︸ ︷︷ ︸
−C̃R(ei)

. (2.111)

Hence, Theorem 15 will be proven if
∑

j 6=i

êi(j)R(Sj) > εR(Si) . (2.112)

Let us denote the norm of êi s.t. j 6= i vector by:

λ′
.
=

√∑

j 6=i

êi(j)2 . (2.113)

By Eq. (2.110), λ′ =
√

1− (1− ε)2. Hence, by using Theorem 14 with

w = [êi(1), . . . , êi(i − 1), êi(i + 1), . . . , êi(K)] and w ∈ Vλ′

K−1, we find C̃R(w) 6

C̃R(λ′er), where r = arg minj 6=i{R(Sj)}. In other words, the following inequality
holds: ∑

j 6=i

êi(j)R(Sj) >
√

1− (1− ε)2︸ ︷︷ ︸
λ′

R(Sr) . (2.114)

Then, having Eq. (2.112) in mind, a sufficient condition to prove Theorem 2 is
to check that the following inequality holds for any sufficiently small ε > 0:

λ′R(Sr) > εR(Si) with r 6= i . (2.115)
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By transitivity, the previous inequality holds when:
√

2ε− ε2R(Sr) > εR(Si)

(2ε− ε2)R2(Sr) > ε2R2(Si) .

(2.116)

Hence, if ε[2R2(Sr) − ε(R2(Sr) + R2(Si))] > 0 holds for any sufficiently small
ε > 0, then Eq. (2.112) is fulfilled.

The last inequality is satisfied for all 0 < ε < 2R2(Sr)
R2(Si)+R2(Sr) . This result

concludes the proof: ∆C̃R(ei, êi) > 0 for all sufficiently small ε > 0.

�

2.6.7 Proof of Theorem 16 (wording p. 64)

The proof of this theorem results from an adaptation to P 6 K of the proof of
Proposition 3 presented in [Pham, 2000]. As in this proof, in order to show that
any matrix in WP×K is a local maximum point of C̃R it is sufficient to prove
that for a small increment δW of W ∈ WP×K , the quantity

P∑

i=1

{
log
[ K∑

j=1

|Wij + δWij |R(Sj)
]
− log

[ K∑

j=1

|Wij |R(Sj)
]}

, (2.117)

Wij and δWij denoting the general element of W and of δW, is larger or equal
than 1

2{log det[(W + δW)(W + δW)T] − log det(WWT)}, up to first order in
δW. But since W ∈ WP×K , there exists distinct indexes j(1), . . . , j(P ) such
that for i = 1, . . . , P , Wij 6= 0 if and only if j = j(i). Thus (2.117) reduces to

P∑

i=1

log
[∣∣∣1 +

δWij(i)

Wij(i)

∣∣∣+
∑K

j 6=j(i) |δWij |R(Sj)

|Wij(i)|R(Sj(i))

]
,

which, for |δWij(i)| < |Wij(i)|, equals

P∑

i=1

[δWij(i)

Wij(i)
+

∑K
j 6=j(i) |δWij |R(Sj)

|Wij(i)|R(Sj(i))

]
+O(‖δW‖2) .

On the other hand, the first order Taylor expansion of a multivariate function
f : RP×K → R is

f(W + δW) = f(W) + 〈∇f, δW〉+ . . . (2.118)

where ∇f is the gradient of f and 〈·, ·〉 denotes the dot product. But, as it will
be shown in Lemma 21 (see Chapter 3, Section 3.4.4), we have

∂ log |det(WWT)|
∂Wij

= 2[(W+)T]ij = 2[W+]ji (2.119)
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implying

〈∇f, δW〉 = 2
∑

i,j

[(W+)T ]ijδWij = 2Tr
[
W+δW

]
. (2.120)

Note that due to the special form of W, WWT is diagonal with i-th diagonal
equal to W 2

ij(i). Thus, W+ = WT (WWT )−1 has its ji element equal to 0 if

j 6= j(i) and to 1/Wij(i) otherwise. Therefore

1

2
{log det[(W+δW)(W+δW)T]−log det(WWT)} =

P∑

i=1

δWij(i)

Wij(i)
+O(‖δW‖2) .

It follows that (2.117) is greater than the above left hand side, up to a term of
order O(‖δW‖2).

�

2.6.8 Convolution of Gaussian kernels (wording p. 67)

In this section, the last equality of Eq. (2.58) is proved. This is a well-known
result but we were not able to find the proof. Therefore, we propose here a
personal development, without guarantee that the approach is original. Let us
first prove that the convolution of two centered Gaussian kernels φσi

(x) and
φσj

(x) is equal to a Gaussian kernel with standard deviation equal to σij =√
σ2

i + σ2
j :

φσi
(x) ∗ φσj

(x)
.
=

∫ +∞

−∞
φσi

(τ)φσj
(x− τ)dτ = φ√

σ2
i +σ2

j
(x) . (2.121)

Observe that

φσi
(x) ∗ φσj

(x) =
1

2πσiσj

∫
e
− τ2

2σ2
i e

− (x−τ)2

2σ2
j dτ

=
1

2πσiσj

∫ +∞

−∞
e
− τ2

2σ2
i e

− (x−τ)2

2σ2
j e

− x2

2(σ2
i
+σ2

j
) e

x2

2(σ2
i
+σ2

j
)

︸ ︷︷ ︸
=1

dτ

=
1

2πσiσj
e
− x2

2(σ2
i
+σ2

j
)

︸ ︷︷ ︸
ξ

∫ +∞

−∞
e
− τ2

2σ2
i e

− (x−τ)2

2σ2
j e

x2

2(σ2
i
+σ2

j
) dτ

= ξ

∫ +∞

−∞
e
−

(τ(σ2
i +σ2

j )−xσ2
i )2

2σ2
i

σ2
j
(σ2

i
+σ2

j
) dτ

= ξ

∫ +∞

−∞
e
−

(
τ(σ2

i +σ2
j )

σiσj
−x

σi
σj

)2

2(σ2
i
+σ2

j
) dτ (2.122)



APPENDIX: PROOFS OF RESULTS OF THE CHAPTER 93

Let us set ζ
.
=

τ(σ2
i +σ2

j )

σiσj
−x σi

σj
, , then dτ =

σiσj

σ2
i +σ2

j
dζ and we get from the above

chain of equalities:

φσi
(x) ∗ φσj

(x) = ξ
σiσj

σ2
i + σ2

i

∫ +∞

−∞
e
− ζ2

2(σ2
i
+σ2

j
) dζ (2.123)

= ξ
σiσj

σ2
i + σ2

i

√
2π
√
σ2

i + σ2
j (2.124)

= φ√
σ2

i +σ2
j
(x) , (2.125)

which shows that convoluting two centered Gaussian kernels with standard de-
viation of, respectively, σi and σj yields another centered Gaussian kernel of

standard deviation
√
σ2

i + σ2
j .

Let us now prove that the integral of the product of two Gaussian functions
of means µi and µj and variances σi and σj equals φ√

σ2
i +σ2

j
(µj − µi):

∫ +∞

−∞
φσi

(x− µi)φσj
(x− µj)dx = φ√

σ2
i +σ2

j
(µi − µj) . (2.126)

By setting τ
.
= x− µi, we have :

x− µj = x− µi + (µi − µj) (2.127)

= τ + µi − µj︸ ︷︷ ︸
.
=−s

(2.128)

Then, by substitution, we find that

∫ +∞

−∞
φσi

(x− µi)φσj
(x− µj)dx =

∫
φσi

(τ)φσj
(s− τ)dτ (2.129)

= φσi
(s) ∗ φσj

(s) (2.130)

= φ√
σ2

i +σ2
j
(µj − µi) (2.131)

�

and this concludes the proof of Eq. (2.126).

2.6.9 Proof of Lemma 7 (wording p. 71)

Let us write wi = biA, as usual. Then, hr(biX) = hr(wiS), and for a small
increment [δ1, · · · , δK ] of wi:

− hr(wiS + [δ1, · · · , δK ]S) = −hr(wiS) +

K∑

k=1

δkE[ψwiS,r(wiS)Sk]
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+o



(

K∑

k=1

δ2k

)1/2

 . (2.132)

Further, using Eq. (2.19), the output unit-variance constraint gives ‖wi‖ =

wiw
T
i = 1, which yields [δ1, · · · , δK ]wT

i = o[
∑K

k=1 δ
2
k], i.e. [δ1, · · · , δK ]wT

i is

o[(
∑K

k=1 δ
2
k)1/2]. Thus if wi = ±ej , then δj = o[(

∑K
k=1 δ

2
k)1/2] and

− hr(±Sj + [δ1, · · · , δK ]S) = −hr(±Sj) + o



(

K∑

k=1

δ2k

)1/2

 (2.133)

meaning that the scale-invariant functional C̃hr
(w) admits a stationary point at

±ej or, equivalently, that Chr
(b) is stationary when bA ∈ {±e1, . . . ,±eK} (i.e.

when the unit norm vector bA satisfies ‖bA‖∞ = 1).

�

2.6.10 Proof of Lemma 8 (wording p. 71)

Let us develop Rényi’s entropy up to second order around wj = ej (observe that
Rényi’s entropy is not sensitive to the sign of the random variable). We find

− hr(±Sj + [δ1, · · · , δK ]S) = −hr[(δj ± 1)Sj ]−
1

2

∑

k, 16k 6=j6K

δ2kJr(±Sj)

+o


 ∑

k, 16k 6=j6K

δ2k


 .(2.134)

But Jr(Sj) = Jr(−Sj) and hr[(δj ±1)Sj ] = hr(±Sj)+ log |1± δj | and further the
constraint ‖wi‖ = 1 yields |1± δi|2 = 1−∑16k 6=j6K δ2k. Therefore

− hr(±Sj + [δ1, · · · , δK ]S) = −hr(±Sj)−
1

2

∑

k, 16k 6=j6K

δ2k[Jr(Sj)− 1]

+o


 ∑

k, 16k 6=j6K

δ2k


 . (2.135)

The above result shows that a necessary condition for the function −hr(wS)
over the set S(K) to admit a local maximum at ±ej is that Jr(Sj) > 1 and a
sufficient condition is that this inequality is strict. Since the sources have been
assumed to have unit variance, one can write these conditions as Jr(Sj)Var[Sj ] >
1 and Jr(Sj)Var[Sj ] > 1, which are then independent of the source variance.

�
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2.6.11 Proof of Lemma 9 (wording p. 72)

Let us evaluate the Rényi entropy-based simultaneous BSS criterion around B,
i.e. at B + EB where E is a “small” matrix:

Chr
(B + EB) = log |det(B + EB)| −

K∑

i=1

hr[(B + EB)iX] . (2.136)

Further, it will be shown that log |det(B + EB)| = log |detB| + Tr(E) −
1/2Tr(E2) + o(‖E‖2) (see Eq. (3.14) and the associated proof in Section 3.8.1,
p. 167). If Eij denotes the general element of E and if we express the small
vector [δ1, . . . , δK ] in Eq. (2.132) in the basis spanned by the columns of the
regular matrix W = BA with coefficients given by a i-th row of E (i.e. with

δj =
∑K

k=1 EikWkj), one gets

Chr
(B + EB) = Chr

(B)−
∑∑

i6=j

EijE[ψYi,r(Yi)Yj ] + o(‖E‖) . (2.137)

Since, for any pair of functions f, g E[f(Si)g(Sj)] = 0 if i 6= j, it is seen that
the criterion Chr

(B) is stationary when the Yk coincide with the sources, up to
a scale factor.

�

2.6.12 Proof of Lemma 10 (wording p. 72)

From the above result, if the components Yk of Y = BX are proportional to
distinct sources, hence independent, the expansion of Chr

(B + EB) takes the
form

Chr
(B + EB) = Chr

(B)− 1

2

∑∑

16i6=j6K

[E2
ijJr(Yi)Var[Yj ] + EijEji] . (2.138)

The last sum is a quadratic form associated with the symmetric block diagonal
matrix, with 2× 2 blocks:

Ji,j
r

.
=

[
Jr(Yi)Var[Yj ] 1

1 Jr(Yj)Var[Yi]

]
, (2.139)

that is
∑∑

16i6=j6K

[E2
ijJr(Yi)Var[Yj ] + EijEji] =

∑∑

16i<j6K

[Eij Eji]J
i,j
r [Eij Eji]

T . (2.140)

Thus, in order that the criterion Chr
(B) attain a local maximum at the point

B ∼ A−1, which is the same as the Yi be proportional to distinct sources, it is
necessary that the Ji,j

r matrices in Eq. (2.139) be positive semi-definite and it is
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sufficient that they are positive definite. But a necessary condition for the Ji,j
r to

be positive definite is to have a positive determinant, and a necessary condition
becomes Jr(Yi)Var[Yi]Jr(Yj)Var[Yj ] > 1,∀i 6= j. The sufficient condition is that
the above inequality is strict.

Note that the product Jr(Yi)Var[Yi] is scale invariant: it is unchanged when
Yi is multiplied by a constant factor. Thus, in the case where the sources have the
same density, the above necessary condition reduces to Jr(S)Var[S] > 1 where S
is a random variable with density equal to the common density of the sources.
The sufficient condition is Jr(S)Var[S] > 1.

�



CHAPTER 3

DISCRIMINACY OF ENTROPIC

CONTRASTS

ANALYSIS OF THE MIXING MAXIMA

Abstract. Chapter 2 addressed the possible existence of local non-mixing
maximum points of criteria based on the (extended form of) Rényi’s entropy.
Furthermore, as discussed in Section 1.8, adaptive optimization techniques sim-
ilar to those given in Section 1.6 may lead to any local maximum point, mixing
or not. Therefore, if mixing local maximum points exist, the algorithm may be
stuck in such a solution, which is actually a spurious solution. Some methods
exist to look for global maximum points like e.g. simulated annealing (which
basically consists in maximizing powers of contrast functions to attenuate the
local maxima compared to the global maximum); by the contrast function defi-
nition, these global maximum points are necessarily non-mixing. However, local
maximum points can also be non-mixing (in both deflation and partial separa-
tion schemes), and these points will not be recovered by using such optimization
techniques. Actually, what we would like to do is “simply” to converge to any
non-mixing point (i.e. to any local maximum point corresponding to the extrac-
tion of – a subset of – the sources).

To that aim, one needs to know in advance if mixing maximum points exist.
If such points do not exist, we know that the solution provided by the iterative
optimization technique will give a (possibly local) maximum point, but this
point shall correspond to an acceptable solution of the BSS problem. On the
contrary, this is no more true if mixing maxima exist: we have no guarantee that
the solution found is acceptable. The goal of this chapter is to deal with this
question for the contrast functions provided in Chapter 2.

97
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Contribution. As in Chapter 2, the original results about the mixing max-
ima of the entropic contrasts (namely: the Shannon entropy-based, the support-
based and the range-based contrasts) are summarized. Next, the mathematical
tools that have been developed in order to perform the above analysis are listed.
Finally, intuitive justifications of some phenomena are given.

• Results about the local and global optima of entropic criteria

– Shannon’s entropy-based BSS contrast functions was proved to
suffer from mixing optima based on experimental results when the
source densities are multimodal; but those simulations always involved
entropy approximation, so that it was unclear wheter such mixing
maxima exist in the exact Shannon’s entropy-based contrast. This
is rigorously proved here when the source densities are multimodal
enough. Mutual information is also proved to have such spurious
optima. Hence, Shannon’s entropy-based contrasts are not discrimi-
nant contrasts in deflation and simultaneous separation schemes (and
consequently for partial separation scheme, too)

– Hartley’s entropy-based BSS contrast functions are proved to suffer
from the same drawback when (shortly) the source supports are non-
convex; this can be seen to be related to the “multimodality” concept
when only the support is considered.

– Extended Hartley’s entropy-based (i.e. range-based) BSS con-
trast functions are proved to be, on the contrary, discriminant con-
trast functions in the three extraction schemes, and thus even if a
prewhitening step is not performed. To our knowledge, this is the
single BSS criterion that is proved to benefit from the discriminacy
property in the three extraction schemes (and in addition when no
prewhitening is used), so far.

• Tools and other results

– The Taylor expansion of Shannon’s entropy was useful to give counter-
examples showing that the related deflation and simultaneous contrast
functions are not discriminant. However, this could be shown for a
limited class of source densities (two i.i.d. and symmetric sources).
Therefore, another technique is presented, based on entropy approxi-
mation, exploiting the multimodal nature of the source pdfs. It allows
us to extend the results to pairs of sources that have different and
asymmetric multimodal densities. Error bounds are also provided.

– The output range is proved to be a g-convex functional under a fixed-
variance constraint. This useful (but unrecognized) result implies the
discriminacy of the deflation range-based contrast.
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• Intuitive developments

– We propose an intuitive (informal) justification explaining the exis-
tence of mixing maxima that emphasizes the specific nature of the
multimodal source densities and, point out the relationship between
the modality of a random variable and its entropy in our BSS frame-
work.

– It is intuitively explained why cumulant-based criteria (like absolute
kurtosis) do not suffer from this drawback.

In this chapter, all the proofs are original. Some of them result from joint
work with D.-T. Pham. Part of the work presented in this chapter was or will be
published in the following papers (see Appendix B): JA1, JP1, JP2, JP3, JA1,
ICB1, ICP7, ICP8 (results about Shannon’s entropy) JA2, JA3, JTBS1, ICB6,
ICP6, ICP10(results about the support and the range) JS1, ICTBS1 (results
about Rényi entropies).

Organization of the chapter. In Section 3.2, the possible existence of
mixing minima of Shannon’s entropy is analyzed. An informal justification and
two rigorous approaches are used to show that this may not be the case when
the sources have multimodal densities. As it is known that there is no mixing
optimum in some cumulant-based criteria, we try to sketch an intuitive reasoning
explaining the origin of this difference. The mixing extrema of the general form of
Rényi’s entropies are not investigated as they do not lead to contrast functions.
Then the range criterion is analyzed in Section 3.4, from various viewpoints
and for the three extraction schemes. Section 3.5 shows that the discriminacy
property is shared by the range but not by the support, which behaves similarly
to the Shannon entropy.

3.1 CONCEPT DEFINITION AND TERMINOLOGY JUSTIFICATION

Contrast functions that are free from mixing maximum points will be called
discriminant, in the sense that the characterization of their local maxima may
render us able to distinguish between spurious and optimal solutions as the set
of the first kind of solutions is empty. On the contrary, for the other contrast
functions, we cannot guarantee that the demixing matrix found via adaptive
maximization is (sub)PD-equivalent to the inverse of the mixing matrix. As an
example, in the partial separation scheme, an output mutual information close to
zero does not tell us anything about the quality of the separation, as explained in
the introductory paragraph of Section 1.4. Basically, Comon’s terminology ex-
pressed that a criterion is a contrast function if (among others), when BA ∼ IK ,
then the criterion reaches its maximum value. It was a discriminating contrast
if the global maximum occurs only when B is of the form BA ∼ IK . In this
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(a) Conf. 1 (b) Conf. 2 (c) Conf. 3

(d) Conf. 4 (e) Conf. 5

Figure 3.1. Configuration of FCD vs F̃C .

work, we have proposed alternative -even though closely related and somewhat
equivalent in the simultaneous case- definitions to generalize the notion to de-
flation and partial separation schemes. By contrast to Comon’s terminology,
the discriminacy property is here related to the local maximum points, not only
the global ones. The reason is that for some criteria, we are not able, without
exhaustive search, to know if a local maximum is global.

If we define the set FCD as the set of discriminant BSS contrasts, we know that
FCD ⊂ FC ; the discriminant contrast functions obviously forms a subset of the
set of contrast functions. But, based on the previous results, the relative order of
FCD compared to the set of contrast functions satisfying Huber’s superadditivity,
denoted here by F̃C , may be as in one of the five configurations illustrated in
Figure 3.1. This section shall also help us to find the adequate configuration
describing the relative order relation between the subsets FCD and F̃C of FC .

3.2 DISCRIMINACY OF SHANNON’S ENTROPY

Before going inside technical developments, let us give three simple introductory
examples in the K = 2 case (for illustration purposes). In these examples, the
unit-norm vector w can be rewritten as wθ

.
= [sin θ, cos θ] and h(Yθ) (with

Yθ
.
= wθS) is considered as a function of θ. The entropy is computed through

Eq. (1.73), in which the pdf were estimated from a finite sample set, using
Parzen density estimation with isotropic Gaussian Kernels [Parzen, 1962] and
Riemannian summation instead of exact integration; this estimation of entropy
will be denoted by ĥ (note that the value of the Parzen window is not of first
importance if it is chosen in a wide reasonable range; therefore, as the curves are
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Figure 3.2. Evolution of ĥ(wθS) vs θ. Example 7: two uniform sources (top);
Example 8: uniform (S1) and Gaussian (S2) sources (middle); Example 9: two bimodal
sources (bottom). The non-mixing minima are indicated by dash-dotted vertical lines,
the mixing ones by dotted lines. c©2006, IEEE. Reprinted, with permission, from Vrins,
Pham & Verleysen: Mixing and non-mixing local minima of the entropy contrast for
blind source separation. To appear in IEEE Transactions on Information Theory
(March 2007).

given for illustration purposes only, the values of the parameters are not always
provided).

Example 7 Assume that S1 and S2 have uniform densities. According to The-
orem 11 (p. 58), local minima of the entropy exist for θ ∈ {kπ/2|k ∈ Z}. In this
example, no mixing minimum can be observed (Fig. 3.2, top panel).

Example 8 Suppose now that S1 and S2 have uniform and Gaussian densities
respectively. Local minima are found for θ ∈ {(2k+1)π/2|k ∈ Z}, and local max-
ima for θ ∈ {kπ|k ∈ Z} (Fig. 3.2, middle panel), as expected from Theorem 11
(p. 58). Again, no spurious minimum can be observed in this example.

Example 9 Consider two “source” symmetric pdfs ps1
and ps2

that are con-
stituted by i) two non-overlapping uniform modes and ii) two Gaussian modes
with negligible overlap, respectively. This time, mixing maxima occur for θ /∈
{kπ/2|k ∈ Z} (Fig. 3.2, bottom panel).

In addition to an illustration of the theoretical results given by Theorem 11
(p. 58), the last example shows the existence of spurious (mixing) local minima
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for θ /∈ {kπ/2|k ∈ Z}. Rigorously speaking however, the figure does not consti-

tute a proof of the existence of local minima of h
(
wS/

√
Var[wS]

)
; the minima

visible on the figure could indeed be a consequence of the entropy estimator
(more precisely, of the pdf estimation and/or of the numerical integration as we

have no idea of how ĥ(Yθ) differs from the exact entropy h(Yθ)).
The phenomenon of mixing maximum point of Shannon’s entropy based con-

trast will be investigated under several viewpoints. First, an informal approach is
proposed (Section 3.2.1). Then, in Section 3.2.2, a formal approach using Taylor
expansion of the entropy is provided. Finally, in Section 3.2.3 a last approach
suggests to use an entropy approximation (with error bounds) to analyze the
possible existence of mixing minima of Shannon’s entropy. In order to avoid a
lot of minus signs, this section uses the opposite of BSS contrast function, namely
“cost function” (to be minimized). As an example, under some normalization
constraint, Shannon’s entropy is a cost function.

3.2.1 Informal approach : the multimodal case

Dealing with multimodal sources in BSS is known to be a difficult problem
when achieved through a gradient descent on a cost function. Indeed, the usual
cost functions plugged in the ICA algorithms may have spurious minima in
such situations; the only alternative to gradient descent is the exhaustive search
when no algebraic method is available [Learned-Miller and Fisher III, 2003]. As
an example, consider the maximum-likelihood (ML) approach to BSS, which
consists in finding an output density that is as close as possible to a target
density, supposed to be – very close to – the unknown source density. The ML-
based function has spurious local minima if the marginal source densities are
multimodal, even if the target density is taken exactly equal to the (unknown)
source density [Cardoso, 2000]. Cardoso explains intuitively that these local
minima are due to a local optimal matching (in the KL divergence sense) between
the output and the target densities.

This section aims at pointing out, using simulations, some specific examples
where such spurious entropy minima (spurious contrast maxima) exist. The first
subsection will present these examples, and a näıve reasoning is proposed to
justify the location of the spurious entropy minima; these locations are shown to
be related to the modality of the output densities. The second subsection aims
at explaining how modality and entropy can be linked.

3.2.1.1 Structural modifications analysis: understanding the location of the entropy
minima

Recently, it was noted by several authors that the entropy cost function may
also have spurious minima in the BSS context [Boscolo et al., 2004, Learned-
Miller and Fisher III, 2003, Vrins et al., 2004, Vrins and Verleysen, 2005b].
However, since the entropic approach does not suppose any model (there is no
source model to “guess”) for the source density, the existence of spurious minima
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cannot be understood by the same arguments as in the ML case. These mixing
maxima are emphasized in the following example.

Example 10 Consider the two pairs of sources sampled to have a scatter plot
as in Figure 3.3. For both source vectors, one can compute the entropy of Yθ
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(a) Slightly bimodal independent sources
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(b) Highly bimodal independent sources

Figure 3.3. Example 10. Two scatter plots of source vectors. Both sources have two
Gaussian modes (left); One source has two uniform modes, the second source has two
Gaussian modes (right). c©2005, Elsevier B.V. Reprinted, with permission, from Vrins
& Verleysen: On the entropy minimization of a linear mixture of variables for source
separation. Signal Processing 85(5), pp. 1029-1044, May 2005.

(or more exactly, its approximated counterpart ĥ(Yθ)) as a function of θ. This
is illustrated in Figure 3.4. on a polar graph. As the radius denotes the entropy,
negative entropies cannot be shown; for this reason, ĥ(·) has been shifted to ĥ(·)+
ε, where

ε =

{
0 if minθ ĥ(·) > 0

−minθ ĥ(·) if minθ ĥ(·) < 0
. (3.1)

Similarly, we can compute the sum of the output entropies. When W ∈ SO(2),
we can write the outputs as Y1 = Yθ and Y2 = Yπ/2+θ (see mixture model in

Eq. (1.60)). Figure 3.5. shows the sum ĥ(Yθ) + ĥ(Yπ/2+θ) as a function of θ
for the two pairs of sources of Figure 3.3. From these toy examples, we see that
mixing minima may occur in the (sum of) entropy(ies), and that the stronger
their multi-modality, the deeper the spurious minimum.

This section aims at explaining how and why these spurious minima may appear.
This is done by looking at the effects of scaling and mixing independent random
variables. Furthermore, this analysis allows one to understand the locations of
the possible spurious minima, i.e. for which mixture coefficients they appear.

For the sake of simplicity, we still consider K = 2 and focus on h(Yθ) where
Yθ = wθS (remind that wθ

.
= [sin θ, cos θ]).

Since
∫

psin θS1
(ξ)dξ = 1, if the maximum value of psin θS1

increases (resp.
decreases), the support Ω(sin θS1) of sin θS1 is contracted (resp. extended)
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Figure 3.4. Example 10. Evolution of ĥ(Yθ) vs θ for independent variables S1, S2

having bimodal densities (see their scatter plot in Fig. 3.3.). c©2005, Elsevier B.V.
Reprinted, with permission, from Vrins & Verleysen: On the entropy minimization
of a linear mixture of variables for source separation. Signal Processing 85(5), pp.
1029-1044, May 2005.
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Figure 3.5. Example 10. Evolution of ĥ(Yθ) + ĥ(Yπ/2−θ) vs θ for independent
variables S1, S2 having bimodal densities (see their scatter plot in Fig. 3.3.). c©2005,
Elsevier B.V. Reprinted, with permission, from Vrins & Verleysen: On the entropy
minimization of a linear mixture of variables for source separation. Signal Processing
85(5), pp. 1029-1044, May 2005.
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compared to pS1
and Ω(S1), respectively. Of course, this seems to be a non-

sense if Ω(sin θS1) is infinite. Actually, this contraction/extension of the support
should be understood considering ‘the inter-distances’ between the elements of
Ω(sin θS1) (see below). Multiplying a variable by a real scaling coefficient smaller
(resp. greater) than one contracts (resp. extends) the support of the density.
Another interesting fact is that, as already mentioned in Section 2.3.2 the den-
sity pYθ

is the convolution of psin θS1
and pcos θS2

[Hirschman and Widder, 1955,
Feller, 1966]. Let us illustrate that point in more details in the following example.

Example 11 Consider two independent sources S1 and S2 with multimodal den-
sities (see their scatter plot in Figure 3.6.(a)). We will adopt the following nota-
tion. The distance between two modes i and j of pSk

will be denoted by ∆i,j(Sk);
it is computed between the mean of the i-th and j-th mode (“peak-to-peak”), and
i < j. For example, we can see in Fig. 3.6. that ∆1,2(S1) ' 2 (Fig. 3.6.(b)),
∆1,2(S2) ' 1.1 and ∆2,3(S2) ' 1.6 (Fig. 3.6.(c)). The entropy minima analy-
sis is restricted to θ ∈ [0, π/2]; the extension to the other quadrants of the unit
circle is trivial. The solid curve on the left graph of Fig. 3.7. shows the evolu-
tion of ĥ(Yθ) vs θ. The only minima relevant for source separation correspond
to θ ∈ {0, π/2}. As it can be seen on Fig. 3.7., spurious minimum appear for
θ 6= {0, π/2}; this is the case for several angles θ� ' {π/6, π/5, 11π/36}. These
minima are thorny because in these cases, Yθ remains a mixture of the sources;
they correspond to spurious solutions.

The standard deviation, say σK , of the Gaussian kernels used in the pdf es-
timation plugged into the estimator ĥ may influence the quality of the estimated
density. However, it seems that this is not the case (in a certain range) re-
garding the shape of the entropy function vs θ; the latter is shown on the left
panel of Fig. 3.7. where ĥ(Yθ) is plotted vs θ for σK ∈ {0.025, 0.05, 0.1}. In
order to improve the readability of this function, the σK = 0.05 curve has
been plotted on a polar graph (right panel of Fig. 3.7.). To understand why
such spurious minima appear at specific angles, it is useful to plot the evolu-
tion of the densities pYθ

, psin θS1
and pcos θS2

vs θ. This is done in Fig. 3.8.
for θ ∈ {0, π/12, π/6, π/5, π/4, 11π/36, 13π/36, π/2}. We can observe that the

critical values θ� of θ, corresponding to the spurious minima of ĥ(Yθ) also mini-
mize locally the number N(Yθ) of modes of pYθ

. This fluctuation of N(Yθ) as a
function of the angle θ is due to the joint effect of the scaling and the mixing of
the independent sources S1 and S2. Obviously, N(Yθ) is equal to N(S1) (resp.
N(S2)) if θ = π/2 (resp. 0). As already explained, mixing these independent
sources (keeping the variance of the mixtures unitary) has as an effect to con-
volute the scaled densities. Intuitively, as N(S1) = 2 and N(S2) = 3, when θ
increases from 0 or decreases from π/2, N(Yθ) should be equal to 6, provided
that the mode width are small enough compared to the intermodal “peak-to-peak”
distances. However, N(Yθ) is not strictly increasing to a unique local maximum
when θ moves apart from kπ/2. The function N(Yθ) has several local maxima
for θ ∈ [0, π/2] and {2, 3, 6} is not the whole set of acceptable values for N(Yθ);
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(a) Scatter plot of bimodal and trimodal indepen-
dent sources
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Figure 3.6. Example 11. Characteristics of the source signals S1 and S2: scatter plot
S2 vs S1(top), pS1 (bottom-left) and pS2(bottom-right). Reprinted with permission

from Vrins, Archambeau & Verleysen, Bayesian inference and maximum

entropy methods in science and engineering, AIP conference proceedings,

vol. 735, 589-596. c© 2004, American Institute of Physics.

pYθ
may have (locally) a particular structure if the intermodal distances of den-

sities psin θS1
and pcos θS2

become equal. In this case, N(Yθ) < 6 since two pairs
of modes are superimposed during the convolution process. This situation occurs
for several scaling factors of S1 and S2.

As an illustration, consider the case θ = π/5. This particular angle
has the remarkable property to contract the densities pS1

and pS2
such that

∆1,2(sin(π/5)S1) ' ∆2,3(cos(π/5)S2). The density of Yπ/5 results from the
convolution of psin(π/5)S1

and pcos(π/5)S2
. Due to the matching of the two

modes of psin(π/5)S1
and the two last modes of pcos(π/5)S2

(i.e. because two
pairs of modes are “simultaneously convolved”), the number of modes of Yθ

decreases: N(Yπ/5) = 5. The same phenomenon appears for the other
values of θ� : ∆1,2(sin(π/6)S1) ' ∆1,2(cos(π/6)S2), ∆1,2(sin(11π/6)S1) '
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Figure 3.7. Example 11. Left: Entropy ĥ(Yθ) vs θ for σK = 0.025 (dotted), 0.05
(solid) and 0.1 (dashed); Right: ĥ(Yθ) + ε (see Eq. (3.1)) vs θ (σK = 0.05). Reprinted

with permission from Vrins, Archambeau & Verleysen, Bayesian inference

and maximum entropy methods in science and engineering, AIP conference

proceedings, vol. 735, 589-596. c© 2004, American Institute of Physics.

∆1,3(cos(11π/6)S2). It seems that this structural modification of pYπ/5
(appear-

ing locally around θ if θ ∈ θ�) implies a variation of the entropy.

The local mixing minima of the sum of the entropy(ies) given in Example 10
can be explained in a similar way as used in Example 11.

Note that in general, the relation that links the entropy of a variable to the
number of modes of its density is not so simple: counter examples may be found
easily, adjusting the width of the modes. Nevertheless, modality and entropy
may be related, as sketched in the following subsection.

These results appeared in [Vrins et al., 2004, Vrins and Verleysen, 2005b].

3.2.1.2 Behind modality: understanding the existence of the entropy minima

Consider a unimodal pdf K(y) of a zero-mean and unit-variance random vari-
able. Assume that the density p(y) can be written as a sum of N modes, each
being a shifted and scaled version of K(y), that is

p(y) =
N∑

n=1

πnKn(y) , (3.2)

where

Kn(y) =
1

σn
K ((y − µn)/σn) (3.3)

and πn are positive scaling factors ensuring that p(y) integrates to one (i.e.∑N
n=1 πn = 1). It is further assumed that µ1 < µ2 < . . . < µK , without loss of

generality. The support of K might be either finite or infinite, i.e. equal to R.
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Figure 3.8. Example 11. Densities pYθ , pSθ
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.
= psin θS1 and pSθ

2

.
= pcos θS2 for

several values of θ. Reprinted with permission from Vrins, Archambeau &

Verleysen, Bayesian inference and maximum entropy methods in science

and engineering, AIP conference proceedings, vol. 735, 589-596. c© 2004,

American Institute of Physics.
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However, for an unimodal pdf, a finite approximation Ωn of Ω[Kn] is assumed
to be found because the contribution of Kn(y) “far from the mean of the mode”
(i.e. from the µn) is negligible, and if the support Ωn is centered on the mean
and large enough, we have ∫

Ωn

Kn(y) / 1 , (3.4)

where the “/” symbol means “less than but close to”. We further assume that
the support Ω[p] can be approximated by the union of N finite disjoint intervals
Ωn, i.e. if for all 1 6 n 6 N we have

∫

Ωn

p(y)dy ' πn

∫

Ωn

Kn(y) ' πn . (3.5)

For such a strongly N -modal random variable, h[p] can be approximated as
follows:

h[p] = −
∫ +∞

−∞

N∑

m=1

πmKm(y) log
{ N∑

j=1

πjKj(y)
}
dy

(a)' −
N∑

n=1

∫

Ωn

N∑

m=1

πmKm(y) log
{ N∑

j=1

πjKj(y)
}
dy

(b)' −
N∑

n=1

πn

∫

Ωn

Kn(y) log{πnKn(y)}dy

= −
N∑

n=1

πn

∫

Ωn

Kn(y)
{

log πn + logKn(y)
}
dy

(c)' −
N∑

n=1

πn

{
log πn +

∫

Ωn

Kn(y) logKn(y)dy
}

(d)' −
N∑

n=1

πn

{
log πn +

∫

R

Kn(y) logKn(y)dy

︸ ︷︷ ︸
=−h[Kn]

}

=

N∑

n=1

πnh[Kn]−
N∑

n=1

πn log πn

︸ ︷︷ ︸
.
=−H[π]

. (3.6)

Then h[p] ≈ H[p] where

H[p]
.
=

N∑

n=1

πnh[Kn] + H[π] . (3.7)

In the previous development, (a) results from the multimodal form of p and
0 log 0 = 0 by convention. Relation (b) comes from the multi-modality of ap:
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in Ωn, we can neglect the contribution of the Km(y) modes with respect to
the Kn(y) one, if n 6= m. In other words, in Ωn, p is mainly determined by
the nth mode. If Ωn is large enough, then (3.5) holds, leading to (c) and (d).
Note that the approximations (a),(b),(c) and (d) are exact if Ωi ∩Ωj = ∅ for all
1 6 i 6= j 6 N .

In Eq. (3.7), H[π] is the entropy of a discrete pdf with probability vector
π
.
= [π1, . . . , πn], and h[Kn] = h[K] + log σn (from Eq. (3.3)). In the particular

case when Gaussian kernel are used, K(y) = φ(y),

h[Kn] = log
√

2πe + log σn . (3.8)

When a pdf p can be efficiently modelled as a mixture of N Gaussian kernels and
when approximation (3.7) holds, the pdf is said “N -normal separable”. For such
densities, the following approximator will be used for the associated entropy:

H[p]
.
= log

√
2πe +

N∑

n=1

πn log σn + H[π] . (3.9)

The relative error ρ[p] resulting from the above approximation is defined by

ρ[p]
.
=

∣∣∣∣
H[p]− h[p]

h[p]

∣∣∣∣ . (3.10)

Example 12 In order to illustrate the performance of this estimator on multi-
normal separable variable, h[p] is compared to H[p] on the density given in Fig-
ure 3.9. It seems reasonable to assume that p is strongly multimodal. Actually,
in this example, the parameters of this 3-normal pdf are:





µ = [−5, 0, 6]
σ = [2/5, 1, 2/5]
π = [1/6, 1/2, 1/3]

. (3.11)

In order to evaluate h[p], the integral in the entropy definition is replaced by a
Riemannian sum: h̄[p] = −∑x p(x) log p(x)∆, where x ranges from -10 to 10 by

increasing steps of ∆ = 5.10−3. This estimator differs from ĥ[p] by the fact that
the true analytical expression of p is used (or a sampled function expected to be
very close from the true pdf, see below); it is not estimated via Parzen density
estimation.

The approximation H[p] has been computed through (3.9). In this example,
we find ρ̄[p] = 0.02%, where ρ̄[p] is a“Riemannian approximation” of ρ[p] (in
the sense that an exact integration has been replaced by a summation):

ρ̄[p]
.
=

∣∣∣∣
H[p]− h̄[p]

h̄[p]

∣∣∣∣ . (3.12)

It is expected to be very close from ρ[p] when ∆ is sufficiently small, which
confirms the validity of the approximator given by (3.9) for this kind of pdf.
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Figure 3.9. Example 12. pdf with 3 normal and approximatively disjoint modes. In
this example, the Ωi are defined as [µ(i) − 3σ(i), µ(i) + 3σ(i)].

i µ1(Si) µ2(Si) π1(Si) π2(Si) σ1(Si) = σ2(Si)

1 -0.995 0.995 1/2 1/2 0.1
2 -0.81 1.22 3/5 2/5 0.1

Table 3.1. Example 13. Parameters of the two bimodal pdf.

The above approximator H[p] can be used to indicate possible local minima of
the entropy.

Example 13 Consider the bi-normal separable pdf with parameters given in
Table 3.1.. They correspond to mutually independent zero-mean unit-variance
source signals. The approximated entropies of these signal are: h̄(S1) = −0.27
and h̄(S2) = −0.30. Using the entropy estimator given by (3.9), we have
max(ρ̄[pS1

], ρ̄[pS2
]) < 10−12.

As pointed out in Example 11, the number of modes of pYθ
varies with θ and,

for several θ, the modes of pYθ
are Gaussian-shape with small overlap. This

is due to convolution properties of Gaussian functions; the convolution of two
Gaussian function is again a Gaussian function (see Appendix 2.6.8). With a
slight abuse of notation, let us denote by µn(θ), πn(θ) and σn(θ) the parameters
of the n-th mode of the output pdf pYθ

(i.e. its mean, weight and standard
deviation).

The µn(θ), πn(θ) and σn(θ) parameters can be computed. For instance,
the above considerations indicate that the trimodal case is obtained for θ2

.
=
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arctan µ2(S2)−µ1(S2)
µ2(S1)−µ1(S1)

(π1(θ2) = 0.3, π2(θ2) = 0.5, π3(θ2) = 0.2 and σ1,2,3(θ2) =

0.1), and there also exists two angles, denoted by θ1 and θ3, for which pYθ
has

four approximatively disjointed modes and such that 0 < θ1 < θ2 < θ3 < π/2.
For example, we can take θ3 = 13π

36 and we have π1(θ3) = π3(θ3) = 0.3,
π2(θ3) = π4(θ3) = 0.2 and σ1,2,3,4(θ3) = 0.1. On the other hand, we can choose
θ1 = π/2−θ3 (σn(θ1) and πn(θ1) are the same as σn(θ3) and πn(θ3), except that
the values of π2(·) and π3(·) have to be permuted). Note that the mean of the
modes do not matter as soon as the modes have a negligible overlap.

The key point is that H(Y0 = S2) < H(Yπ/2 = S1) < H(Yθ2
) < H(Yθ1

) '
H(Yθ3

). Indeed, H(Yθ2
) = 0.21 while H(Yθ1

) = 0.70. In addition, pYθ
is

composed of several nearly disjointed modes with Gaussian-like shapes for θ ∈
{0, θ1, θ2, θ3, π/2} and therefore, the approximator (3.9) is valid: we must have
h(Yθ) ' H(Yθ) and thus a small ρ[pYθ

]. As a consequence, h(Yθ) (i.e. h̄(Yθ))
must have a mixing minimum for θ in (θ1, θ3). This result can be observed in
Figure 3.10. where h̄(Yθ) is plotted vs θ in the first quadrant. Note that pYθ

has been computed by convoluting psin θS1
and pcos θS2

through the Matlab conv

command (this method is expected to be better than estimating the mixture pdf via
a Parzen estimator for each angle). By doing so, h̄(Yθ) cannot be numerically
evaluated with a high precision for θ ' kπ/2; this is why h̄(Yθ) is plotted for
θ ∈ [ε, π/2 − ε], where ε is a small positive number. Nevertheless, it is obvious
that one must have h̄(Yθ)→ h̄(Ykπ/2) ' h(Ykπ/2) when θ → kπ/2.

The above developments are published in [Vrins et al., 2005b].

3.2.2 Formal analysis using a Taylor expansion

In this section, we shall give a proof showing the existence of spurious (mixing)
entropy minima; this proof is rigorous in the sense that no approximation is
used, as in the above informal approach section. The results below have been
first published in [Pham, Vrins, and Verleysen, 2005, Pham and Vrins, 2005].

3.2.2.1 Simultaneous (mutual information)

To see if a point B maximizes locally Ch(B) (given by Eq. (2.12)), we perform
a Taylor expansion of the contrast around B up to second order. Because of the
multiplicative structure of the mixture model, a relative (rather than absolute)
increment of the parameter B is considered. More precisely, we make a Taylor
development of Ch(B+EB) up to second order with respect to a “small matrix”
E (in the sense of its Frobenius norm, noted ‖E‖). Using the known result of
Eq. (2.27) (see the text below the referenced equation for the definition of the
notations):

h(Yi + δYi) = h(Yi) + E[ψYi
(Yi)δYi]

+
1

2

{
E[Var[δYi|Yi]ψ

′
Yi

(Yi)]− (E[δYi|Yi])
′ 2
}

+o(‖E‖2) . (3.13)
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Figure 3.10. Example 13. Evolution of h̄(Yθ) for θ ∈ [ε, π/2 − ε], with ε '
0.03. For specific θ, pYθ is approximatively composed of Gaussian modes with disjoint
support, and for these angles, h(Yθ) ' H(Yθ). This approximation is reliable for
θ ∈ {0, [0.4, 0.55], θ2, [1.02, 1.17], π
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}.
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Further, it can be shown that (see the Appendix in Section 3.8.1, p. 167)

log |det(B + EB)| = log |detB|+ TrE − 1

2
TrE2 + o(‖E‖2) . (3.14)

Therefore, with δYi =
∑K

k=1 EikYk, noting that E[ψYk
(Yk)Yk] = 1 (see Prop-

erty 4 and [Pham, 1996]), we have

Ch(B + EB) = Ch(B)−
∑∑

i6=j

E[ψYi
(Yi)Yj ]Eij −

K∑

i=1

K∑

j=1

K∑

k=1

EijEik
2
×

{
E[Cov(Yj ,Yk|Yi)ψ

′
Yi

(Yi)] + (E[Yj |Yi])
′(E[Yk|Yi])

′
}

−1

2

∑

i,j

EijEji + o(‖E‖2) , (3.15)

where Cov(Yj ,Yk|Yi) = E[YjYk|Yi]− E[Yj |Yi]E[Yk|Yi].
The above expansion shows that B is a stationary point of Ch(B) if

E[ψYi
(Yi)Yj ] = 0 for i 6= j. To see if B is indeed a local maximum, one has

to look at the second order term in the above expansion, which is quite involved.
Therefore, we shall focus on the case of two sources (K = 2).

Consider the K = 2 case where both sources share the same density function
pS. Since KL([Y1,Y2]) > 0 with equality if and only if the variables Y1, Y2 are
mutually independent, Ch(B) admits a global maximum when B ∼ A−1 as for
these demixing matrices, the outputs are proportional to distinct sources. We
now show that for a certain source density pS, the point

B� .
=

[
1 1
−1 1

]
A−1 (3.16)

is also a local maximum of Ch(B) whatever is A in M(2). This remains true
if the above right hand side is left multiplied by PD, since Ch(B) is invariant
when one left multiplies its argument by any permutation or diagonal matrix.

For B� given in (3.16), Y1 = S1 + S2, Y2 = S2 − S1. Therefore

E[ψY1
(Y1)Y2] = E[ψY1

(S1 + S2)S2]− E[ψY1
(S1 + S2)S1] , (3.17)

E[ψY2
(Y2)Y1] = E[ψY2

(S2 − S1)S1] + E[ψY2
(S2 − S1)S2] . (3.18)

But since the joint densities of (S1,S2) and of (S2,S1) are the same, one can
permute S1 and S2 in the above right hand sides without affecting their value.
Hence these right hand sides vanish, noting that Y2 has the same density as −Y2

and hence ψY2
is an odd function.

The above results show that B� is a stationary point of Ch(B). To see if it
is a local maximum point, we consider the expansion of Ch(B� + EB�) up to
second order. Again, since one can permute S1 and S2 without changing their
joint densities, E[S2|S1 + S2] = E[S1|S2 + S1] and hence E[Y2|Y1] = 0. In the
case where pS is symmetric so that −S1 has the same density as S1, by the same
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argument as before with S1 replaced by −S1: E[S2|S2 − S1] = −E[S1|S2 − S1]
and hence E[Y1|Y2] = 0. Therefore from the result of Eq. (2.27) and noting
that [Gray and Davisson, 2004]

E[E[f(X,Y)|X]g(X)]] = E[f(X,Y)g(X)] , (3.19)

we have E[E[Y2
j |Yi]ψ

′
Yi

(Yi)] = E[Y2
jψ

′
Yi

(Yi)] and :

Ch(B� + EB�) = Ch(B�)− 1

2

{
E[Y2

2ψ
′
Y1

(Y1)]E2
12 + E[Y2

1ψ
′
Y2

(Y2)]E2
21

}

−E12E21 + o(‖E‖2) . (3.20)

Observe that for i 6= j the iterative expectation lemma summarized in Eq. (3.19)
gives (with X = Yi, Y = Yj , f(X,Y) = XY and g(X) = 1) E[E[YjYi|Yi] =
E[YjYi]. The last expectation vanishes by noting the relation between Yi, Yj

and the sources.
But the sum of the last two term equals

−1

2
{E[Y2

2ψ
′
Y1

(Y1)]E2
12 + E[Y2

1ψ
′
Y2

(Y2)]E2
21 + 2E12E21} ,

and the term into braces can be written as the following quadratic form:

[E12 E21]
[

E[Y2
2ψ

′
Y1

(Y1)] 2
0 E[Y2

1ψ
′
Y2

(Y2)]

]
[E12 E21]T (3.21)

which is positive definite if and only if 4 < 4E[Y2
2ψ

′
Y1

(Y1)]E[Y2
1ψ

′
Y2

(Y2)] [Brookes,
2005]. The above expansion shows that B� given in (3.16) is a local maximum
point of Ch(B) if and only if

E[Y2
2ψ

′
Y1

(Y1)]E[Y2
1ψ

′
Y2

(Y2)] > 1 . (3.22)

But since the joint density of (Y1,Y2) is the same as the one of (Y2,Y1), this
condition is equivalent to

E[Y2
2ψ

′
Y1

(Y1)] > 1 . (3.23)

The following example shows that such a mixing maximum may exist in a specific
and realistic situation, that is for a simple source density pS.

Example 14 Inspired by simulations given in the informal approach section, we
now show that the above condition (3.23) is satisfied (so that B given in (3.16) is
a spurious local maximum point) for a particular source density being a mixture

of densities of the form
∑N

n=1
πn

σn
K
(

y−µn

σn

)
if N = 2, K(.) = φ(.), π = [0.5, 0.5],

µ = [−1, 1] and σn = [σ, σ], where φ(s) is the standard normal density defined
in Eq. (2.56). This density is precisely

pS(s) =
{
φ[(s+ 1)/σ] + φ[(s− 1)/σ]

}
/(2σ) , (3.24)
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and we shall show that Eq. (3.23) holds for sufficiently small σ (i.e. when pS is
“bimodal enough”): a local mixing maximum of Ch(B) exists at B = B�. In this
specific example, the following two lemmas can be proved (the proofs are relegated
to Section 3.8.2 p. 169 and Section 3.8.3 p. 170, respectively).

Lemma 11 Let S1 and S2 have the same density pS. Then Y1 = S1 + S2 and
Y2 = S2 − S1 also have the same density

pY(y) =
1

4
√

2σ
φ
(y + 2√

2σ

)
+

1

2
√

2σ
φ
( y√

2σ

)
+

1

4
√

2σ
φ
(y − 2√

2σ

)
. (3.25)

Their common score function ψY admits the derivative

ψ′
Y(y) =

1

2σ2
− w−1(y)w0(y) + w1(y)w0(y) + 4w−1(y)w1(y)

σ4
, (3.26)

where

w0(y) =
2φ(y/

√
2σ)

φ[(y + 2)/
√

2σ] + 2φ(y/
√

2σ) + φ[(y − 2)/
√

2σ]
,

w∓1(y) =
φ[(y ± 2)/

√
2σ]

φ[(y + 2)/
√

2σ] + 2φ(y/
√

2σ) + φ[(y − 2)/
√

2σ]
.

Further, E[Y2
2|Y1 = y] = 2σ2 + 4w0(y).

Lemma 12 The expectation E[Y2
2ψ

′
Y1

(Y1)] equals

1 +
1

σ2
−
∫

[σ2 + 2w0(y)][w0(y) + 2w1(y)]

σ4
φ
(y + 2√

2σ

)
dy . (3.27)

The last term in the above expression tends to 0 as σ → 0 and hence
E[Y2

2ψ
′
Y1

(Y1)]→∞ as σ → 0.

The above results show that for σ small enough, there is a spurious minimum
at the point B = B� (3.16) as the left-hand side member of Eq. (3.23) tends to in-
finity as σ → 0, by Lemma 12. Figure 3.11. illustrates the case σ = 0.7 for which
E[Y2

2ψ
′
Y1

(Y1)] = 0.9489 < 1 and Figure 3.12. and Figure 3.13. illustrate the cases
σ = 0.5 and σ = 0.2 for which E[Y2

2ψ
′
Y1

(Y1)] = 1.5412 > 1 and E[Y2
2ψ

′
Y1

(Y1)] =
25.71 > 1, respectively. One can see from figures Fig. 3.11.(a), Fig. 3.12.(a)
and Fig. 3.13.(a) that as σ decreases, pY changes from a unimodal to a tri-
modal structure, and from figures Fig. 3.11.(b), Fig. 3.12.(b) and Fig. 3.13.(b)
that 2σ2ψ′

Y approaches 1 inside the three regions (−∞,−1), (−1, 1), (1,∞), with
“dips” at the transition points (the “dips” being sharper for smaller σ). The
product of ψ′

Y with the function y 7→ E[Y2
2|Y1 = y], which equals 2σ2 + 4w0,

produces a curve of similar shape as 2σ2ψ′
Y, but with a higher level in the central

region due to the term 4w0. Its integral with respect to the density pY yields
∫

pY(y)E[Y2
2|Y1 = y]ψ′

Y(y)dy
(3.19)
= E[Y2

2ψ
′
Y1

(Y1)] . (3.28)
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(a) Dashed: 6σpY(y); solid: w0(y) vs y
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(b) Dashed: 2σ2ψ′
Y(y); solid (2σ2 +

4w0(y))ψ′
Y(y) vs y

Figure 3.11. Example 14. Density pY(y) is unimodal (σ = 0.7,E[Y2
2ψ

′
Y1

(Y1)] ' .95):
spurious minima of mutual information and entropy cannot be observed (see text).
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(b) Dashed: 2σ2ψ′
Y(y); solid: (2σ2 +

4w0(y))ψ′
Y(y) vs y

Figure 3.12. Example 14. Density pY(y) is slightly trimodal (σ =
0.5,E[Y2

2ψ
′
Y1

(Y1)] ' 1.54): spurious minima of mutual information and entropy can
be observed (see text).
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Y(y) vs y

Figure 3.13. Example 14. Density pY(y) is strongly trimodal (σ =
0.2,E[Y2

2ψ
′
Y1

(Y1)] ' 25.71): deep spurious minima of mutual information and entropy
can be observed (see text).

As pY is low in the neighborhood of the transition points ±1, even more so
as σ becomes smaller, the effect of the “dips” is attenuated and the integral
should become larger as σ decreases, since the function takes a higher value inside
the central region. This explains why one gets a larger value of E[Y2

2ψ
′
Y1

(Y1)].
Figure 3.14. plots this quantity versus σ. One can see that when σ decreases
beyond the value 0.63 (approximately) this quantity becomes greater than 1.
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Figure 3.14. Example 14. Plot of E[Y2
2ψ

′
Y1

(Y1)] vs σ. c©2005, IEEE. Reprinted,
with permission, from Pham & Vrins: Local Minima of Information-Theoretic Criteria
in Blind Source Separation. IEEE Signal Processing Letters 12(11), pp. 788-791,
November 2005.
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3.2.2.2 Deflation (negentropy)

We consider the negentropy based FastICA, which consists in maximizing
the negentropy of Yi = biX (see Section 2.2.2.1). One may assume that the
Sk have the same variance, since one can divide any of them by a constant
and multiply the corresponding columns of A by the same constant, without
changing the mixture model. Since the negentropy is scale invariant, one may
assume Var[Yi] = 1 (see also assumption A7). Thus, negentropy based FastICA
amounts to minimizing h(wiS) under the constraint ‖wi‖ = 1.

Again, considering the case of two sources and let Yθ = sin θS1+cos θS2 = wθS

first defined in Eq. (1.61), it is easy to see that a small change δθ in θ induces a
change

δYθ = (cos θS1 − sin θS2)︸ ︷︷ ︸
−Yθ+π/2

δθ − 1

2
Yθδθ

2 + o(δθ2) (3.29)

in Yθ up to second order in δθ. Thus by the same calculation as in Sec-
tion 2.2.2.2, using Eq. (2.27), one gets, putting Y⊥

θ = −Yθ+π/2 and noting
that E[ψYθ

(Yθ)Yθ] = 1 (see Property 4, p. 57):

h(Yθ + δYθ) ≈ h(Yθ) + δθE[ψYθ
(Yθ)Y

⊥
θ ]

+
δθ2

2
{E[Var[Y⊥

θ |Yθ]ψ
′
Yθ

(Yθ)]− (E[Y⊥
θ |Yθ])

′ 2 − 1}, (3.30)

up to second order in δθ.
The above result shows that a stationary point of h(Yθ) (as a function of θ)

occurs when E[ψYθ
(Yθ)Y

⊥
θ ] = 0. Clearly, this is achieved for θ = 0 and θ = π/2

since Y0 = −Y⊥
π/2 = S2, Yπ/2 = Y⊥

0 = S1 and S1 and S2 are independent.

The points θ = 0 and θ = π/2 are actually local minima of h(Yθ) if pS is
non Gaussian. Indeed, the second derivative of h(Yθ) at θ = 0 and θ = π/2
reduces to Var[S1]E[ψ′

S2
(S2)] − 1 and Var[S2]E[ψ′

S1
(S1)] − 1 respectively. But

for any random variable Y, E[ψ′
Y(Y)] = E[ψ2

Y(Y)] by integration by parts and
Var[Y]E[ψ2

Y(Y)] > 1 by the Schwartz inequality (noting that E[ψY(Y)Y] = 1
and E[ψY(Y)] = 0, see Property 4, p. 57). The inequality is strict unless ψY is
linear, that is Y is Gaussian. Note that since h(Yθ) is periodic (with respect to
θ) of period π, the function h(Yθ) admits local minima for θ in {pπ/2 | p ∈ Z}.

The same arguments as in Section 3.2.2 show that there are two other station-
ary points of h(Yθ) at θ = π/4, for which Yθ = Y1/

√
2 and Y⊥

θ = Y2/
√

2, and
at θ = 3π/4, for which Yθ = −Y2/

√
2 and Y⊥

θ = −Y1/
√

2. To see if they are the
local minima, we look at the second derivative of h(Yθ). As before, E[Y2|Y1] = 0
and if pS is symmetric, E[Y1|Y2] = 0. In this case, the second derivative of h(Yθ)
at θ = π/4 and θ = 3π/4 reduces to E[Y2

2ψY1
(Y1)] − 1 and E[Y2

1ψY2
(Y2)] − 1,

respectively, which are equal. Thus the condition for these points are local max-
ima of the negentropy are the same as the condition for the point (3.16) to be a
local minimum of the mutual information criterion (given by Eq. (3.23)).

Figure 3.15. shows the approximated log-entropies of Yθ (i.e. log h̄(Yθ)) ver-
sus the mixing angle θ for some values of σ. When σ decreases beyond 0.63
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(approximately, see Fig. 3.14.) this quantity becomes greater than 1 and thus lo-
cal minima can be observed in Fig. 3.15. (even though it is difficult for σ = 0.5).

π/6

7π/6

π/3

4π/3

π/2

3π/2

2π/3

5π/3

5π/6

11π/6

π 0

Figure 3.15. Effect of σ on the entropy mixing minima for the sources of the example:
log h̄(Yθ) vs θ for σ = 0.7 (solid),σ = 0.5 (dash-dot), σ = 0.2 (dashed).

3.2.3 Formal analysis using entropy approximation

Entropy bounds will be used in the next section to prove that for a specific class
of source densities, the entropy function h(wS) can have a local minimum that
does not correspond to a row of the identity matrix. The presented approach
yields more general results than those of Section 3.2.2, since it is no longer
required that the sources share a common symmetric pdf.

This approach relies on an entropy approximation of a multimodal pdf of
the form given by Eq. (3.2) where N > 1, π1, . . . , πN are (strictly positive)
probabilities summing to 1 and K1, . . . ,KN are unimodal pdfs. We focus on the
case where the supports of the Kn can be nearly covered by disjoint subsets Ωn

(n = 1, . . . , N) so that p is strongly multimodal (with N modes). In this case
a good approximation to the entropy of a random variable of density p can be
obtained; this entropy will be abusively denoted by h[p] instead of h(Y) where
Y is a random variable with pdf p. Such an approximation will first be derived
informally (for ease of comprehension) and then a formal development giving the
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error bounds of the approximator is provided. This work has been addressed in
[Pham, Vrins, and Verleysen, 2005, Vrins, Pham, and Verleysen, 2007b].

3.2.3.1 Upper and lower bounds on the entropy of a multimodal density

The entropy approximator H[p] given by Eq. (3.7) is actually an upper bound
for the entropy. This claim is proved in what follows; in addition, a lower bound
of the entropy will be further provided. These bounds permit us to analyze
how accurate is the approximation h[p] ≈ H[p] (in a worst-case sense); they are
explicitly computed when all Kn are Gaussian kernels.

The following lemma provides upper and lower bounds for the entropy.

Lemma 13 Let p be given by Eq. (3.2), then

h[p] 6 H[p] , (3.31)

where H[p] is given by Eq. (3.7).
In addition, assume that supKn = supy∈R

Kn(y) < ∞ (1 6 n 6 N) and
let Ω1, . . . ,ΩN be disjoint subsets which approximately cover the supports of
K1, . . . ,KN , in the sense that





εn
.
=

∫
R\Ωn

Kn(y)dy ,

ε′n
.
=

∫
R\Ωn

Kn(y) log sup Kn

Kn(y) dy

are small. Then, we have

h[p] > H[p]−




N∑

n=1

πnε
′
n +

N∑

n=1

πn

[
log
(max16m6N supKm

πn supKn

)
+ 1
]
εn

︸ ︷︷ ︸
.
= Ξ




(3.32)

where Ξ > 0.

The proof of this lemma is given in the Appendix of the Chapter, in Section 3.8.4,
p. 171.

Let us consider now the case where the densities Kn in (3.2) all have the same
form:

Kn(y) = (1/σn)K[(y − µn)/σn] , (3.33)

where K is a bounded density of finite entropy. Hence h[Kn] = h[K] + log σn

and the upper bound (3.7) becomes

H[p] = h[K] +
N∑

n=1

πn log σn + H(π). (3.34)
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Also, the lower bound on the entropy given by Eq. (3.32) reduces to

H[p]−
N∑

n=1

πn[ε′n + (log π−1
n + 1)εn]

︸ ︷︷ ︸
Ξ

. (3.35)

Let us arrange the µn by increasing order and take σn small with respect to

dn
.
= min(µn − µn−1, µn+1 − µn) , (3.36)

where µ0 = −∞ and µN+1 = ∞ by convention. Under this assumption, the
density (3.2) is strongly multimodal and the Ωn in the above lemma can be
taken to be intervals centered at µn of length dn:

Ωn
.
= (µn − dn/2, µn + dn/2). (3.37)

Then simple calculations give





εn = 1−
∫ dn/(2σn)

−dn/(2σn)
K(x)dx ,

ε′n = h[K]−Hdn/σn
(K) + εn log(supK),

where Hα(K)
.
= −

∫ α/2

−α/2
K(x) logK(x)dx. It is clear that εn and ε′n both tend

to 0 as dn/σn →∞. Thus one gets the following corollary.

Corollary 12 Let p be given by (3.2) with Kn of the form (3.33) and
supxK(x) < ∞. Then h[p] is bounded above by H[p] and converges to this
bound as minn(dn/σn)→∞, dn being defined in (3.36).

Let us now focus on the K(x) = φ(x) case, which means that we restrict our
analysis to densities that are “mixture of Gaussian functions”.

The upper and lower bounds on h[p] are given by (3.34) and (3.35) with h[φ]
instead of h[K]; εn and ε′n can now be obtained explicitly :





εn = Erfc
(

dn

2
√

2σn

)
,

ε′n = h[φ]−Hdn/σn
(φ)− εn log

√
2π,

where Erfc is the complementary error function defined as Erfc(x) =
(2/
√
π)
∫∞

x
e(−z2)dz. By double integration by parts and noting that∫

Erf(x)dx = xErf(x) + e(−x2)/
√
π with Erf(x) = 1 − Erfc(x), some algebraic

manipulations give

Hdn/σn
(φ) =

1

2
Erf

(
dn

2
√

2σn

)
log(2πe)− dn

2
√

2πσn

e−d2
n/(8σ2

n) .
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One can see that Hdn/σn
(φ)→ h[φ] = log

√
2πe as dn/σn →∞, as it should be.

Finally:





εn = Erfc
( dn

2
√

2σn

)

ε′n =
1

2
Erfc

( dn

2
√

2σn

)
+

dn

2
√

2πσn

e−[dn/(2
√

2σn)]2

.

Example 15 To illustrate Corollary 12, Fig. 3.16. plots the entropy of a tri-
modal variable Y with density p as in (3.2), Kn given by (3.33), σn = σ (for
the ease of illustration), K = φ, µ = [0, 5, 10] and π = [1/4, 1/2, 1/4]. Such a
variable can be represented as Y = U+σZ where U is a discrete random variable
taking values in {0, 5, 10} with probabilities 1/4, 1/2, 1/4 respectively and Z is a
standard Gaussian variable independent from U. The upper and lower bounds on
the entropy are computed as in Lemma 13 with the above expressions for εn, ε

′
n,

and plotted on the same figure. One can see that the lower the σ, the better the
approximation of h(Y) by its upper and lower bounds. On the contrary, when
σ increases, the difference between the entropy and its bounds tend to increase,
which seems natural. These differences however can be seen to tend towards a
constant for σ → ∞. This can be explained as follows. When σ is large, p is
no longer multimodal and tends to the Gaussian density of variance σ2. Thus
h(Y) grows with σ as log σ. On the other hand, the upper bound H[p] on h(Y)
also grows as log σ. The same is true for the lower bound on h(Y) which equals

H[p]−∑3
n=1 πn[ε′n + εn(log π−1

n +1)]: the last term tends to H[π]+ 3
2 as σ →∞

since for fixed dn, εn → 1 and ε′n → 1/2 as σ →∞.

Remark 18 (Entropy bounds and decision theory) The entropy estima-
tor given in Eq. (3.7) has actually close connections with decision problems,
and a tighter upper bound for h[p] can be found in this framework, even if the
intuitive perception of the approximator in terms of density estimation is lost.
The bounds comparison requires to use the base 2 logarithm, i.e. to express en-
tropies in bits. Assume we have an N -class classification problem consisting in
finding the class label of an observation yn knowing the densities and the priors
of the classes. In such kinds of classification problems, one is often interested
in quantifying Bayes probability of error P (e) which is always positive. In our
framework, each of the pdf modes Kn represents the density of a given class cn,
that is Pr(Y 6 y|C = cn) =

∫ y

−∞Kn(x)dx, πn is the a priori probability of cn:
Pr(C = cn) = πn and p(y) is the density associated to the model describing Y ,
from which the sample yn is drawn. Denoting the equivocation (which is noth-
ing but the expectation of the conditional entropy) of Y given C by h(Y|C) =

EC[h(Y|C = ci)] and defining H(C)
.
= −∑N

n=1 Pr(C = cn) log Pr(C = cn), it can
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Figure 3.16. Example 15. Evolution of h̄[p] and its bounds versus σ, where if
Y ∼ p, Y = U + σZ, U is a discrete random variable taking values in {0, 5, 10} with
probabilities π = [1/4, 1/2, 1/4] and Z is a standard Gaussian variable independent from
U. The lower bound H[p] − Ξ converges to the upper bound H[p] and the lower bound
H[p]−2

�
(N − 1)P (e) converges to the upper bound H[p]−2P (e) as σ → 0 and Ξ tends

to 3/2+H(π), respectively, as σ → ∞ (note that the horizontal axis scale is logarithmic).



DISCRIMINACY OF SHANNON’S ENTROPY 125

be shown [M. Hellman, 1970, Lin, 1991] that

P (e) 6
1

2
H(C|Y)

=
1

2
(h(Y|C) + H(C)− h(Y))

=
1

2

(
N∑

n=1

πnh[Kn] + H[π]− h[p])

)
(3.38)

which shows that (half) the difference between H[p] and h[p] is precisely an upper
bound on Bayes’ probability of error P (e)

.
= EY[1−maxi p(C = ci|y)]. The error

vanishes when the approximator matches to the true value, that is when the
approximations (a)-(d) in Eq. (3.7) hold true, in other words, when the modes
have no overlap (the classes are separable, i.e. disjoint).

Clearly, H[p]− 2P (e) is a tighter upper bound on h[p] than H[p] as P (e) > 0.
The Generalized Jensen-Shannon divergence also provides a lower bound on the
Bayes probability of error. Indeed, it can be proved that H[p]− 2

√
(N − 1)P (e)

lower-bounds h[p] [Lin, 1991]. However, the bound in (3.32) is tighter when
σ is small enough (see Fig. 3.16.). Note that P (e) is easy to compute
:P (e) = 1 −

∫
y
p(y)maxi p(C = ci|y)dy which reduces, using Bayes’rule to

1−
∫

y
maxn πnKn(y)dy. In the Gaussian kernel case, this integral can easily be

computed without any approximation by successive integrations, whose theoreti-
cal expression can be found via the complementary error function Erfc. The last
integration bounds are given by the intersections between the Gaussian kernels.
However, even if both couples of bounds have a similar computational complexity
when applied to a specific example (fixed parameters) and can be theoretically
computed, the bounds given in Lemma 13 are easier to deal with in more general
theoretical developments, have closer relationship to the multimodality of p(y)
and suffice for our purposes. Therefore, in the following theoretical develop-
ments, the lower bound given by the right-hand side of Eq. (3.32) and the upper
bound given by Eq. (3.31) shall be used.

3.2.3.2 Mixing local minima in multimodal BSS

Based on the results derived in Section 3.2.3.1, it will be shown that mixing
local minima of the entropy exist in the context of the blind separation of mul-
timodal sources with Gaussian modes if the mode standard deviations σn are
small enough.

We are interested in the (mixing) local minima of h(wS) on theK-dimensional
unit sphere S(K) (see Eq. (1.95)). We shall assume that the sources have a pdf
of the form (3.2), with Kn being Gaussian with identical standard deviation σ
(but with distinct means). Thus, as in Example 15, we may represent Sk as
Uk + σZk where Uk is a discrete random variable and Zk is a standard Gaussian
variable independent from Uk. Further, (U1,Z1), . . . , (UK ,ZK) are assumed to
be independent so that the sources are independent as required. From this
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representation, wS = wU + σZ where U is the column vector with components
Uk and Z is again a standard Gaussian variable (since any linear combination of

independent Gaussian variables is a Gaussian variable and Z =
∑K

k=1 wkZk has
zero mean and unit variance if w ∈ S(K)). Since wU is clearly a discrete random
variable, wS also has a multimodal density of the form (3.2) with Kn again the
Gaussian density with standard deviation σ. Note that the number of modes
is the number of distinct values wU can have and the mode centers (the means
of the Kn) are these values; they depend on w. Anyway, as long as σ is small
enough with respect to the distances dn defined in (3.36) the approximation (3.7)
of the entropy is justified. Thus, we are led to the approximation

h(wS) ≈ H(wU) + log σ + h[φ] , (3.39)

where H(wU) denotes the entropy of the discrete random variable wU (remind
that the entropy of a discrete random variable U with probability vector π is
noted either H(U) or H[π]).

The above approximation suggests that there is a relationship between the lo-
cal minimum points of h(wS) and those of H(wU). Therefore, we shall first focus
on the local minimum points of the (discrete) entropy of wU before analyzing
those of h(wS).

3.2.3.3 Local minimum points of H(wU)

Form the definition of discrete entropy in Eq. (1.72), it is seen that H(wU)
does not depend on the values that wU can take but only on the associated
probabilities; these probabilities remain constant as w changes unless the number
of distinct values that wU can take varies. This number would decrease when
an equality wu = wu′ is attained for some distinct column vectors u and u′ in
the set U of possible values of U. A deeper analysis yields the following result,
which is helpful to find the local minimum point of H(wU).

Lemma 14 Let U be a discrete random vector in RK and let U be the set of dis-
tinct values it can take. Assume that there exists r > 1 disjoint subsets U1, . . . ,Ur

of U each containing at least 2 elements, such that the linear subspace V spanned
by the vectors u− u1,u ∈ U1 \ {u1}, . . . ,u− ur,u ∈ Ur \ {ur}, u1, . . . ,ur being
arbitrary elements of U1, . . . ,Ur, is of dimension K − 1. (Note that V does not
depend on the choice of u1, . . . ,ur, since u − u′

j = (u − uj) − (u′
j − uj) for

any other u′
j ∈ Uj.) Then for w∗ ∈ S(K) and orthogonal to V , there exists

a neighborhood W of w∗ in S(K) and α > 0 such that H(wU) > H(w∗U) + α
for all w ∈ W \ {w∗}. In the case K = 2, one has a stronger result that
H(wU) = H(U) > H(w∗U) for all w ∈ W \ {w∗}.

The proof is given in the Appendix at the end of the Chapter, in Section 3.8.5,
p. 173.

Example 16 An illustration of Lemma 14 in the K = 2 case (again for clarity)
is provided in Fig. 3.17. We note U = [U1,U2]

T where the discrete variables U1
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and U2 take the values −
√

1.03 +2.5,
√

1.03 +2.5 with probabilities .5, .5 and the
values −1.2,−.4, 2 with probabilities 1/2, 3/8, 1/8, respectively. For this random
vector U:

U =

{[
−
√

1.03 + 2.5
−1.2

]
,

[
−
√

1.03 + 2.5
−0.4

]
,

[
−
√

1.03 + 2.5
2

]}

⋃{[ √
1.03 + 2.5
−1.2

]
,

[ √
1.03 + 2.5
−0.4

]
,

[ √
1.03 + 2.5

2

]}

The parameters of U are chosen to have the same variance, as we need that the
Sk = Uk+σZk, k = 1, 2, have the same variance. But their mean can be arbitrary
since H(wS) does not depend on them. In this K = 2 example, each line that
links two distinct points u,u′ ∈ U spasn a one dimensional linear subspace, which
constitutes a possible subspace V , as stated in Lemma 14. There are thus many
possibilities for V , and for each of them, a corresponding vector w∗ can be found.

Two simple possibilities for V are the subspaces with direction given by [0, 1]T

and [1, 0]T. In the first case, the subsets Ui are built by grouping the points of
U laying on a same vertical dashed line. There are two such subsets (r = 2)
consisting of u ∈ U with first component equal to −

√
1.03+2.5 and

√
1.03+2.5,

respectively. In the second case, the subsets Ui are built by grouping the points of
U laying on a same horizontal dashed line. There are three such subsets (r = 3)
consisting of u ∈ U with second component equal to −1.2, −.4 and 2, respectively.

There also exist other subspaces V , corresponding to “diagonal lines” (i.e. to
solid lines in Fig.3.17.). This last kind of one-dimensional linear subspace V
correspond to directions given by two-dimensional vectors w∗ with two non-zero
elements.

On the plot, the points on the half unitary circle correspond to the vectors w∗

of the lemma; each w∗ is orthogonal to a line joining a pair of distinct points
in U , U being the set of all possible values of [U1,U2]

T. The points of U are
displayed in the plot together with their probabilities. The entropies H(wU) are
also given in the plot; one can see that they are lower for w = w∗ than for other
points w.

The above lemma only provides a way to find a local minimum point of the
function H(wU), but does not prove the existence of such a point, since the
existence of V was only assumed in the lemma. Nevertheless, in the case where
the components of U are independent and can take at least 2 distinct values,
subset Ui ensuring the existence of V can be built as follows. Let j be any index
in {1, . . . ,K} and let λj,1, . . . , λj,rj

be the possible values of the j-th component
of U. One can take Ui, 1 6 i 6 rj to be the set of vectors u ∈ U such that
their j-th components u(j) equal λj,i. Considering Example 16, we have λ1,1 =
−
√

1.03 + 2.5 and λ1,2 =
√

1.03 + 2.5 (r1 = 2) and λ2,1 = −1.2, λ2,2 = −.04,
λ2,3 = 2 (r2 = 3).

Then it is clear that the corresponding subspace V consists of all vectors
orthogonal to ej , i.e. the j-th row of the identity matrix (hence V is of dimension
K − 1) and that the associated vector w∗ is simply this row or its opposite.
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Figure 3.17. Example 16. Illustration of Lemma 14. The discrete random variables
U1 and U2 take values in {−

√
1.03+2.5,

√
1.03+2.5} and {−1.2,−.4, 2} with probabilities

[.5.5] and [1/2, 3/8, 1/8], respectively. The entropies at the points located by the
corresponding markers shown on the half-circle are given in the legend. c©2006, IEEE.
Reprinted, with permission, from Vrins, Pham & Verleysen: Mixing and non-mixing
local minima of the entropy contrast for blind source separation. To appear in IEEE
Transactions on Information Theory (March 2007).
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Observe that for (u,u′) ∈ Ui, eju = u(j) = u′(j) = λj,i leading to ej(u−u′) = 0.
By Lemma 14, this point w∗ would be a local minimum point of H(wU). But, as
explained above, it is a non mixing point while we are interested in the mixing
points, i.e. not proportional to a row of the identity matrix. However, the above
construction can be extended by looking for a set of K vectors u1, . . . ,uK in
U , such that the vectors ui − uj , 1 6 i < j 6 K span any linear subspace of
dimension K − 1 of RK . If such a set can be found, then V is simply this linear
subspace by taking U1 = {u1, . . . ,uK} and r = 1. In addition, if u1, . . . ,uK do
not all have the same j-th component, for some j, then the corresponding w∗

is a mixing local minimum point. In view of the fact that there are at least 2K

points in U to choose from for the ui and that the last construction procedure
meant not find all local minimum points of H(wU), chance is that there exists
both non-mixing and mixing local minimum points of H(wU). In the K = 2 case
this is really the case: it suffices to take two distinct points u1 and u2 in U , then
by the above lemma, the vector w∗ orthogonal to u1 − u2 is a local minimum
point of H(wU). If one chooses u1 and u2 such that both components of u1−u2

are non zero, the associated orthogonal vector w∗ is not proportional to any
row of the identity matrix; it is a mixing local minimum point of H(wU). In
Example 16, we can take u1 = [−

√
1.03+2.5,−1.2]T and u2 = [

√
1.03+2.5, 2]T.

Note that in the particular K = 2 case, the aforementioned method identifies all
local minimum points of H(wU). Indeed, for any w ∈ S(K), either there exists
a pair of distinct vectors u1,u2 in U such that w(u1 − u2) = 0 or there exists
no such pair. In the first case w is a local minimum point and in the second
case one has H(wU) = H(U). Since there is only a finite number of the u1 − u2

differences, for distinct u1,u2 in U , there can be only a finite number of local
minimum points of H(wU); for all other points H(wU) take the maximum value
H(U).

Remark 19 (Relationship between informal and formal approaches)
Let us focus on K = 2 for simplicity. The informal approach states that local
entropy minima appear when the elements of the transfer vectors are such that
two intermodal distances of the scaled source pdfs become equal. In other words,
when w1∆ij(S1) = w2∆pq(S2). The fact is that the values that the k-th com-
ponent of the vectors u can take correspond to the modes of the density of Sk:
therefore, two intermodal distances of the k-th source are given by u(k)− u′(k)
for some u,u′ with different k-th component. Two intermodal distances of the
scaled source pdf will be equal if w1(|u(1)−u′(1)|) = w2(|u(2)−u′(2)|); this will
be the case if w1(u(1) − u′(1)) = −w2(u(2) − u′(2)), i.e. when w = w∗ with
w∗(u − u′) = 0. Noting w∗ = wθ∗ , this indicates that a local minimum exists

when θ = arctan
(∣∣∣u(2)−u

′(2)
u(2)−u′(2)

∣∣∣
)
, i.e. when θ = ±θ∗ or θ = π ± θ∗.

3.2.3.4 Local minimum points of h(wS)

Equation (3.39) suggested that the local minimum points of h(wS) are closely
related to those of H(wU). Therefore, the entropy local minima of the discrete
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random variable wU have been analyzed in the above subsection. Based on the
approximation (3.39), this result extends to h(wS) for sufficiently small σ. But
the problem is that Eq. (3.39) remains vague : we don’t know how close h(wS) is
from its upper bound H(wS) in the neighborhood of the local minimum points1.

In a complementary way, the following Lemma 15 finally relates formally the
local minimum points of H(wU) to those of h(wS). A last example is proposed
to illustrate the theoretical results.

Lemma 15 Define Si, i = 1, · · · ,K, as Si = Ui + σZi described at the begin-
ning of subsection 3.2.3.2 and let w∗ be a vector satisfying the assumption of
Lemma 14 (U being the vector with component Ui). Then for σ sufficiently small
h(wS) admits a local minimum point converging to w∗ as σ → 0.

The proof of this lemma is relegated to the Appendix of the Chapter, in
Section 3.8.6 (p. 174).

Example 17 Thanks to the entropy approximator, we shall illustrate the exis-
tence of the local minima of h(wS) in the following K = 2 example, so that
vectors w ∈ S(K) can be written, as usual, as wθ = [sin θ, cos θ]. We take
S1 = Uπ/2 + σZ1 and S2 = U0 + σZ2, where U0,Uπ/2 are independent discrete

random variables taking the values −2
√

3/3,
√

3/2 with probabilities 1/3, 2/3 and
−
√

2,
√

2/2 with probabilities 3/7, 4/7, respectively, and Z1, Z2 are standard
Gaussian variables. The source pdf are then different and asymmetric, contrarily
to the assumptions drawn in Section 3.2.2. The parameter σ is set to 0.1. Thus
Yθ = wθS can be represented as Uθ + σZ where Uθ = sin θUπ/2 + cos θU0 and
Z is a standard Gaussian variable independent from Uθ. Figure 3.18. plots the
pdf of Yθ for various angles θ. It can be seen that the modality (i.e. the number
of modes) changes with θ. Fig. 3.19. shows the entropy h̄(Yθ) together with its
upper and lower bounds, for θ ∈ [0, π]. In addition to non-mixing local minima
at θ ∈ {pπ/2|p ∈ Z}, mixing local minima exist when wθ(u1 − u2) = 0, where
u1 = [−2

√
3/3,
√

2/2]T,u2 = [
√

3/2,−
√

2]T, i.e. when | tan(θ)| = .9526, or
θ ∈ {(0.2423 + p)π, (0.7577 + p)π|p ∈ Z}. One can observe that the upper bound
is a constant function except for a finite number of angles for which we observe
negative peaks (see Lemma 14). For these angles the pdf is strongly multimodal,
and the upper and lower bounds are very close, though not clearly visible on the
figure. This results from a discontinuity of the lower and upper entropy bounds
at these angles, due to the superimposition of several modes.

1We have used, as usual, the shorthand notation H(wS) = H[p] where p is the pdf of the
random variable wS
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Figure 3.18. Example 17. Probability density function of wθS for various angles θ.
c©2006, IEEE. Reprinted, with permission, from Vrins, Pham & Verleysen: Mixing and
non-mixing local minima of the entropy contrast for blind source separation. To appear
in IEEE Transactions on Information Theory (March 2007).
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Figure 3.19. Example 6. Upper bound (dashed), lower bound (dots) and entropy
estimation h̄(Yθ) (solid). The upper and lower bounds of the entropy converge to each
other when the density becomes strongly multimodal because there are downwards and
upwards jumps of H[p] and H[p] − Ξ, respectively (see also the corresponding plots in
Fig. 3.18.). c©2006, IEEE. Reprinted, with permission, from Vrins, Pham & Verleysen:
Mixing and non-mixing local minima of the entropy contrast for blind source separation.
To appear in IEEE Transactions on Information Theory (March 2007).
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3.2.3.5 Complementary observations

This section provides two observations that can be drawn regarding the impact
of the mode variance σ2 on the existence of local minima and the symmetry of
the entropy with respect to θ.

• Impact of “mode variance” σ2

In the example of Fig. 3.20. the discrete variables U1 and U2 in the expres-
sion of S1 and S2 are taken as in Example 16. One can observe that the
mixing minima of the entropy tends to disappear when the mode variance
increases. This is a direct consequence of the fact that the mode overlaps
increase. When σ increases, the source densities become more and more
Gaussian and the h(Yθ) vs θ curve tends to be more and more flat, ap-
proaching the constant function log

√
2πe + log σ. The upper and lower

bounds have only been plotted for the σ = .05, for visibility purposes.
Again, at angles corresponding to the upper bound negative peaks, the
error bound is very tight, as explained in Example 17.

• Note on the symmetry of h(Yθ)
In the above graphs plotting the (Riemannian estimated) entropy (and its
bounds) versus θ, some symmetry of h̄ can be observed. First, observe that
h(Yθ) = h(Yθ+π) whatever the source pdfs; this is a direct consequence of
the fact the the entropy is not sign sensitive. Second, if one of the source
densities is symmetric, i.e. if there exists µ ∈ R such that pSj

(µ − s) =
pSj

(µ + s) for all s ∈ R, then h(Yθ) = h(Y−θ). Third, if the two sources
share the same symmetric pdf, then h(Yθ) = h(Yπ/2−θ). Finally, if the
two sources can be expressed as in Lemma 15, then the vectors w∗

θ for
which H(w∗

θU) < H(U) (as obtained in Lemma 14) are symmetric in the
sense that their angles are pairwise opposite. This means that for σ small
enough, if a local minimum of h(wθS) appears at θ∗, then another local
minimum point will exist near −θ∗ (and thus near pπ − θ∗, ∀p ∈ Z). The
above symmetry property can be seen from Figure 3.17. and can be proved
formally as follows. From Lemma 14, w∗ must be orthogonal to u1−u2 for
some pair of distinct vectors in the set of all possible values of U. Define
u†

i (i = 1, 2) to be the vector with first coordinate the same as that of u3−i

and second coordinate the same as that of ui. Then it can be seen that
the vector orthogonal to u†

1−u†
2 has an angle opposite to the angle of w∗,

yielding the desired result. We recover the results of the informal analysis
made in Rem. 19.

3.2.4 Cumulant-based versus Information-theoretic approaches

Consider two pairs of independent, whitened, and multimodal sources with non-
zero kurtosis. For zero-mean and unit variance signals, the kurtosis κ(Y) is
nothing else than the fourth order auto-cumulant (see Eq. (1.28)). In the first
pair of sources, both are bimodal (N(S1) = N(S2) = 2; their analytical form
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Figure 3.20. Entropy h̄(Yθ) versus θ for S1 = U1 + σZ1, S2 = U2 + σZ2, where U1

and U2 are taken from Example 16 (and Fig. 3.17.) and the four random variables are
all independent. The parameter σ is set to .05 (solid), .25 (dash-dotted) and .5 (dotted).
The upper and lower bounds have been added for the σ = .05 case only, for visibility
purposes. The upper and lower bounds of the entropy converge to each other when the
density becomes strongly multimodal. c©2006, IEEE. Reprinted, with permission, from
Vrins, Pham & Verleysen: Mixing and non-mixing local minima of the entropy contrast
for blind source separation. To appear in IEEE Transactions on Information Theory.



DISCRIMINACY OF SHANNON’S ENTROPY 135

does not matter up to the above specificities), while in the second pair, the
first is bimodal and the second trimodal (N(S1) = 2, N(S2) = 3). We shall
analyze the evolution of Y = RθS where θ is the transfer angle and Rθ a 2D
matrix rotation. Figure 3.21.(a) and Figure 3.21.(b) show ĥ(Y1) and the output

mutual information ĥ(Y1) + ĥ(Y2) for both pairs of sources. The same is done
for κ2(Y1) and κ2(Y1) + κ2(Y2) (Fig. 3.22.(a) and Fig. 3.22.(b)). It can be
seen that while the entropic criterion suffers from spurious minimum points,
the above kurtotic criteria do not. Theoretical proofs regarding the spurious
minimum points of entropic criteria were given in the above sections of this
chapter. Under the whiteness constraint, the discriminacy property of κ2(Y1) has
been proved in [Delfosse and Loubaton, 1995] while in the specific 2D case (that
is when angular parametrization of the transfer matrix is possible), [Murillo-
Fuentes and Gonzalez-Serrano, 2004] proved the same discriminacy property of
κ2(Y1/

√
Var[Y1]) + κ2(Y2/

√
Var[Y2]) under the Cov[Y] = I2 constraint.
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Figure 3.21. Plot of −ĥ(Y1) (solid) and of −ĥ(Y1) − ĥ(Y2) (dotted) vs θ for a pair
of bimodal sources (a) and for a mixture of bimodal and trimodal sources (b). Mixing
maxima are seen. c©2005, IEEE. Reprinted, with permission, from Vrins & Verleysen:
Information theoretic vs cumulant-based contrasts for multimodal source separation.
IEEE Signal Processing Letters 12(3), pp. 190-193, March 2005.

In Section 3.2.1.1, it is explained that N(Y1) may vary between
min(N(S1), N(S2)) and N(S1).N(S2) for θ varying between [kπ/2, (k + 1)π/2].
It is emphasized that N(Y1), when expressed as a function of θ, may have local
minima in ]kπ/2, (k + 1)π/2[; these minima coincide with the (spurious) local

minima of ĥ(Y1), i.e. the spurious local maxima of −ĥ(Y1). This can be observed
comparing Fig. 3.21.(a) and Fig. 3.23.

The analysis held in this section has been extended to approximations of the
entropy other than ĥ, such as nearest-neighbor approximators of entropy (spacing
estimates of entropy [Learned-Miller and Fisher III, 2003]); the conclusion is
identical.
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Figure 3.22. Plot of κ2(Y1) (solid) and of κ2(Y1)+κ2(Y2) (dotted) vs θ for a pair of
bimodal sources (a) and for a mixture of bimodal and trimodal sources (b); the same as
in Fig. 3.21.. No mixing minima exist. c©2005, IEEE. Reprinted, with permission, from
Vrins & Verleysen: Information theoretic vs cumulant-based contrasts for multimodal
source separation. IEEE Signal Processing Letters 12(3), pp. 190-193, March 2005.

Therefore, as both the entropy and the kurtosis depend on the whole density
function, an interesting point is to give an intuitive justification for explaining
this phenomenon. In other words, why does the kurtosis seem not be sensitive
to the modality of the density while entropy does? An element of answer is
proposed below.

Information theoretic criteria, as well as cumulant-based ones, map the struc-
ture of a density to a real number. Both these criteria measure statistical quan-
tities of densities.

The density of Y1 is directly related to pS1
(S1), pS2

(S2) and θ by Eq. (1.76),
and the density resulting of the sum of independent random variables is the
convolution of the variable densities.

Comparing Fig. 3.21.(a) and Fig. 3.23., it is clear that −h(Y)1 is a measure of
the whole structure of pY1

(Y1) (and among others, a function of the number of
modes). By contrast, κ2(Y1) characterizes more specifically the tails of pY1

(Y1),
discarding its internal structure (in the middle range of the support of Y1), as
visible comparing Fig. 3.23. to Fig. 3.22.(a).

This property of the kurtosis, which can also be used as a non-Gaussianity
index [Comon, 1994, Hyvärinen et al., 2001], has been emphasized by J. H.
Friedman: (. . . ) projection indexes based on standardized cumulants heavily em-
phasize the departure from normality in the tails of density. (. . . ) For example,
a density with only slightly heavier than normal tails receives a much higher in-
dex value than a highly clustered projection (i.e. density) [Friedman, 1987]. This
analysis (particularized to the kurtosis) has been translated for the ICA problem
in [Hyvärinen and Oja, 1997].



DISCRIMINACY OF SHANNON’S ENTROPY 137

0  

1  

θ=
 0

0

1

θ=
π/

6

0

1

θ=
π/

4

0

1

θ=
π/

3

−4 −3 −2 −1 0 1 2 3 4
0

1

θ=
π/

2
o o

o o

o o

o o

o o

Figure 3.23. Plot of pY1(Y1) for several values of θ (solid) associated to Fig. 3.21.(a)
and the standard Gaussian density φ(.) (dotted). The dashed curves show the leftmost
and rightmost intersections between these densisties. c©2005, IEEE. Reprinted, with
permission, from Vrins & Verleysen: Information theoretic vs cumulant-based contrasts
for multimodal source separation. IEEE Signal Processing Letters 12(3), pp. 190-193,
March 2005.

The previous considerations are illustrated in Fig. 3.22., Fig. 3.23. and
Fig. 3.24. In this experiment, κ(Y1) can approximately be seen as a measure
of where the tails of pY1

(y) cross the tails of the Gaussian density φ(y) of zero
mean and unit variance. In other words, if we suppose that φ(y) > pY1

(y) for
y > y?r

1 and for y 6 y?l
1 (with y?l

1 < 0 < y?r
1 ), then the lower y?r

1 and |y?l
1 |,

the higher |κ(Y1)| (the link between the kurtosis and |y?
1 | can be seen com-

paring Fig. 3.22. and Fig. 3.24.). The y?r
1 and |y?l

1 | are indicated by circles in
Fig. 3.23. Note that y?r

1 or |y?l
1 | have similar behavior vs θ. Moreover, as visible

in Fig. 3.24., |y?l
1 (θ)| = y?r

1 (θ+ π) and y?r
1 (θ) = |y?l

1 (θ+ π)| (since by Eq. (1.59)
Yi(θ) = −Yi(θ + π)). Hence, the lower the y?

1
.
= (y?r

1 + |y?l
1 |)/2, the higher the

absolute kurtosis |κ(Y1)|.
The key point here is to observe that the evolution of ĥ(Yi) is largely influenced

by N(S1) and N(S2). On the contrary, the evolution of y?
1 versus θ (or more

precisely the shape of this function) mainly depends on the transfer coefficients
(i.e. on θ); the number N(Y1) of modes has no influence on the number of
extrema of the kurtosis. Even if the source densities may stretch or distort the
shape of |κ(Y1)| (expressed as a function of θ), this shape remains similar for
both unimodal or multimodal source densities.

Let us define s?r
i , s?l

i and s?
i similarly to y?r

1 , y?l
1 and y?

1 , respectively. Starting
from θ = kπ to θ = (2k+1)π/2, y?

1 increases from s?
2, reaches a (possibly locally)

maximum value, and decreases to s?
1. This is exactly the same scheme as for
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unimodal sources separation, and ensures that all locally maximum values of
|κ(Y1)| (i.e. the minimum values of y?

1), that can be detected blindly knowing
only the demixing matrix, are attained for θ = {kπ/2} (k ∈ Z), corresponding
to a non-mixing transfer matrix W?. As a consequence, using gradient-based
maximization of κ2(Y1) or κ2(Y1) + κ2(Y2) does not lead to spurious solutions.
In addition, it is known that algebraic methods can also be used to maximize
the last contrast function [Comon, 2001], avoiding spurious solutions too. On
the contrary, entropy-based contrast functions are maximized by gradient-based
methods; it is shown from experimental and theoretical viewpoints that spurious
maxima may appear in this case. The above development appeared in [Vrins and
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Figure 3.24. Evolution of y?r
1 (solid) and |y?l

1 | (dotted) versus θ for the examples given
in figures 3.22.(a) (markers ’o’) and 3.22.(b) (no marker). c©2005, IEEE. Reprinted, with
permission, from Vrins & Verleysen: Information theoretic vs cumulant-based contrasts
for multimodal source separation. IEEE Signal Processing Letters 12(3), pp. 190-193,
March 2005.

Verleysen, 2005a].

3.3 DISCRIMINACY OF RÉNYI’S ENTROPY

The discriminacy, as defined in this thesis, is a property of contrast function.
However, it has been shown in Chapter 2 (Section 2.4) that Rényi’s entropy,
generally speaking is not a contrast function, and by corollary, is not a discrim-
inant contrast function. In other words, we have no guarantee that finding the
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global maximum point will lead to recover the sources. Consequently, discussing
the existence of possible non-mixing maxima is useless and therefore, has not
been addressed.

3.4 DISCRIMINACY OF THE MINIMUM RANGE (EXTENDED
ZERO-ENTROPY) APPROACH

3.4.1 Preliminaries : K = 2 case

Remind the properties of the range functional, summarized in Section 2.3.2.
From model given in Eq. (1.61), it comes that

−R(Yθ) = −| sin θ|R(S1)− | cos θ|R(S2) . (3.40)

Let us now turn to the behavior of the above criterion in the first quadrant Q1 of
the unit circle (this result holds for the other quadrants). The second derivative
of the above criterion yields

− ∂2R(Yθ)

∂θ2
= cos θR(S1) + sin θR(S2) > 0 . (3.41)

More generally, this inequality ensures that −R(Yθ) is convex in θ on each quad-
rant Qp and, therefore, the maximum value of −R(Yi) (i ∈ {1, 2}, see model in
Eq. (1.60)) is reached for θ ∈ {kπ/2}:
Corollary 13 If ϕ? is the unmixing angle maximizing locally −R(Yθ), then
θ? .

= φ+ ϕ? = kπ/2.

A typical shape of the contrast function for K = 2 and K = 3 is given in the
next two examples.

Example 18 (Example for K = 2) Figure 3.25. illustrates the contrast func-
tion

−1/‖w‖(|w1|R(S1) + |w2|R(S2))

(with R(S1) = 2, R(S2) = 3). The local maximum points only occur at non-
mixing vectors. Further, the criterion is seen to be non-sensitive to ‖w‖, as
expected.

Example 19 (Example for K = 3) Suppose Y = wS. The w ∈ S(3) con-
straint defines a 2-dimensional manifold in IR3. Figure 3.26. shows −R(Y) on
the S(3) 2-manifold in w1, w2 plane (|w3| = 1 − w2

1 − w2
2) for two triples of

source ranges. The global maxima (darkest areas) correspond to the weight vec-
tor w = ei where i = argminj R(Sj); only the weight corresponding to the source
with minimum range is non zero. This weight is equal to one because of the nor-
malization constraint. All the local maxima correspond to w = ek, 1 6 k 6 K.

The above results have been published in [Vrins et al., 2005a].
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Figure 3.25. Example 18: contrast function −R(wS/‖w‖) on the 2D space w1, w2.

3.4.2 Deflation approach

Proving the discriminacy property of the range-based deflation contrast can be
managed by using a small-variation analysis (this approach was presented in
[Vrins et al., 2007a]). However, as illustrated in the above introductory section,
a “piecewise convex” contrast (i.e. convex between two non-mixing solutions) is
necessarily discriminant as it cannot have a maximum point at a mixing (spu-
rious) solution. This more elegant approach will be followed in Section 3.4.2.2
based on the concept of geodesic convexity. Finally, a more global approach us-
ing the Hessian of the criterion will be proposed; the last approach will be useful
when focussing on particular trajectories in the space spanned by the criterion.

3.4.2.1 Using small variation approach and constrained output variance

A simple method for proving the non-existence of spurious maxima in the
deflation contrast CR(w) under the w ∈ S(K) constraint is to show that at any
point w ∈ IRK satisfying ][I(w)] > 1, there always exists a small vector δw such
that i) CR(w+δw) > CR(w), ii) ‖δw‖ > 0 and iii) w+δw satisfies the constraint
‖w + δw‖ = 1.

For proving the above result, let us consider the next lemma. We restrict the
search space in V1

K as the sign of the entries of w does not affect the range.
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(a) R(S3) > R(S2) > R(S1) (b) R(S1) > R(S2) > R(S3)

Figure 3.26. Example 19. contrast function −R(wS) (w ∈ S(3)) defined on a
2-manifold, projected on the 2D space w1, w2 for a better readability. c©2005, IEEE.
Reprinted, with permission, from Vrins, Jutten & Verleysen: SWM: A class of convex
contrasts for source separation. IEEE International Conference on Acoustics, Speech
and Signal Processing, pp. V.161-V.164, March 2005, Philadelphia (USA).

Lemma 16 For all vectors w ∈ V1
K and two distinct indexes 1 6 i, j 6 K there

exists two small scalar numbers ζ, ξ such that if we define δwζ
ij
.
= ζei + ξej with

ξ
.
= −w(j) +

√
w(j)2 − (2w(i)ζ + ζ2) , (3.42)

ensuring that w + δwζ
ij ∈ V1

K , then ‖δwζ
ij‖ < ε for all ε > 0.

Further, from Eq. (2.50),

∆C̃R(w + δwζ
ij ,w) = R(Si)ζ +R(Sj)ξ . (3.43)

The proof is straightforward and is given in the Appendix (Section 3.8.7, p. 177).
The above lemma is useful for proving the next key theorem.

Theorem 18 For all w ∈ V1
K \ {e1, . . . , eK}, there exists two distinct indexes

1 6 i, j 6 K such that 0 < w(i),w(j) < 1. For such indexes, consider the small
vectors δw1, δw2 defined as:

δw1
.
= δwζ

ij ,

δw2
.
= δw−ζ

ij ,

where δwζ
ij(j) is given by ξ in Eq. (3.42) and δw−ζ

ij (j) is given by the same

equation with ζ replaced by −ζ. By Lemma 16, {w + δw1,w + δw2} ⊂ V1
K . The

associated contrast variations (see Eq. (2.50)) are noted

∆C̃1R
.
= ∆C̃R(w + δw1,w) ,

∆C̃2R
.
= ∆C̃R(w + δw2,w) .

Then, if ζ > 0, either ∆C̃1R > 0, or ∆C̃2R > 0.
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The proof is relegated to the Appendix 3.8.8 (p. 178). From the above theorem
and the results of Section 2.3.4, one gets the following corollary.

Corollary 14 (Discriminant contrast property) The function C̃R is a dis-
criminant contrast in the sense that Yi ∝ Sj if and only if bi locally maximizes
CR(bi) over the unit-sphere S(K).

Remark 20 (Restriction of B ∈M(K) to B ∈ O(K)) When proving the
above results and those of Section 2.3.4, it is not always constrained that w
satisfy another condition than w ∈ Vλ

K . However, in order to avoid extracting
twice the same source, each row vector of W, i.e. the wi can always be kept
orthonormal: we could e.g. constrain B to belong either to O(K) or to SO(K).
Hence, a natural question arises: “do the aforementioned results still hold under
the additional constraint that B must belong to O(K) or to SO(K)?” Clearly,
if a function reaches a global maximum in a point included in IRK×K ∩ SO(K),
the global maximum point of this function restricted to SO(K) is the same point.
This can be extended to the local maximum points w ∈ {e1, . . . , eK} of C̃R(w)
if w ∈ V1

K . Indeed, since a manifold is a topological space which is locally
Euclidean, for all B ∈ O(K), the restriction of the neighborhood of B to the
manifold induced by O(K) is a subset of the neighborhood of B in the whole
IRK×K space.

The only result that has still to be proved is that no local maximum point exists
on the contrast restricted to O(K) for w ∈ V1

K/{e1, . . . , eK}. As the update of
the transfer matrix must be performed through the update of the demixing matrix
(in our “blind” application, remind that the only way to modify the entries of
W is to modify B), there are actually two questions to answer. First: does
the “orthogonality” restriction induce mixing maxima in the contrast function?
Second, if there always exists fortunately trajectories laying on the orthogonal
manifold along which we can increase the contrast if we are not in a true local
maximum in the whole search space, then are these trajectories reachable by
updating the demixing matrix?

Let us answer the first question. Actually, when extracting the first source,
and since the last rows do not play any role in the evaluation of the contrast
function, the orthogonality constraint has no impact. Assuming now that p − 1
sources have been extracted (that is wi = ei, 1 6 i < p); a p-th source can be
recovered by constraining the wiw

T
j = δij (again, the K − p last rows of W do

not play any role in the contrast). This implies than we are searching for wp

such that the p− 1 first elements of wp are zero. Any update that modifies only
the K − p+ 1 last entries of wp will thus preserve the orthogonality constraint,
up to an orthogonalization of the K − p last rows of W. Consequently, since
the K-th source is trivially extracted due to the W ∈ O(K) or W ∈ SO(K)
constraint, we can take p < K and we can always proceed to the update rules
wp ← wp + δw1 or wp ← wp + δw2 by taking i, j ∈ {p, . . . ,K}. Therefore, by
Theorem 18 (p. 141), the contrast can be increased if we are not in a true local
maximum of the criterion (i.e. in the whole search space) because there exists δw
such that C̃R(wp + δw) > C̃R(wp). On the other hand, these true local maxima
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are proved by Corollary 14 to necessarily correspond to a non-mixing optima; the
discriminacy property is preserved. Finally, as the last K − p+ 1 rows have no
impact on C̃R(wp), it is always possible to transform them in such a way that
the new transfer matrix still belongs to the orthogonal group.

Let us now turn to the second question: does there exist a small vector δb such
that δbA = δw (where δw is as above)? If yes then we know that CR(bp +δb) >

CR(bp) because of the above result and the relationship between CR(B), C̃R(W)
and W = BA. Clearly, the answer is positive because the columns of A form
an orthogonal basis of IRK . But since the p first rows of W are orthogonal and
because of the group structure of O(K), the p first rows of B = WA−1 are also
orthogonal. On the other hand one can freely orthogonalize the last K − p first
rows of B with respect to the p first ones afterwards, in a similar way as we have
done for W.

Therefore, all the properties of CR(bi) analyzed in IRK×K s.t. ‖bi‖ = 1 still
hold when one updates W through B and restricts the demixing matrix to be in
the lower dimensional subset O(K) ∈ IRK×K at each iteration; this extends to
SO(K) ∈ IRK×K . Note however that we did not provided a mean to find either
the updates δb or the matrix orthogonalization, but this is not the purpose of this
remark.

3.4.2.2 Using geodesic-convexity on the hyper-sphere constraint

We assume here that w is constrained to belong to the unit-sphere S(K). As
mentioned above, the (piecewise, between two solutions) convexity of a contrast
function (i.e. the concavity of its opposite) proves its discriminacy property. The
definition domain S(K) of the function f : A ⊆ S(K) 7→ IR is no more convex,
and thus the function f cannot, rigorously speaking, be convex. For instance,
when K = 2, the domain is S(K), a circle with unitary radius or possibly V1

K ,
the open first quadrant of this sphere. However, as shown in the preliminary
section, the function is piecewise convex (in a given quadrant) when the vector
w is parametrized as a function of a single parameter θ, which is an implicit way
to fulfill the norm constraint, and we can say that the function is piecewise convex
along a geodesic of the circle, within a given quadrant. In other words, it could
be possible to consider a kind of geodesic convexity (also named “g-convexity”,
for short), which deals with a function in IRK defined only on a lower dimensional
subset (more exactly, on a sub-manifold embedded in IRK [Absil et al.]), say A,
just as the circle (or a piece of circle) in the 2D plane. This notion has been
studied by Rapcsak in [Rapcsak, 1991], and the relation between g-convexity
and (non-)existence of minima/maxima has been established.

Rapcsak has investigated the geodesic convexity of a function (defined below)
f : A ⊂ M 7→ IR where M is a smooth manifold (Class 2)2. The character-
ization of the g-convexity is based on the Lagrange function L(x,υ(x)) where

2the details do not matter as we shall work on pieces of sphere, that correspond to manifolds
in the class C∞ ⊂ C2.
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the entries of the multiplier vector υ(x) are functions. In this case, according
to Rapcsak, the g-convexity consists in the positive semi-definiteness of the sum
of the Hessian matrix of the objective function, noted Hxf(x) and the so-called
“second fundamental form of the manifold M on a geodesic convex set A”.

Definition 22 (g-convex set) A set A is said to be g-convex if any pair of
points of A are joined by a geodesic belonging to A.

This definition differs from the usual one in differential geometry as we are not
considering the shortest geodesic.

From this viewpoint, a geodesic of a sphere S that links two points belonging
to S is any piece (i.e. not necessarily the shortest one) of the great circle that
joins these points (recall that the great circles of a sphere S are circles belong-
ing to S that has the same circumference as S, and dividing S into two equal
hemispheres).

The intuitive notion is difficult to explain without many mathematical details,
but it is close to the usual set convexity definition in IRK . As an example, a
non-convex set in IRK is not g-convex in this space, but parts of a hyper-sphere
may be g-convex sets: for example, in a given hyper quadrant Qp of IRK , the
corresponding piece of sphere

S(K) ∩Qp
is g-convex. This would not be the case if the “cutting edges” were more com-
plicated.

Based on the concept of g-convex set, we can define the geodesic convexity of
a function.

Definition 23 (g-convex function) Let A ⊂ M be a g-convex set. Then, it
is said that a function f : A 7→ IR is g-convex if its restriction to all geodesic
arcs belonging to A are convex in the arc length parameter.

It results from the definition that the following inequalities hold for every
geodesic g(s), s ∈ [0, b], joining two arbitrary points m1,m2 ∈ A:

f(g(tb)) 6 (1− t)f(g(0)) + tf(g(b)), 0 6 t 6 1,

where g(0) = m1, g(b) = m2 and s is the arc length parameter. The above
definition is close to the usual definition of convex function.

We have the following theorem.

Theorem 19 (Rapcsak [Rapcsak, 1991]) Let A ⊆ M be an open g-convex
set where M is a connected manifold defined by K − n one-dimensional con-
straints γj(x) as

M .
= {x|γj(x) = 0, j = 1, . . . ,K − n,x ∈ IRK} .

Let f : A 7→ IR be a twice continuously differentiable function and the γj(x)
be linearly independent. Then f is g-convex on A if and only if the matrix
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Hg
xL(x,υ(x))|TM

is positive semi-definite at every point x ∈ A. The above
matrix is defined by

Hg
xL(x,υ(x))|TM

.
=


Hxf(x)−

K−n∑

j=1

υj(x)Hxγj(x)




TM

, (3.44)

where Hxf(x), Hxγj(x) are the Hessian of f(x) and γj(x), respectively, and
υj(x) are the functional Lagrange multipliers, defined in a vector formed by

υT(x)
.
= ∇f(x)∇γT(x)[∇γ(x)∇γT(x)]−1 ,

with

∇γ(x)
.
=




∇γ1(x)
...

∇γK−n(x)


 .

In the above theorem, the subscript TM denotes the projection operator onto
the tangent space of M at x. It can be shown [Luenberger, 1973] that

Hg
xL(x,υ(x))|TM

= PTHg
xL(x,υ(x))P , (3.45)

where P is the projection matrix defined by

P
.
= IK −∇γT(x)[∇γ(x)∇γT(x)]−1∇γ(x) .

The g-convexity of a contrast function f is related to the possible discriminacy
property of f by Corollary 3.1 of [Rapcsak, 1991]. Basically, this corollary says
that if a function f : A ⊂ M 7→ IR is a continuously differentiable g-convex
function, and A is an open g-convex set, then every stationary point of f is
a global minimum; in other words, the local maxima are necessarily attained
at a boundary of A (where the derivative of f might not exist). Hence, if a
piecewise-differentiable contrast function is g-convex in “each piece” (shortly, if
f is piecewise g-convex ) between the solution points, it is a discriminant contrast
function.

Let us now specialize to our range-based functional. The main problem is
again the fact that f(w)

.
= −R(wS) is not everywhere differentiable: it does

not fulfill an essential assumption of Theorem 19 as it is only differentiable with
respect to the wi variable at points where wi 6= 0, because of the absolute value
in Eq. (2.40).

Therefore, we shall partition the search space into open subsets in which f(w)
is infinitely differentiable. More precisely, the idea is to prove the g-convexity
property in restrictions of f(w) to subsets of S(K). As an illustration, for
K = 3, we prove that the function f(w), w ∈ S(3) is g-convex within each
of the hyper-quadrants of the sphere (quadrant boundaries excluded); as the
function is everywhere differentiable in these subsets, this means, by Rapcsak’s
Corollary 3.1, that vectors w ∈ S(3) of the form w1w2w3 6= 0 cannot be local
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maximum points of f (if there exists a stationary point in these subsets, it is a
global minimum). Then we focus on the restrictions of f to {w ∈ S(3), wi = 0}
for i ∈ {1, 2, 3}. We prove then the piecewise g-convexity of these restricted
functions in the corresponding circle w2

j + w2
k = 1, where j, k ∈ {1, 2, 3} \ {i}

and j 6= k (i.e. the g-convexity of these restrictions in each quadrant of these
circles, again boundaries excluded); in these subsets, the restricted function is
continuously differentiable with respect to the variables not corresponding to
the i-th entry of w. Finally, applying again Rapcsak’s Corrolary 3.1, the above
procedure proves that local maxima of f(w), w ∈ S(3) can only be attained at
vectors of the form wi = wj = 0, |wk| = 1 where (i, j, k) is a permutation of
(1, 2, 3).

Note that looking for the local maxima of f in each of these subsets is equiva-
lent to looking for these maxima in the whole search space because the collection
of these subsets covers S(K). In the general K-dimensional space, the search set
S(K) can be decomposed as

S(K) = ∪K
k=1{w ∈ S(K) : ][I(w)] = k} , (3.46)

where I(w) is defined in Eq. (1.96): S(K) is written as the union of the unit-
norm vectors having k non-zero entries (1 < k 6 K). As an example, the
K-entries basis vectors belong to {w ∈ S(K) : ][I(w)] = 1} and the vectors
of the form [sinα, cosα, 0, . . . , 0], [sinα, 0, cosα, 0, . . . , 0] (etc) belong to the set
{w ∈ S(K) : ][I(w)] = 2} (prevent if α = kπ/2 for some k ∈ Z since in this
case, ][I(w)] = 1), and so on.

We shall analyze the geodesic convexity in each of these subsets: we first
focus on the k = K subset before investigating the k < K ones. The subset
{w ∈ IRK : ][I(w)] = K} is not connected because the vectors with a positive
i-th entry (i ∈ I(w)) cannot be joined to vectors with a negative i-th entry
without crossing the hyperplane {w : wi = 0} that does not belong to this set.
Nevertheless, the subset can be rewritten as a union of 2K connected subsets as
follows:

{w ∈ S(K) : ][I(w)] = K} = ∪2K

n=1{w ∈ S(K) : ][I(w)] = K, sign(w) = 1K,n
± } ,
(3.47)

where 1k,n
± denotes any k-entries vector with entries in {−1, 1} (the 2K super-

script results from the choice of the sign of the wi, i.e. to the number of different
vectors 1K,n

± ). The above subsets are actually the hyper-quadrants of S(K)
(boundaries excluded, i.e. open): they are located on a same side of the hyper-
planes {w ∈ IRK : w1 = 0}, . . . , {w ∈ IRK : wK = 0}, and not on these planes
as ][I(w)] = K. They are thus open g-convex connected sets.

Example 20 For a given k, if α ∈]kπ/2, (k+1)π/2[, [sinα, cosα] ∈ {w ∈ S(2) :
][I(w)] = 2, sign(w) = 12,n

± } for some n and if α ∈](k + 1)π/2, (k + 2)π/2[, this

vector belongs to {w ∈ S(2) : ][I(w)] = 2, sign(w) = 12,n′

± } for n′ 6= n.

To check if f(w) is piecewise g-convex in the set {w ∈ S(K) : ][I(w)] = K}, we
are led to compute Hg

wL(w,υ(w)) in each of the connected subsets given in the
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right-hand side of (3.47), part of the smooth manifold S(K), on which f(w) is
infinitely differentiable. Hence Theorem 19 holds. The constraint (K − n = 1)

is γ(w) ≡ ‖w‖2 − 1 = 0. This yields f(w) = −∑K
l=1 |wl|R(Sl), |wi| > 0 for all i

and

∇f(w) = −[sign(w1)R(S1), . . . , sign(wK)R(SK)] (3.48)

Hwf(w) = 0 . (3.49)

On the other hand, ∇γ(w) = 2w, and the functional multiplier is

υ(w) = −2[sign(w1)R(S1), . . . , sign(wK)R(SK)]wT 1

4‖w‖2 = −R(wS)

2‖w‖2 .

In the above relations, we have used sign(x) = ±1 depending if x ≷ 0 and may
be either +1 or −1 if x = 0. In what follows, sign(w) has to be understood as
the vector having as i-th component the sign of wk. Hence, as Hwγ(w) = 2IK ,
we find

Hg
wL(w,υ(w))|TM

= PT(0− 2υ(w)IK)P

= −R(wS)

‖w‖2 PTP , (3.50)

which proves that the above Hessian is negative semi-definite because PTP � 0.
Consequently, the function f(w) = −R(wS) is g-convex at any point of the
subsets given in (3.47) (i.e. into an open hyper-quadrant of S(K)). Consequently,
by Rapcsak’s Corollary 3.1, there is no local maximum point of f in these subsets.

Let us now analyze f(w) inside the other subsets {w ∈ S(K) : ][I(w)] = k}
for some 1 < k < K (the k = K case has been analyzed right above, and the
k = 1 case corresponds to non-mixing points, in which we are not interested in
this chapter). Consider the further decomposition of this set as

∪K′

m=1 ∪K′′

n=1{w ∈ S(K) : ][Im,n] = k, I(w) = Im,n, ŝign(w) = 1k,n
± } , (3.51)

with K ′ .
=

(
K
k

)
is the number of possibilities to choose the index vectors

Im,n such that ][Im,n] = k and for each of them, there are still K ′′ .= 2k ways

to choose 1k,n
± . In the above equation, Ii,n = Ij,m iff i = j and the elements of

Im,n ⊂ {1, . . . ,K} are all distinct. The ŝign(w) term is called the subvector of
sign(w) with respect to I(w):

Definition 24 (subvectors) The subvector ŵ of w ∈ IRK with respect to a set
of distinct indexes I ⊆ {1, . . . ,K} is defined as the vector having its i-th entry,
noted ŵi = ŵ(i), set equal to wi′ = w(i′), where i′ denotes the i-th smallest
component of I (or equivalently, the i-th component of a permuted version of I in
which the components are sorted by increasing values). Its dimension corresponds

to the number of elements in I: ŵ ∈ IR][I].
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A subvector is thus a lower-dimensional “down-sampled” version of the original
vector built according to the indexes (sorted by increasing order) of the non-zero
entries of w.It results from the definition that a subvector ŵ of w with respect
to I(w) has no zero-valued component.

Example 21 If w = [0.3, 0, 0.78, .32, 0, .45] and v = [.21,−.1,−.2, .4, .2, 0],
their subvectors with respect to I(w) = {1, 4, 3, 6} reduce respectively to ŵ =
[0.3, 0.78, .32, .45] and v̂ = [.21,−.2, .4, 0].

Note that the order of the elements of a set of indexes does not matter (e.g.

{1, 4, 3, 6} = {1, 3, 4, 6}). Further, it is obvious that ŝign(w) = sign(ŵ) when the
reference index set used for building these subvectors is I(w) in both cases.

Example 22 Let n be such that 12,n
± = [1,−1] and m corresponding to Im,n =

{1, 3}. Consider the vector [sinα, 0, cosα, 0, . . . , 0] ∈ S(K). Then, this vector

belongs to {w ∈ S(K) : ][Im,n] = 2, I(w) = Im,n, ŝign(w) = 12,n
± } iff α belongs

to the second quadrant of the unit circle, boundaries excluded.

Each of the subsets of the right-hand side of (3.51) is nothing but the set of
K-entries unit-norm vectors having their k non-zero entries at the same places
(they are given by the set of indexes I(w) = Im,n) and in which each entry have

also the same sign (fixed by the vector 12,n
± via the index n). These subsets

correspond to some hyper-quadrants of the k-dimensional hyper-sphere. Indeed,
the restriction of S(K) to a lower-dimensional linear subspace of the form {w ∈
S(K) : ][Im,n] = k < K, I(w) = Im,n, ŝign(w) = 1k,n

± } also forms a sub-
manifold, say M′ which corresponds to a piece of a lower-dimensional hyper-
sphere embedded in IRk. For example the sphere S(3) restricted to the space
spanned by the elements of the set {w ∈ IR3 : w3 = 0} is the great circle of
S(3) given by w2

1 + w2
2 = 1; it can be divided in four quadrants in which the

sign and the number of the non-zero entries of the vectors located in any of
these quadrants are kept constant. These pieces of sphere are open g-convex
sets. Consequently, as the range functional is infinitely differentiable within
such hyper-quadrants, we can apply exactly the same reasoning as in the above
k = K case to show that the criterion is (piecewise) g-convex on each of theM′:
it suffices to consider ŵ instead of w, and k instead of K.

Applying successively this reasoning, it is shown than whatever is the subset
{w ∈ S(K) : ][I(w)] = k}, 1 6 k 6 K, the function is g-convex within sub-
g-convex sets forming a partition of the above set. Therefore, by Rapcsak’s
Corollary 3.1, the local maxima can only be reached on the boundaries (no
“inner maxima” inside the subspace): if k > 1, maximizing locally f(w) in a
given {w ∈ S(K) : ][I(w)] = k} would produce a new w satisfying necessarily
][I(w)] 6 k − 1 and iterating this result on successive sub-manifolds shows that
all the local maximum points of f(w) in the whole search space S(K) are the
basis vectors (][I(w)] = 1).
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3.4.2.3 Using the Hessian of the penalized output range

In this section, we focus on the unconstrained output range criterion
−C̃R(w) = R(wS/

√
Var[wS]); the vector w ∈ IRK is no longer constrained

to belong to S(K). We shall prove that none of the stationary points of the
criterion can correspond to a local minimum (we consider the opposite of the
contrast function) if two entries of w are non zero. Remind that

R
(
wS/

√
Var[wS]

)
=

∑K
l=1 |wl|R(Sl)

‖w‖ . (3.52)

From this, we have the following lemma, proved in Section 3.8.9 (p. 179). Again,
because of the absolute values in the criterion, only the derivatives at points
where all entries of w are non-zero exist. Remind that the mixing extremum
points are such that ][I(w)] > 2.

Lemma 17 (Derivatives of R
(
wS/

√
Var[wS]

)
) The first derivative of the

criterion R
(
wS/

√
Var[wS]

)
at point w with respect to the variables correspond-

ing to non-zero entries in w is:

∂R
(
wS/

√
Var[wS]

)

∂wk
=

sign(wk)R(Sk)‖w‖2 − wk

∑K
l=1 |wl|R(Sl)

‖w‖3 , k ∈ I(w) .

(3.53)
The second derivatives at stationary points are

∂2R
(
wS/

√
Var[wS]

)

∂w2
k

=
|wk|R(Sk)

‖w‖3
(

1− ‖w‖
2

w2
k

)
, k ∈ I(w) , (3.54)

∂2R
(
wS/

√
Var[wS]

)

∂wi∂wj
=

wiwj

‖w‖5
K∑

l=1

|wl|R(Sl), i 6= j, (i, j) ∈ I(w) .(3.55)

From the above lemma, one gets the announced result (the proof will be given
within the core of the text because of its simplicity and its shortness).

Lemma 18 For any mixing stationary point (i.e. satisfying ‖w‖ 6= ‖w‖∞ or,

equivalently, ][I(w)] > 2), the criterion R
(
wS/

√
Var[wS]

)
does not have a local

minimum (and the associated contrast C̃R(w) does not have a local maximum).

Proof:
In order to prove this lemma, we have to show that the Hessian evaluated at any
mixing point cannot be positive definite (remind that at these points w, there
exists a pair i, j of indexes satisfying i ∈ I(w), j ∈ I(w) such that the derivatives
of the criterion at point w with respect to the variables corresponding to the i, j
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entries w exist). We shall show that it is non-positive definite. From Lemma 17,
we are led to compute

1

‖w‖3 [ε η]




R(Si)
|wi| (w2

i − ‖w‖2)
wiwj

K
l=1 |wl|R(Sl)

‖w‖2

wiwj
K
l=1 |wl|R(Sl)

‖w‖2

R(Sj)
|wj | (w2

j − ‖w‖2)



[
ε
η

]

=

∑K
l=1 |wl|R(Sl)

‖w‖5︸ ︷︷ ︸
.
=α>0

[ε η]

[
w2

i − ‖w‖2 wiwj

wjwi w2
j − ‖w‖2

] [
ε
η

]
, (3.56)

where we have used the stationary point condition ∂R
(
wS/

√
Var[wS]

)
/∂wi =

0, i.e. from Eq. (3.53):

R(Si)/|wi| =
1

‖w‖2
K∑

l=1

|wl|R(Sl) . (3.57)

Hence,

α(ε2w2
i − ε2‖w‖2 + 2εηwiwj + η2w2

j − η2‖w‖2) = −α(ε2 + η2)

K∑

l=1,l/∈{i,j}
w2

l

−α(εwj − ηwi)
2

6 0 , (3.58)

whatever the vector [ε, η].

�

The above lemma says that if a mixing stationary point of the criterion

R
(
wS/

√
Var[wS]

)
exists, it cannot be a local minimum.

3.4.3 Simultaneous approach

As the simultaneous approach to BSS is a particular case of the partial simultane-
ous approach with P = K, one could directly turn to the discriminacy property
of the range-based partial contrast CR(B), B ∈ RP×K . Nevertheless, the proof
of the discriminacy is more involved for the partial contrast than for the simul-
taneous one, so that we provide the proof for P = K first, as an introduction.
This work has been published in [Pham and Vrins, 2006].

The contrast property of CR : B ∈ IRK×K 7→ IR means that C̃R(W) attains its
global maximum at and only at matrices W ∼ IK , W = BA. In the remaining
part of this subsection, it is shown that there exists no other local maximum of
this criterion.
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The function C̃R is not everywhere differentiable onM(K), due to the absolute
value in (2.42). To overcome this difficulty, we introduce the subsets MI(K) of
M(K), indexed by subsets I of {1, . . . ,K} × {1, . . . ,K}, defined by

MI(K) = {W ∈M(K) : Wij 6= 0 if and only if (i, j) ∈ I}. (3.59)

Example 23 For example, the top matrices given in Ex. 1 (p. 8) belong to (from
left to right)MI1(3) andMI2(3), respectively, iff I1 = {(1, 1), (2, 3), (3, 2)} and
I2 = {(1, 2), (2, 2), (2, 3), (3, 1)}.
Due to the non-singularity condition W ∈ M(K), a subset MI(K) may be
empty for a particular I. For example, if I is a subset of {1, . . . ,K}×{1, . . . ,K}
such that its i-th section Ii

.
= {j ∈ {1, . . . ,K}, (i, j) ∈ I} is empty for some

i ∈ {1, . . . ,K}, then any matrix W such that Wij = 0 if (i, j) /∈ I would
be singular, hence MI(K) is empty3. Thus we shall restrict ourselves to the
collection I of distinct subsets I of {1, . . . ,K} × {1, . . . ,K} such that MI(K)
is not empty. Then the subsets MI(K), I ∈ I, form a partition of M(K),
since they are clearly disjoint and their union coversM(K). Therefore any local
maximum point of C̃R would belong to someMI(K) with I ∈ I and is necessarily
a local maximum point of the restriction of C̃R on MI(K).

The key point is that the restriction of C̃R to MI(K), I ∈ I, is infinitely
differentiable as a function of the nonzero elements of its matrix argument in
MI(K). Thus, one may look at the first and second derivatives of the restriction
of C̃R to MI(K) to identify its local maximum points.

Lemma 19 For I ∈ I, the restriction of C̃R to MI(K) admits the first and
second partial derivatives

∂C̃R(W)

∂Wij
= W ij − sign(Wij)R(Sj)∑K

l=1 |Wil|R(Sl)
, (i, j) ∈ I (3.60)

∂2C̃R(W)

∂Wij∂Wkl
= −W kjW il , (i, j), (k, l) ∈ I, k 6= i,

∂2C̃R(W)

∂Wij∂Wil
=

sign(Wij)sign(Wil)R(Sj)R(Sl)

[
∑K

k=1 |Wik|R(Sk)]2
−W ijW il , (i, j), (i, l) ∈ I,

where W ij denote the (j, i) element of W−1: W ij .
= [W−1]ji.

The above lemma, proved in Section 3.8.10 (p. 180) allows one to characterize
the stationary points of the restriction of C̃R to MI(K), by setting its deriva-
tive to zero, yielding the stationary point for the range-based simultaneous BSS
contrast:

W ij =
sign(Wij)R(Sj)∑K

l=1 |Wil|R(Sl)
, (i, j) ∈ I. (3.61)

3 A simple K = 2 example is I = {(2, 1), (2, 2)}: the first row of the matrices belonging to this
set MI(K) are zero and consequently, these matrices are singular.
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Thus one gets the following corollary, proved in Section 3.8.11 (p. 181).

Corollary 15 Let I ∈ I, then for any W ∈MI(K) which is a stationary point
of the restriction of C̃R on MI(K):

{(i, j) ∈ {1, . . . ,K}2 : W ij 6= 0} ⊇ I (3.62)

and
∂2C̃R(W)

∂Wij∂Wil
= 0, (i, j) ∈ I, (i, l) ∈ I. (3.63)

The above corollary is the key point for proving the following lemma (see the
proof in Section 3.8.12, p. 181).

Lemma 20 Let I ∈ I be such that there exists a pair of indices i, j in {1, . . . ,K}
for which the i-th and the j-th sections of I are not disjoint (the i-th section of
I is the set {k ∈ {1, . . . ,K} : (i, k) ∈ I}). Then the restriction of C̃R in MI(K)
does not have a local maximum point.

Lemma 20 allows one to eliminate subsets I in I for which the restriction of C̃R
inMI(K) does not have a local maximum point. The only subset left is the one
such that its i-th sections reduce to a single point, for all i = 1, . . . ,K and are
disjoint (one element per row and per column). In other words, only matrices
W ∈ M(K) could yield a local maximum point of C̃R(W), and those matrices
have been proved to yield indeed, a global maximum point (see Section 2.3.3).
This yields the discriminacy property of C̃R.

Corollary 16 (Discriminacy of CR(B), simultaneous approach) The only
local maximum points of CR(B), B ∈M(K) are the matrices W ∼ I. (They are
also the global minimum points.)

3.4.4 Partial approach

In this section, we extend the discriminacy result of the simultaneous method
to the partial separation approach. The results appeared in [Vrins and Pham,
2007].

In order to analyze the possible existence of mixing maxima of CR(B) (i.e.
of C̃R(W), with W = BA), we shall first compute the first two derivatives of
log |det(WWT)| with respect to the entries Wij of W, as for the simultaneous
contrast; they are provided in the following lemma (some useful mathematical re-
lations involved in the proof, relegated in the Chapter appendix in Section 3.8.13,
p. 181 are taken from [Bernstein, 1954, Graybill, 1983, Harville, 1997, Petersen
and Pedersen, 2005]).

Lemma 21 Let W ∈MP×K and denote by W+ .
= WT (WWT)−1 its pseudo-

inverse. Then

∂ log |det(WWT)|
∂Wij

= 2[(W+)T]ij = 2[W+]ji ,



DISCRIMINACY OF THE MINIMUM RANGE APPROACH 153

and

∂2 log |det(WWT)|
∂Wkl∂Wij

= 2
{

[(WWT)−1]ki(δjl − [W+W]lj)− [W+]li[W
+]jk

}
,

where δjl is the Kronecker delta. Remind that if P = K, W+ = W−1 and
[W+W]lj = δlj.

Let us now use the above results for computing the first and second order
derivatives of C̃R(W). As in the simultaneous case, we are facing the prob-
lem that C̃R is not everywhere differentiable on MP×K . To overcome this
difficulty, we use a similar trick as for the S-BSS contrast, and, similarly to
MI(K) we introduce the subsets MP×K

I of MP×K , indexed by subsets I of
ZP×K .

= {1, . . . , P} × {1, . . . ,K}, defined by

MP×K
I

.
= {W ∈MP×K : Wij 6= 0 if and only if (i, j) ∈ I} , (3.64)

which obviously satisfies MK×K
I =MI(K).

Example 24 For example, the bottom matrices given in Ex. 1 (p. 8) belong to
(from left to right) M3×4

I1 and M2×3
I2 , respectively, iff I1 = {(1, 1), (2, 4), (3, 2)}

and I2 = {(1, 1), (2, 2), (2, 3)}.

Again, due to the W ∈ MP×K restriction, a subset MP×K
I may be empty for

particular I. For example, if I is a subset of ZP×K such that its i-th section
Ii

.
= {j ∈ {1, . . . ,K}, (i, j) ∈ I} is empty for some i ∈ {1, . . . , P}, then any

matrix W such that Wij = 0 if (i, j) /∈ I (including all matrices W s.t. Wij 6= 0
if and only if (i, j) ∈ I) satisfy rank(W) < P . Then, MP×K

I is empty because
MP×K

I ⊂MP×K by definition.
Thus we shall restrict ourselves to the collection I of distinct subsets I of

ZP×K such that MP×K
I is not empty. Then the subsets MP×K

I , I ∈ I, form
a partition of MP×K , since they are clearly disjoint and their union equals
MP×K . Therefore any local maximum point of C̃R(W) (W ∈ MP×K) would
belong to some MP×K

I with I ∈ I and is necessarily a local maximum point of

the restriction of C̃R on MP×K
I .

The key point is that, here again, the restriction of C̃R to MP×K
I , I ∈ I, is

infinitely differentiable as a function of the nonzero entries of its matrix argu-
ment in MP×K

I . Thus, one may look at the first and second derivatives of the

restriction of C̃R toMP×K
I to identify its local maximum points. The following

result comes from Lemma 21 and the definition of C̃R :
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Lemma 22 For I ∈ I, the restriction of C̃R to MP×K
I admits the first and

second partial derivatives

∂C̃R(W)

∂Wij
= [W+]ji −

sign(Wij)R(Sj)∑K
l=1 |Wil|R(Sl)

, (i, j) ∈ I

∂2C̃R(W)

∂Wij∂Wkl
= [(WWT)−1]ki(δjl − [W+W]lj)− [W+]li[W

+]jk,

(i, j) ∈ I, (k, l) ∈ I, k 6= i,

∂2C̃R(W)

∂Wij∂Wil
=

sign(Wij)sign(Wil)R(Sj)R(Sl)

[
∑K

k=1 |Wik|R(Sk)]2

+[(WWT)−1]ii(δjl − [W+W]lj)− [W+]li[W
+]ji,

(i, j) ∈ I, (i, l) ∈ I .

The above lemma allows one to characterize the stationary points of the restric-
tion of C̃R to MP×K

I , by setting its derivative to zero, yielding

[W+]ji =
sign(Wij)R(Sj)∑K

l=1 |Wil|R(Sl)
, (i, j) ∈ I . (3.65)

Thus one gets the following corollary.

Corollary 17 Let I ∈ I, then for any W ∈MP×K
I which is a stationary point

of the restriction of C̃ on MP×K
I :

{(i, j) ∈ ZP×K : [W+]ji 6= 0} ⊇ I ,

and

∂2C̃R(W)

∂Wij∂Wil
= [(WWT)−1]ii(δjl − [W+W]lj), (i, j) ∈ I, (i, l) ∈ I .

The first statement of the corollary results directly from the fact that if W ∈
MP×K

I then Wij 6= 0 if (i, j) ∈ I and both sides of Eq. (3.65) are non zero,
too. The second claim is a consequence of the stationary point requirement:
∂C̃R(W)

∂Wij
= ∂C̃R(W)

∂Wkl
= 0, (i, j) ∈ I, (k, l) ∈ I (see Eq. (3.65)). Consider now the

following lemma, proved in Section 3.8.14 (p. 185).

Lemma 23 Let I ∈ I such that either i) the set ∪P
i=1Ii contains more than

P elements, or ii) there exists a pair of indices i, j in {1, . . . , P} for which the
Ii∩Ij 6= ∅. Then the restriction of C̃R inMP×K

I does not have a local maximum
point.

Lemma 23 allows one to eliminate subsets I in I for which the restriction of CR

inMP×K
I does not have a local maximum point. It can be proved that the only

subsets I of I left are the ones such that all their i-th sections, i = 1, . . . , P ,
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are disjoint and reduce to a single point, which is the form of the non-mixing
matrices forming the set WP×K . But we know from Theorem 16 (p. 64) that
these matrices necessarily induce a local maximum of C̃R(W). This yields the
discriminacy property of CR over MP×K , which ensures the source recovering
via the local maximization of CR(B) (see the proof in Section 3.8.15, p. 186).

Corollary 18 (Discriminacy of CR(B), partial approach) The local maxi-
mum points of CR over the set MP×K correspond to B such that BA ∈ WP×K

or, equivalently, B ∼u A−1.

One concludes that for the specific P = K case, CR(B) admits a global max-
imum point B if and only if BA ∈ WK×K (note that if P = K, W+ = W−1),
and one gets the main result of [Pham and Vrins, 2006]. The above results state
that this result still holds for P 6 K: CR admits a local maximum point B if
(Theorem 16) and only if (Theorem 18) BA ∈ WP×K and a global maximum
point B if and only if BA ∈ WP×K

P (Corollary 6).

3.4.5 Jacobi updates, Givens trajectories and Discriminacy property

The discriminacy property of the range-based D-BSS, S-BSS and P-BSS contrast
functions have been established in the previous subsections. These results still
hold if one requires B ∈ SO(K). More precisely, whatever is B ∈ SO(K), the
neighborhood of B restricted to SO(K) is included in the neighborhood of B in
the whole space of square matrices. In other words, we can say that if a contrast
admits a local maximum point at B in the whole space, then the orthogonal
counterpart of this contrast also has a local maximum at this point in SO(K). It
was also stated that, conversely, the criterion is discriminant even if B ∈ SO(K).
However, this result supposes that in practice, the entire neighborhood of B be
explored in order to check if B is indeed a local maximum point. Taking the S-
BSS contrast as an example, this is clearly not the case if the orthogonal contrast
is maximized using Jacobi updates (product of Givens matrices) of the form given
in (1.67) where R(t) is a Givens matrix. Indeed, for this update rule, only specific
trajectories on the SO(K) manifold are permitted, they are not arbitrary on the
associated manifold because the method proceeds by iterative rotations in the
hyper-planes spanned by the pairs (wp,wq) with p < q. In other words, some
trajectories are unreachable. Only updates of the form wp ← cos θwp + sin θwq,
wq ← cos θwq− sin θwp are made possible. Therefore, along Jacobi trajectories,
a contrast could seem to have a local maximum at a given point, even if this
contrast can be increased along another trajectory of the restriction of O(K)
to SO(K), as illustrated on the toy contrast shown in Figure 3.27. If, from a
given point of SO(K), the contrast can be increased along a Jacobi trajectory,
the matrix B can be modified using the associated update. But otherwise, the
fact that no Jacobi update leads to an increase of the contrast does not ensure,
based on the above results, that we are in a local maximum point. Actually,
the question that we would like to answer is the following: does there always
exist a Givens trajectory such that the contrast can be increased if we are not
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Figure 3.27. Toy contrast : an algorithm with a restricted field of geodesic trajectories
may be stuck in a saddle point.

in a “true” local maximum in SO(K)? We shall address this question by using
a deflation procedure, where one is trying to extract a p-th source by updating
the p-th row wp of W.

As the first and second derivatives of R(wS/Var[wS]) are given in Lemma 17
(p. 149), one can compute the pushforward term of f(wp)

.
= −R(wpS/Var[wpS])

if wp ← wp + δw, where δw is a small increment of wp. We have

f(wp + δw)− f(wp) = ∆ +O(‖δw‖2) , (3.66)

with ∆
.
= 〈∇wp

f(wp), δw〉. Remind that the first p−1 entries of wp are supposed
to be zero and must remain so as the first p− 1 outputs have already converged
to the first p− 1 sources. Hence, any suitable Jacobi update can be written as

wp ← wp + wp(cos θ − 1) + wq sin θ︸ ︷︷ ︸
.
=δw

, (3.67)

with q > p and δw = δw(θ). Because I(wp) = I(wq) does not necessarily
hold true, we may face a problem. To compute the pushforward ∆ of f in this
direction δw(θ), we need the gradient of f(wp) in this direction, which does
not exist for the index entries i ∈ I(wq) \ I(wp). However, this gradient exists
“right near” the zero element: the k-th entry of the gradient is (if wp(k) = 0)
limwp(k)↑0∇wp

f(wp) = R(Sk)/‖wp‖ or limwp(k)↓0∇wp
f(wp) = −R(Sk)/‖wp‖,

depending on the sign of the k-th entry of the increment δw(θ). In other words,
the pushforward term ∆ is the sum of two terms: the first one (T1) results from
a change of direction along the non-zero-elements of wp, and the second one (T2)
from a change of subspace (intuitively, we “leave” the subspace corresponding
to the zero-elements of wp towards a higher dimensional subspace). Defining
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Ī(wp)
.
= I(wq) \ I(wp) for short, we have (noting that ‖wp‖ = 1) :

T1 = −
∑

i∈I(wp)

{
(cos θ − 1)

(
|wp(i)|R(Si)−wp(i)

2R(wpS)
)

+sin θwq(i) (sign(wp(i))R(Si)−wp(i)R(wpS))}
T2 = − sin θ

∑

i∈Ī(wp)

wq(i)sign(wq(i) sin θ)R(Si) .

Then, ∆ = T1 + T2 reduces to:

∆ = −θ





∑

i∈I(wp)

wq(i) [sign(wp(i))R(Si)−wp(i)R(wpS))]

︸ ︷︷ ︸
.
=T ′

1(q)

+
∑

i∈Ī(wp)

sign(wq(i)θ)wq(i)R(Si)

︸ ︷︷ ︸
.
=T ′

2(q,θ)





+O(θ2) (3.68)

.
= ∆θ +O(θ2)

Observe that ∆θ + O(θ2) also corresponds to ∆ + O(‖δw(θ)‖2), since
‖δw(θ)‖2 = θ2+O(θ4) is O(θ2) (as θ → 0). This means intuitively that ‖δw(θ)‖2
tends to zero at least as fast as a constant times θ2. In other words, the higher-
order terms in θ can be relegated in the O(‖δw(θ)‖2) term, so that one can re-
place ∆ by ∆θ in Eq. (3.68) without affecting the equality. Mathematically, this
is because ∆+O(‖δw(θ)‖2) = ∆θ +O(θ2)+O(‖δw(θ)‖2) = ∆θ +O(‖δw(θ)‖2).

Let us analyze this pushforward term ∆θ.

1. First, note that if ][I(wp)] = 1, then wq(i) = 0 for all i ∈ I(wp) and all
p < q 6 K because wpw

T
q = 0; consequently, T ′

1(q) = 0 for all p < q 6 K.
But since sign(ab) = sign(a)sign(b) and asign(a) = |a|, we have ∆θ < 0;
we are in a local maximum of f , as expected.

2. Assume now that Ī(wp) = ∅. Note that

T ′
2(q, θ) = sign(θ)

∑

i∈Ī(wp)

|wq(i)|R(Si) .

Consequently, for θ 6= 0, T ′
2(q, θ) = 0 is equivalent to Ī(wp) = ∅ (intuitively:

we stay within the same subspace). Then ∆θ ∝ θT ′
1(q). Except if T ′

1(q) = 0
as well, the pushforward can be made positive by choosing the right sign
for θ. What if T ′

1(q) = 0? This may result from two cases:
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• the gradient vanishes. This may happen at the local minimum of
f(wp): the stationary point condition of f (given in Eq. (3.57)) is the
same as imposing that each term into the brackets in T ′

1(q) (which are
exactly the entries of ∇wp

f(wp)) is zero. There is thus no problem.

• the restricted gradient (short-hand reference for “the subvector of
∇wp

f(wp) with respect to I(wp)”) does not vanish but is orthogonal
to any of the last subvectors ŵp+1, . . . , ŵK of wp+1, . . . ,wK (respec-
tively) with respect to I(wp) (see Def. 24 for a definition of “subvec-
tors”). This cannot happen but, as it could be feared, the justification
is more involved. By definition of I(wp), this case is not possible be-
cause simultaneously i) ŵp is perpendicular to these subvectors, since
the null entries of wp do not influence the value of the dot product:
wpw

T
q = ŵpŵ

T
q , ii) the restricted gradient is not co-linear with ŵp (it

is easily seen that it is perpendicular) and iii) the set {ŵp, . . . , ŵK}
spans a ][I(wp)]-dimensional space; it also spans all the subspaces of
dimensions lower than K − p + 1, and in particular, the one corre-
sponding to the dimension of the gradient of ŵp, that is of dimension
][I(wp)] 6 K − p + 1. In other words, iii) results from the fact that
any K − p+ 1-entry vector (and in particular, the restricted gradient
of f with respect to I(wp)) can be written as a linear combination∑K−p+1

i=1 α(i)ŵp+i−1. As the coefficients α(i) cannot all vanish for
non-null vectors (and the gradient is assumed to not vanish), the dot
product between the restricted gradient and each of the last K − p
subvectors ŵp+1, . . . , ŵK cannot vanish.

⇒ The ∆θ = 0 corresponding to T ′
2(q, θ) = T ′

1(q) = 0 for all q > p
and all small enough angles θ results from the fact that the gradient
∇wp

f(wp) vanishes, and that we are in a local minimum of the func-
tion: one can always increase the function by applying a sufficiently
small angular variation. On the other hand, if for at least one q satis-
fying Ī(wp) = ∅ we have T ′

1(q) 6= 0, then the pushfoward can be made
positive, too.

3. Assume now Ī(wp) 6= ∅. Do we necessarily have that ∆θ > 0 or ∆−θ > 0
for at least one row-index q > p? This is a necessary condition to ensure
that the criterion does not reach a mixing stationary point or mixing local
maximum point. From Eq. (3.68) we have

sign(∆θ) = −sign(θ)sign (T ′
1(q) + T ′

2(q, θ)) . (3.69)

Using the equality ŵqŵ
T
p = 0, this necessary condition is equivalent to

show that there exists δ > 0 and at least one index q ∈ {p+1, . . . ,K} such
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that sign(θ) equals

− sign


 ∑

i∈I(wp)

wq(i)sign(wp(i))R(Si) + sign(θ)
∑

i∈Ī(wp)

|wq(i)|R(Si)




(3.70)
for all |θ| < δ. This is not necessarily the case, as shown in the following
example. Note that it is not a “random” counter-example. It has been
chosen according to the above observation saying that some problem might
be encountered if Ī(wp) 6= ∅ for all q > p.

Example 25 Since the first extracted rows have no importance, we can set with-
out loss of generality p = 1. Assume R(Si) = 1 for all i. The following 3 × 3
orthogonal transfer matrix yields a counter-example showing that the pushfor-
ward term may be negative along all Jacobi trajectories:

W =




0 −0.8 −0.6
0.8 −0.36 0.48
−0.6 −0.48 0.64


 . (3.71)

The only possible rotations leading to the update rule (3.67) are obtained by con-
sidering the first row of W after left-multiplication by a Givens matrix G±θ

12

(q = 2) or G±θ
13 (q = 3). Let us denote the corresponding new transfer ma-

trices by W′ and W′′, respectively. Figure 3.28.(a) shows f(w1) (dotted line),
f(w′

1) (solid line) and f(w′′
1 ) (dashed line) as a function of θ; the simulation

was performed for 20 points θ equally spaced in [−0.5, 0.5]. It is seen that the
criterion decreases in both cases whatever the sign of θ while we are not in a
true local maximum if the whole search space is considered, as explained above.
The sceptic reader could doubt about the result shown in this figure, because we
have not evaluated the function f “right near θ = 0”, but for some |θ| > 0:
theoretically speaking, there could exist θ′ satisfying 0 < |θ′| < |θ| such that the
function is increased for the angular increment θ′. In this sense, we agree that
Fig. 3.28.(a) does not constitute an absolute proof (no limit for |θ| → 0 has been
computed). However, a rigorous proof is given by Fig. 3.28.(b) in which the term
sign (T ′

1(q) + T ′
2(q, θ)) in the right-hand side of Eq. (3.69) (which depends on the

sign of θ only, not on the value of θ) has been plotted vs θ: for both q = 2 and
q = 3, these terms equal sign(θ), i.e. by Eq. (3.69), this leads to ∆θ < 0 for all
q > p and all “sufficiently small” rotation angles. Note that if “simultaneous ro-
tations” are possible (and not only successive rotations in various hyper-planes),
i.e. when rotation matrices other than Givens matrices can be used to perform
the geodesic optimization over SO(K), this does not happen. For example, if W
is left multiplied by R

.
= Gθ

12G
θ
13, the criterion increases for sufficiently small

θ > 0 while we still have RW ∈ SO(K).

In conclusion, the above reasoning shows that spurious maxima of the range-
based contrast function may be faced along Givens trajectories. The above
analysis shows that this is possible when we have to “leave” the subspace spanned
by the basis vectors corresponding to the non-zero entries.
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Figure 3.28. Example 25. The range-based contrast function is not discriminant
along Jacobi trajectories.

3.5 DISCRIMINACY OF THE MINIMUM SUPPORT
(ZERO-ENTROPY) APPROACH

It has been explained in Chapter 2 that both the support and the range can
be used as cost functions for the separation of bounded sources. There is no
reason, a priori, to prefer the support to the range functional. On the contrary,
estimating the support should be more complicated than estimating the range
as the estimation of the latter is necessary to estimate the former. Another
problem regarding the support compared to the range is the problem of mixing
maxima. It has been proved in the previous section that the range functional
has no mixing maxima, whatever the extraction scheme (deflation, simultaneous
or partial techniques); this is an additional advantage of the range compared to
the support since, as it will be shown below, this property is not shared by the
support. Because of the number of disadvantages of the support compared to the
range, we restrict ourselves to give a simple K = 2 example of sources sharing
a same not necessarily symmetric density pS for which mixing maxima can be
observed. Indeed, discussing all the conditions on the source supports ensuring
the existence of such maxima is of few interest in practice since the range should
always be preferred to the support criterion.

Inspired by Lemma 6 (p. 60) which states a difference of behavior between
the support and the range, we choose for pS a suitable density with non-convex
support. Let pS1

and pS2
be two densities of independent random variables

Si = Ui+Di where U1 and U2 are independent uniform variables taking non-zero
values in [−ν, ν] (ν > 0) and D1, D2 are independent discrete random variables
taking values [α, 1− α] at {−ξ, ξ} (ξ > 0). Suppose further that ξ > 2ν. Then,
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Figure 3.29. Source density pS and pdf of pS1+S2 .

both sources Si have the same density pS (see Fig. 3.29.):

pS(s) =





α
2ν for x ∈ [−ξ − ν,−ξ + ν]
1−α
2ν for x ∈ [ξ − ν, ξ + ν]

0 elsewhere.

(3.72)

It results that Ω(Si) = {x ∈ [−ξ − ν,−ξ + ν] ∪ [ξ − ν, ξ + ν]} and Ω(Si) =
{x ∈ [−ξ − ν, ξ + ν]}, which implies µ[Ω(Si)] = 4ν and µ[Ω(Si)] = R(Si) =
2ξ + 2ν. By Lemma 6, we have µ[Ω(S1 + S2)] = µ[Ω(S1)] + µ[Ω(S2)] = 8ν and
µ[Ω(S1 +S2)] > µ[Ω(S1)]+µ[Ω(S2)] (µ[Ω(S1 +S2)] = 12ν). This can be observed
in Figure 3.29. The interval bounds B′

1 −B′
6 can be easily found by an intuitive

reasoning but also by pointing out that the density pS1+S2
is obtained by the

convolution of pS1
and pS2

by the independence assumption on the sources. As
ξ > 2ν (i.e. ξ − ν > ν), the support of Ω(S1 + S2) is composed of 3 disjoint
intervals (B′

1, B
′
2), (B′

3, B
′
4), (B′

5, B
′
6) .

We shall prove that if ‖w‖ is kept fixed (here: equal to one), the criterion
µ[Ω(wS)] reaches a local maximum point at w = wπ/4, which does not yield
wπ/4S ∝ Si. The question that has to be dealt with is the following: does there
exist δ > 0 such that ∀∆ > 0 s.t. |∆| < δ, µ[Ω(wπ/4+∆S)] > µ[Ω(wπ/4S)] ?

According to the Lebesgue measure definition, the measure of union of disjoint
intervals is the sum of the interval lengths. Therefore, µ[Ω(wπ/4S)] equals (B′′

2 −
B′′

1 )+(B′′
4 −B′′

3 )+(B′′
6 −B′′

5 ) where the B′′
i are given by

√
2/2B′

i (this is because
pwπ/4+∆S is a scaled version of pS1+S2

: the x axis scale is expanded by a factor√
2/2 and the y axis by its inverse and therefore, the support of wπ/4+∆S is

also composed of three disjoint intervals, with bounds B ′′
i given right above,
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see Fig. 3.29.) Remind that µ[Ω(wπ/4S)] = (
√

2/2)12ν = 6
√

2ν and note that

wπ/4+∆ =
√

2/2[sin ∆ + cos∆, cos ∆− sin∆].
Because ξ − ν > ν, for sufficiently small ∆, the support of wπ/4+∆S is still

composed of three disjoint intervals. In order to compute µ[Ω(wπ/4+∆S)], we
shall look at the bounds B1, B2, B3, B4, B5 and B6 of the above three intervals,
that are defined similarly as in Fig. 3.29. The seeked quantity would reduce to
(B2 −B1) + (B4 −B3) + (B6 −B5).

Whatever is θ, the support of wθS can be written as the union of four (not
necessarily disjoint) intervals Ωi, 1 6 i 6 4. They are built from the pairwise
convolution of the pair of rectangles in the pdfs pwθ(1)S1

and pwθ(2)S2
(because

both pwπ/4+∆(1)S1
and pwπ/4+∆(2)S2

are a scaled version of pS, they also have the
same shape as pS for θ /∈ {kπ/2k ∈ Z}): left-left, left-right, right-left, right-right
yielding the intervals Ω1,Ω2,Ω3 and Ω4, respectively.

The interval Ω1 = (B1, B2) results from the left-left combination and Ω4 =
(B5, B6) from the right-right one. It is easy to see that sin(π/4+∆)+cos(π/4+
∆) =

√
2 cos ∆ and, from Fig. 3.29. :

• B1 = (wπ/4+∆(1) + wπ/4+∆(2))(−ξ − ν) =
√

2 cos ∆(−ξ − ν);

• B2 = (wπ/4+∆(1) + wπ/4+∆(2))(−ξ + ν) =
√

2 cos ∆(−ξ + ν);

• B5 = (wπ/4+∆(1) + wπ/4+∆(2))(ξ − ν) =
√

2 cos ∆(ξ − ν);

• B6 = (wπ/4+∆(1) + wπ/4+∆(2))(ξ + ν) =
√

2 cos ∆(ξ + ν).

This gives B2 −B1 = B6 −B5 = 2ν
√

2 cos∆.
Let us now focus on the remaining intervals Ω2 and Ω3. If ∆ = 0, then

Ω2 = Ω3 (as in the bottom of Fig. 3.29.), but for a small ∆ 6= 0, the above two
intervals are different, though not disjoint. Then, the computation of (B3, B4) =
Ω2 ∪ Ω3 requires more attention, since it is the union of 2 overlapping intervals
Ωi. Actually, it is easily checked that

B3 = min
(
wπ/4+∆(1)(−ξ − ν) + wπ/4+∆(2)(ξ − ν),

wπ/4+∆(1)(ξ − ν) + wπ/4+∆(2)(−ξ − ν)
)

=
√

2 min (−ξ sin ∆− ν cos ∆, ξ sin ∆− ν cos∆)

=
√

2(−ξ| sin ∆| − ν cos ∆) (3.73)

and

B4 = max
(
wπ/4+∆(1)(ν − ξ) + wπ/4+∆(2)(ξ + ν),

wπ/4+∆(1)(ξ + ν) + wπ/4+∆(2)(ν − ξ)
)

=
√

2 max (−ξ sin ∆ + ν cos ∆, ξ sin∆ + ν cos∆)

=
√

2(ξ| sin ∆|+ ν cos∆) (3.74)
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i.e. B4 −B3 = 2
√

2(ξ| sin ∆|+ ν cos∆).
As for sufficiently small ∆ we have B2 < B3 and B4 < B5, the support is

composed of three disjoint interval. Therefore, µ[Ω(wπ/4+∆S)] equals the sum
(B2 −B1) + (B4 −B3) + (B6 −B5):

µ[Ω(wπ/4+∆S)] = 6
√

2ν cos ∆ + 2
√

2ξ| sin ∆| , (3.75)

and it can be checked that lim∆→0 µ[Ω(wπ/4+∆S)] = 6
√

2ν = µ[Ω(wπ/4S)] as it
should. Considering a first order expansion of the above circular functions, we
finally get that for sufficiently small |∆| > 0:

µ[Ω(wπ/4+∆S)] = 6ν
√

2 + 2
√

2ξ|∆|+ o(∆)

> µ[Ω(wπ/4S)] (3.76)

with equality if and only if ∆ = 0. This shows that the criterion (resp.
−µ[Ω(wθS)]) has a local minimum (resp. maximum) point at θ = π/4.

Remark 21 The simultaneous support-based orthogonal contrast, still with K =
2, reduces to

− µ[Ω(wθS)]− µ[Ω(wπ/2−θS)] . (3.77)

Clearly, in the above results, the parameter α used in Eq. (3.72) has no matter
as long as it belongs to (0, 1). Then, we can set without loss of generality α =
0.5, implying that the common source density is symmetric. This gives that the
support of the first output sin θS1 + cos θS2 equals the support of the second one
− cos θS1 + sin θS2 as they share a same symmetric pdf (the convolution of two
symmetric functions is symmetric and “reversing” one of these function does
not affect the convolution product). Therefore, the above criterion reduces to
−2µ[Ω(wθS)], which proves that the simultaneous orthogonal criterion also has
a local maximum point at θ = π/4.

Part of the above discussion first appeared in [Vrins et al., 2006].

3.6 SUMMARY OF RESULTS AND CONTRAST SETS
CONFIGURATION

Based on the results of Chapter 2 and Chapter 3, we can find the right configu-
ration in Figure 3.1.

• In Chapter 2, it was proved that Ch(·) ∈ F̃. We have seen in Section 3.2
that mixing local maximum points may exist for some source densities; we
conclude that Ch(·) /∈ FCD . This proves that FCD * F̃ and consequently,
neither Conf.1 nor Conf.2 are correct.

• Contrary to Shannon’s entropy-based contrasts, CR(·) ∈ F̃ and CR(·) ∈
FCD , which shows that FCD ∩ F̃ 6= ∅, and Conf. 5 has to be rejected.
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Then, the acceptable configuration is either Conf. 3 or Conf. 4. Some or-
thogonal contrast functions, like the (sum of the) output absolute (or square)
kurtosis are not in the set F̃C ; this results from the fact that the cumulants sat-
isfy cumr(αX) = |α|rcumr(X) (the sensitivity to scaling is avoided thanks to the
whitening preprocessing) and are strictly additive for any pair of independent
random variables

cumr(X + Y) = cumr(X) + cumr(Y) (3.78)

and thus the r-th root of the absolute r-th cumulant is a class II r-subadditive
functional:

r
√
|cumr(X + Y)| 6 r

√
|cumr(X)|+ r

√
|cumr(Y)| . (3.79)

It is explained in [Comon, 1994] that the sum of the square cumulants of order
r is a contrast function for r > 3 if at most one source has a zero r-th order
cumulant.

In can be shown that they might be discriminant (see e.g. [Delfosse and
Loubaton, 1995] for a proof regarding the deflation approach using the output
square kurtosis or the cumulant-based sinusoidal contrast in [Murillo-Fuentes and
Gonzalez-Serrano, 2004], and algebraic techniques exist for the maximization of
their counterpart for simultaneous separation); hence, they are in FCD . This
yields that the only acceptable configuration is Conf. 4.

We concludes the chapter with the following lemma, which is an extnsion of
Pham’s theorem (Theorem 8, p. 50) based on the range properties.

Lemma 24 Let Q(.) be a positive real-valued functional defined on the space of
one-dimensional random variables. Let Ψ(·) be a strictly increasing mapping.
Assume that Q(.) is scale-equivariant and satisfies Q2(X+Y) > Q2(X)+Q2(Y).
Then

• Ψ

(√
Var[bX]

Q(bX)

)
, Ψ

(
| detB|

ΠK
i=1Q(biX)

)
and Ψ

(
det(BΣXB

T)

ΠP
i=1Q(biX)

)
are deflation, simul-

taneous and partial contrast functions, respectively;

• if in addition Q(X+Y) = Q(X)+Q(Y) holds true, then the above contrast
functions are discriminant, in the sens of the terminology used in this
thesis.

3.7 CONCLUSION OF THE CHAPTER

3.7.1 Summary of results

In this chapter, we have investigated the question of the possible existence of
spurious maxima in entropy-based contrast functions: we have looked if some
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local maximum point of entropic criteria can be reached for transfer vectors w ∈
IRK not proportional to the basis vectors. It was first explained using an informal
approach that Shannon’s entropy-based (and also mutual information-based)
criteria can suffer from this problem in the specific situation where the source
pdfs are multimodal; the locations of these maxima in IRK can be related to the
vectors w that correspond to a local minimum number of the modes of the output
pdf. This has been rigorously proved using two different approaches: a Taylor
expansion of the entropy (a necessary and sufficient condition for the existence of
spurious maxima was provided in the specific K = 2 case when the two sources
share a same symmetric density) and using entropy estimation with bounds. The
last approach yields more general results, and the entropy approximator can be
used in other contexts than BSS. In both cases, the relationship with the mode
standard deviation of the multimodal source pdf was emphasized. Also, the
mutual information suffers from the same drawback. It was noted in [Achard,
2003] that the gradient of the output mutual information may vanish even when
the outputs are mutually dependent, but the characterization of this stationary
point (local minima, local maxima, saddle point?) was lacking. In this chapter,
it is rigorously proved that these points may correspond to local minimum points.

The discriminacy analysis of the general Rényi’s entropy has not been investi-
gated as, from our theoretical and experimental results, only Shannon’s entropy
and (extended) Rényi’s entropy with r = 0 are, whatever the source densities,
truly cost functions for BSS under a (feasible) fixed variance constraint; this was
shown in Chapter 2.

Rényi’s entropy with r = 0 has then been studied; a simple extension of
Rényi’s entropy has also been proposed. The last extension exactly matches the
standard Rényi entropy except, possibly, regarding the 0-entropy. In spite of its
simplicity, this trivial extension may, however, lead to a functional having a more
desirable behavior than the usual Rényi entropy in this case, though. It is shown
based on various approaches that the range criterion (extended Rényi’s entropy
with r = 0) yields a discriminant contrast function provided that the sources
are bounded, whatever the extraction scheme: deflation, symmetric or partial
separation. To our knowledge, the range-based criterion is the only existing
contrast, up to now, that is proved to be discriminant (even without prewhitening
step !) in these three scenarios. On the other hand, a simple example showed
that the support-based contrast may have spurious maxima, even though it was
shown in Chapter 2 that it is a contrast function: it suffers from the same
drawback as Shannon’s entropy.

The last lemma of the chapter also states a sufficient condition for a contrast
to be discriminant. It suffices that it fulfills a specific form and a strict additivity
condition; this is an extension of Pham’s theorem (Theorem 8 p. 50). However
the above section emphasizes the connection between the known discriminant
contrast functions (kurtosis-based and range-based ones). They are mappings
(e.g. absolute value) of strictly additive quantities (cumulants and range itself,
respectively).
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Deflation Simultaneous Partial Discriminacy

Shannon (r = 1) OK OK OK KO+

Hartley (r = 0) OK OK OK KO
Rényi (r > 0, r 6= 1) KO− KO− KO− NA

Range (ext. Hartley) OK OK OK OK

Table 3.2. Summary of the results of Chapter 2: analysis of the contrast
property of entropy-based criteria for the deflation, simultaneous and partial BSS.
It is rigorously proved that Shannon, Hartley and extended Hartley entropies all
yield to contrast function for the three separation schemes. By contrast, it always
exist counter-examples showing that Rényi’s entropy might be not a contrast
function whatever is r > 0, r 6= 1. Original results are boldfaced, alternative proofs
have been used to prove the known results.

The results of this chapter are summarized in the last column of Table 3.2.
The results proved in the other columns were proved in Chapter 2. The “KO” re-
sults are proved via theoretical counterexamples showing that the corresponding
property might be violated in some cases (even under the usual non-Gaussianity
assumption). The “−” superscript indicates that these results are unexpected
(but not contradictory) compared to the literature, and the “+” superscript
indicates that the results confirm previous numerical experiments involving ap-
proximations.

3.7.2 Comparison with existing results

Our result might be considered as in contradiction with the results of Babaie-
Zadeh. Indeed, he claims in [Babaie-Zadeh, 2002] that the mutual information
cannot have a local minimum if it is non-zero. Then, how could we face local
minima of the mutual information when the outputs have not been separated,
remain thus necessarily dependent and consequently, when the output mutual
information is non-zero ? The apparent contradiction comes from the fact that
in [Babaie-Zadeh, 2002], the author does not assume any model. To see that, let
us give the original theorem:

Theorem 20 (Babaie-Zadeh) Let X be a random vector with a continuously
differentiable pdf. If for any “small vector” ∆ the inequality KL(X) 6 KL(X +
∆), then KL(X) = 0.

In other words, the above theorem says that if the outputs are not mutually
independent, it is always possible to add a random vector to X such that the
output mutual information will decrease.

Note that there is no restriction on the random vector ∆. In particular, it is
not constrained to be of the form αX (the fact that there is no fixed variance
constraint or other tricks preventing the outputs to converge to null signals is
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not of primary importance as mutual information is not scale sensitive). On the
contrary, our analysis focuses on specific random vectors, that can be written
as linear combinations of the mixtures. This is because we are trying to recover
independent source signals from linear mixtures of them; not only to produce
any random vectors with independent components. Hence, the results are not
contradictory. This was pointed out by Babaie-Zadeh and Jutten in [Babaie-
Zadeh and Jutten, 2005].

An interesting question that would have to be explored is the condition (de-
pending on both the contrast function and the sources) ensuring that no local
optima exist. This is the converse problem of the one addressed in this chapter,
since we have given sufficient conditions for the existence of such optima, focusing
on multimodal source densities. A partial converse result exists: in 2003, Boscolo
& Roychowdhury showed that in a specific K = 2 case, the mutual information
local minimum is also global: the local minimum is unique (up to the usual inde-
terminacies) [Boscolo and Roychowdhury, 2003]. The remaining open problem is
to reduce the gap (between the results in [Boscolo and Roychowdhury, 2003] and
those provided in this chapter) in which “nothing can be said”, so far. On the
one hand, we know from [Boscolo and Roychowdhury, 2003] that for two i.i.d.,
symmetric and “nearly Gaussian sources” (in the sense of the Gram-Charlier
expansion of the source pdfs), the mutual information contrast is discriminant
and on the other hand, we now that we shall face the existence of mixing op-
tima of the mutual information when the sources are strongly multimodal. . . But
what about the possibility to have a spurious optimum when considering other
kinds of unimodal or smoothly multimodal densities? None of the approaches
can currently answer this question.

3.8 APPENDIX: PROOFS OF RESULTS OF THE CHAPTER

3.8.1 Proof of relation (3.14) (wording p. 114)

The left-hand side of Eq. (3.14) can be written as log |det ((IK + E)B) |, where
it is assumed ‖E‖ � 1. Let us denote the EVD decomposition of E , EVD(E), by
ΘΛΘ−1, leading to EVD(IK + E) = Θ(IK + Λ)Θ−1, i.e.

det(IK + E) =

K∏

i=1

(1 + λi) , (3.80)

where the λis are the eigenvalues of E , assumed to be ordered by decreasing
values. From the third order expansion of the logarithm function

log(1 + ε) = ε− 1

2
ε2 +

1

3
ε3 + . . . , (3.81)
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we find using det(M1M2) = detM1 detM2 for M1,M2 ∈M(K)

log |det ((IK + E)B) | = log |detB|+
K∑

i=1

log(1 + λi)

= log |detB|+
K∑

i=1

λi −
1

2

K∑

i=1

λ2
i +

1

3

K∑

i=1

λ3
i + . . .

The above result assumes |λi| < 1 for all i, and this results from the hypothesis
‖E‖ � 1.

As Tr(M1M2M3) = Tr(M3M1M2) for M1,M2,M3 ∈M(K), we have

K∑

i=1

λi = TrΛ = Tr(ΛΘ−1Θ︸ ︷︷ ︸
IK

) = Tr(ΘΛΘ−1) = TrE ,

K∑

i=1

λ2
i = TrΛ2 = Tr(ΘΛ2Θ−1) = Tr(ΘΛΘ−1Θ︸ ︷︷ ︸

IK

ΛΘ−1) = TrE2 ,

K∑

i=1

λ3
i = TrΛ3 = Tr(ΘΛ3Θ−1) = Tr(ΘΛΘ−1Θ︸ ︷︷ ︸

IK

ΛΘ−1Θ︸ ︷︷ ︸
IK

ΛΘ−1) = TrE3 .

Note that the eigenvalues of E tend to zero when TrE2 tends to zero as TrE2 =∑K
i=1 |λi|2.
Finally, o(TrE2) = o(‖E‖2) (remind that for matrices, the norm symbol cor-

responds in this text to the Frobenius norm: ‖E‖2 =
∑

ij E2
ij) because ‖E‖2 does

not tend faster to zero than TrE2:

‖E‖2 − TrE2 =
K∑

i=1

K∑

j=1

E2
ij −

K∑

i=1

K∑

j=1

EijEji

=
∑∑

i<j

E2
ij +

∑∑

i<j

E2
ji − 2

∑∑

i<j

EijEji

=
∑∑

i<j

(Eij − Eji)
2

> 0 . (3.82)

This means that a matrix E having a small Frobenius norm will also have a
small TrE2. Another way to obtain this result is to observe that log |detB| +
TrE − 1

2TrE2 is an approximation of log |det ((IK + E)B) | up to a term of order∑K
i=1 λ

2
i . But each of the eigenvalue (their modulus if some are complex) are

bounded above by ‖E‖2. Indeed, for the spectral norm (as well as all other
p-norms), we have

‖Mx‖2 6 ‖M‖2‖x‖2 . (3.83)
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In particular, setting xi the eigenvector of M associated to the eigenvalue λi

(‖Mxi‖2 = |λi|.‖xi‖2), we have:

|λi|.‖xi‖2 6 ‖M‖2‖xi‖2
|λi| 6 ‖M‖2 , (3.84)

i.e., |λi| 6 ‖M‖. Therefore, with E ← M:
∑K

i=1 |λi|2 6 K‖E‖2 and

O(
∑K

i=1 λ
2
i ) = O(‖E‖2).

Hence, by taking a matrix E with sufficiently small (Frobenius) norm, the
following approximation holds:

log |det ((IK + E)B) | ≈ log |detB|+ TrE − 1

2
TrE2 . (3.85)

�

3.8.2 Proof of Lemma 11 (wording p. 116)

Note that (S1,S2) is distributed as (U1 + σZ1,U2 + σZ2) where U1,U2 are inde-
pendent Bernoulli variables taking the value ±1 with probability 1/2 and Z1,Z2

are independent standard normal variables independent of U1,U2. Thus (Y1,Y2)
is distributed as (U1 + U2 +

√
2σZ′

1,U2 − U1 +
√

2σZ′
2) where Z′

1,Z
′
2 are also in-

dependent standard normal variables independent of U1,U2. Since U1 + U2 and
U1−U2 both take the value ±2 with probability 1/4 and 0 with probability 1/2,
Y1 and Y2 have the same pdf as pY given in the lemma. Direct calculation yields
ψY(y) = −p′

Y(y)/pY(y) = 1/(2σ2)
∑1

i=−1(y− 2i)wi(y) with wi as defined in the
lemma. Noting that

w′
i(y) =

1∑

j=−1

y − 2j

2σ2
wi(y)wj(y)−

y − 2i

2σ2
wi(y)

and 1− wi =
∑

j 6=i wj , (1/2σ2)
∑1

i=−1(y − 2i)w′
i(y) equals

∑

−16i<j61

wi(y)wj(y)

4σ4
[2(y − 2i)(y − 2j)− (y − 2i)2 − (y − 2j)2]

= − 1

σ4

∑

−16i<j61

(j − i)2wi(y)wj(y).

This yields the expression for ψ′
Y given by Eq. (3.26) of the lemma.

Let us now compute E[Y2
2|Y1 = y]. To that end, note that the conditional

density of (U1,U2) given Y1 = y is

Pr(U1 = 1,U2 = 1|Y1 = y) = w1(y),

Pr(U1 = 1,U2 = −1|Y1 = y) = w0(y)/2,

Pr(U1 = −1,U2 = 1|Y1 = y) = w0(y)/2,

Pr(U1 = −1,U2 = −1|Y1 = y) = w−1(y).
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The above values are easily found using Bayes’ formula

Pr(U1,U2|Y1) =
Pr(Y1|U1,U2)Pr(U1,U2)

Pr(Y1)
. (3.86)

Therefore, conditionally on Y1 = y, Y2 = U2 − U1 +
√

2σZ′
2 is distributed as√

2σZ′
2 with probability w−1(y) + w1(y) and as

√
2σZ′

2 ± 2 with probability
w0(y)/2 each. But

E[Y2
2|Y1 = y] = (w−1(y) + w1(y))

∫
ξ2

1√
2σ
φ
(
ξ/
√

2σ
)
dξ

︸ ︷︷ ︸
=Var[

√
2σZ′

2]=2σ2

+
w0(y)

2

∫
ξ2

1√
2σ
φ
(
(ξ − 2)/

√
2σ
)
dξ

︸ ︷︷ ︸
=Var[

√
2σZ′

2]+E2[
√

2σZ′
2+2]

+
w0(y)

2

∫
ξ2

1√
2σ
φ
(
(ξ + 2)/

√
2σ
)
dξ

︸ ︷︷ ︸
=Var[

√
2σZ′

2]+E2[
√

2σZ′
2−2]

= 2σ2(w−1(y) + w1(y) + w0(y)) + 4w0(y) , (3.87)

which is precisely the expression for E[Y2
2|Y1 = y] given in the lemma.

�

3.8.3 Proof of Lemma 12 (wording p. 116)

We have E[Y2
2ψ

′
Y1

(Y1)] =
∫

E[Y2
2|Y1 = y]ψ′

Y1
(y)pY(y)dy. Hence noting that

w0(y) = φ[y/(
√

2σ)]/[2pY(y)], w±1(y) = φ[(y∓2)/(
√

2σ)]/[4pY(y)], and that w0

is an even function, one gets the first result of the lemma.
We now derive an upper bound for g(y) = [σ2 + 2w0(y)][w0(y) + 2w1(y)]/σ

4.
We have,

w0(y)

w−1(y)
= 2e

[ (y + 2)2 − y2

4σ2

]
= 2e

(y + 1

σ2

)
.

Thus, since w−1 = 1− w1 − w0

w0(y) =
2e(y+1)/σ2

1 + 2e(y+1)/σ2 [1− w1(y)] 6 2e(y+1)/σ2

.

Similarly, w0(y)/w1(y) = 2e{[(y − 2)2 − y2]/(4σ2)} = 2e[(1 − y)/σ2] and since
w0 = 1− w1 − w−1:

w1(y) =
1− w−1(y)

1 + 2e(1−x)/σ2 6
1

1 + 2e(1−x)/σ2 6
e(y−1)/σ2

2
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Thus, for y 6 −1− ξ, one has

g(y) 6 (1 + 4e−ξ/σ2

/σ2)[2e−ξ/σ2

+ e−(2−ξ)/σ2

]/σ2

If we choose ξ = ξ(σ) such that ξ/σ2 + log σ2 → ∞ and ξ → 0 as σ → 0, then

both e−ξ/σ2

/σ2 and e−(2−ξ)/σ2

/σ2 tend to 0 as σ → 0. Hence

∫ −1−ξ

−∞
g(y)φ

(y + 2√
2σ

)
dy → 0

For x > −1− ξ, one can bound w0(y) and w1(y) by 1, hence g(y) by 2(σ2 + 2).
Therefore

∫ ∞

−1−ξ

g(y)φ
(y + 2√

2σ

)
dy 6

3(σ2 + 2)

σ4

[
1− Φ

(1− ξ√
2σ

)]

where Φ(y) =
∫ y

−∞ e−y2/2dy/
√

2π is the (cumulative) distribution function asso-

ciated to the Gaussian density. But we know that 1 − Φ(y) 6 e−y2/2/(y
√

2π),
hence

1

σ4

[
1− Φ

(1− ξ√
2σ

)]
6

e[−(1− ξ)2/(4σ2)]

(1− ξ)√πσ3
→ 0 as σ → 0,

since ξ → 0 as σ → 0.

�

3.8.4 Proof of Lemma 13 (wording p. 121)

We first prove that H[p] is an upper bound on h(Y). We have from the definition

of differential entropy that h(Y) =
∑N

n=1 πnHn where

Hn
.
= −

∫
Kn(y) log

[ N∑

m=1

πmKm(y)
]
dy. (3.88)

Since all Km > 0, the last right hand side is bounded above by

−
∫
Kn(y) log[πnKn(y)] dy = h[Kn]− log πn ,

yielding the first claim.
Inequality (3.31) can also easily be managed based on entropy properties. In-

deed, the density given in Eq. (3.2) is a convex combination of densities. This
mixture density has the nice property of being the marginal density of an aug-
mented model (Y,U), where U is a discrete variable with N values u1, . . . , un and
parameter π and Y|U = un has densityKn for each n. The “continuous-discrete”

joint entropy h(Y,U) equals h(Y|U) + H(U) where H(U)
.
= −∑N

n=1 Pr(U =
un) log Pr(U = un) = H[π] and h(Y|U) = EU[h(Y|U = n)] is the equivocation
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[M. Hellman, 1970] and reduces to
∑N

n=1 πnh[Kn]. But on the other hand, we
have h(Y) = h(Y,U) − H(U|Y) and thus H[p] − h[p] equals H(U|Y) which is
always nonnegative because U is a discrete variable.

Yet another way to prove (3.31) is to use the so-called generalized Jensen-
Shannon (GJS) divergence. This generalized divergence is an extension of the
well-known Jensen-Shannon divergence between two densities. The GJS diver-
gence between the Kn is here defined as [Lin, 1991]

JSπ(K1, . . . ,KN )
.
= h

[
N∑

n=1

πnKn

]
−

N∑

n=1

πnh[Kn] . (3.89)

Based on a result of Hellman and Raviv [M. Hellman, 1970], Lin showed in [Lin,
1991] using simple entropy properties that half the difference between H[π] and
JSπ(K1, . . . ,KN ) is an upper bound on a positive term. Therefore,

h

[
N∑

n=1

πnKn

]
−

N∑

n=1

πNh[KN ] 6 H[π] (3.90)

which shows that h[p]−H[p] 6 0.
Let us now turn to the lower bound of the entropy. To prove the inequality

(3.32), note that log(1+x) 6 x. The term log[
∑N

m=1 πmKm(y)] can be bounded
above by





log[πnKn(y)] +
∑

16m6N,m6=n

πmKm(y)

πnKn(y)
if y ∈ Ωn

log(max16m6N supKm) otherwise .

(3.91)

Therefore, from (3.88), one gets

Hn > −
∫

Ωn

Kn(y) log[πnKn(y)]dy −
∑

16m6N,m6=n

πm

πn

∫

Ωn

Km(y)dy

− log( max
16m6N

supKm)εn .

But since the subsets Ω1, . . . ,ΩN are disjoint,

N∑

n=1

πn

∑

16m6N,m6=n

πm

πn

∫

Ωn

Km(y)dy =

N∑

m=1

πm

∫

∪16n6=m6NΩn

Km(y)dy,

and ∪16n6=m6NΩn ⊆ R\Ωm. Therefore the right hand side of the above equality

is bounded above by
∑N

m=1 πmεm. Hence,
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N∑

n=1

πnHn > −
N∑

n=1

πn

∫

Ωn

Kn(y) log πndy −
N∑

n=1

πn

∫

Ωn

Kn(y) logKn(y)dy

−
N∑

n=1

πnεn −
N∑

n=1

πn log( max
16m6N

supKm)εn

= −
N∑

n=1

πn log πn(1− εn)

−
N∑

n=1

πn

[
−h[Kn]−

∫

IR\Ωn

Kn(y) logKn(y)dy

]

−
N∑

n=1

πnεn −
N∑

n=1

πn log( max
16m6N

supKm)εn .

It follows that h[p] =
∑N

n=1 πnHn is bounded below by

H[π] +
N∑

n=1

πnh[Kn] +
N∑

n=1

πn log(πn supKn)εn −
N∑

n=1

πnε
′
n

−
N∑

m=1

πmεm −
N∑

n=1

πn log( max
16m6N

supKm)εn .

and final basic manipulations yield the lower bound given in the lemma.

�

3.8.5 Proof of Lemma 14 (wording p. 126)

By construction, for each j = 1, . . . , r, w∗u takes the same values for u ∈ Uj . On
the other hand, by grouping the vectors u ∈ U which produce the same value of
w∗u into subsets of U , one gets a partition of U into r∗ + 1 subsets U∗

0 , . . . ,U∗
r∗ ,

such that each U∗
j , 1 6 j 6 r∗ contains at least two elements and w∗u takes

the same values for u ∈ U∗
j and the values associated with different U∗

j and the
w∗u,u ∈ U∗

0 , are all distinct. Obviously r∗ > 1 and each of the U1, . . . ,Ur,
must be contained in one of the U∗

1 , . . . ,U∗
r∗ . Therefore the space V must be

contained in the space spanned by the vectors u−uj ,u ∈ U∗
j \{uj}, j = 1, . . . , r∗,

and u1, . . . ,ur∗ being arbitrary elements of U∗
1 , . . . ,U∗

r∗ . But the last space is
orthogonal to w∗ by construction and thus cannot have dimension greater than
K − 1, hence it must coincide with V .

Putting Pr(u) for Pr(U = u) for short and Pr(U∗
j ) =

∑
u∈U∗

j
Pr(u), one has

H(w∗U) = −
∑

u∈U∗
0

Pr(u) log Pr(u)−
r∗∑

j=1

Pr(U∗
j ) log Pr(U∗

j ) .
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For a given pair u,u′ of distinct vectors in U , if w∗(u− u′) 6= 0 then it remains
so when w∗ is changed to w provided that the change is sufficiently small. But
if w∗(u−u′) = 0 then this equality may break however small the change. In fact
if w is not proportional to w∗, it is not orthogonal to V , hence w(u−u′) 6= 0 for
at least one pair u,u′ of distinct points in some U∗

j , meaning that wu takes at
least two distinct values in U∗

j . Thus there exists a neighborhood W of w∗ in S
such that for all w ∈ W \ {w∗}, each subset U∗

j can be partitioned into subsets
Uj,k(w), k = 1, . . . , nj(w) (nj(w) can be 1) such that wu takes the same value
on Uj,k(w), and the values of wu on the subsets Uj,k(w) and on each point of
U∗

0 are distinct. Further, there exists at least one index i for which ni(w) > 1.
For such an index

Pr(U∗
i ) log Pr(U∗

i ) =

ni(w)∑

k=1

Pr (Ui,k(w)) log Pr (Ui,k(w))

+

ni(w)∑

k=1

Pr (Ui,k(w)) log
Pr(U∗

i )

Pr (Ui,k(w))
.

The last term can be seen to be a strictly positive number, as Pr(U ∗
i ) >

Pr (Ui,k(w)) for 1 6 k 6 ni(w) once ni(w) > 1. Note that this term does not de-
pend directly on w but only indirectly via the set Uj,k(w), k = 1, . . . , nj(w), j =
1, . . . , r∗, and there is only a finite number of possible such sets. Therefore
H(wU) > H(w∗U) + α for some α > 0 for all w ∈ W.

In the K = 2 case, the space V reduces to a line and thus the differences
u − u′ for distinct u,u′ in U∗

j , for all j, belong to this line. Thus if w is not
proportional to w∗, hence not orthogonal to this line, wu takes distinct values
on each of the sets U∗

1 . . . ,U∗
r∗ , and if w is close enough to w∗, these values are

also distinct for different sets and distinct from the values of wu on U ∗
0 , which

are distinct themselves. Thus for such w, H(wU) = H(U).

�

3.8.6 Proof of Lemma 15 (wording p. 130)

The proof of this lemma is quite involved in the K > 2 case, therefore, we will
first give the proof for the K = 2 case which is much simpler, and then proceed
by extending it to K > 2. As already shown in the beginning of Section 3.2.3.2,
wS = wU + σZ where Z is a standard Gaussian random variable. Thus, the
density of wS is of the form (3.2) with Kn(y) = φ[(y − µn)/σ]/σ, µ1, . . . , µN

being the possible values of H(wU) and φ being the standard Gaussian density,
as usual. For w = w∗, one has by Lemma 13,

h(w∗S) 6 H(w∗U) + h[φ] + log σ.

On the other hand, we have seen in the proof of Lemma 14 that for w in
some neighborhood W of w∗ and distinct from w, the wu,u ∈ U (U denoting
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the set of possible values of U) are all distinct (in the K = 2 case). Thus the
maps u 7→ wu map different points u ∈ U to different µn. However, when w
approaches w∗, some of the µn tend to coincide and thus some of the dn defined
in (3.36) approach zero. To avoid this we restrict w to W \ W ′ where W ′ is
any open neighborhood of w∗ strictly included in W. Then minn dn > d for all
w ∈ W\W ′ for some d > 0 (which depends onW ′). Thus by Corollary 12, h(wS)
can be made arbitrarily close to H(wU)+h[φ]+log σ for all w ∈ W\W ′ by taking
σ small enough. But H(wU) = H(U) > H(w∗U), therefore h(wS) > h(w∗S) for
all w ∈ W \W ′, for σ small enough.

One can always choose W to be a closed set in S(K); hence it is compact.
Since the function w ∈ W 7→ h(wS) is continuous, it must admit a minimum,
which by the above result must be in W ′ and thus is not on the boundary of W.
This shows that this minimum is a local minimum. Finally, as one can chooseW ′

arbitrarily small, the above result shows that the above local minimum converges
to w∗ as σ → 0.

Consider now the case K > 2. The difficulty is that it is no longer true that
for w in some neighborhood W of w∗ and distinct from w∗, the wu,u ∈ U are
all distinct. Indeed, by construction of w∗, there exists K − 1 pairs (uj ,u

′
j), 1 6

j < K, of distinct vectors in U such that the differences uj − u′
j are linearly

independent and w∗(uj − u′
j) = 0, 1 6 j < K (for a given w∗). For w not

proportional to w∗, at least one (but not necessary all) of the above equalities
will break. Therefore all the wu,u ∈ U may be not distinct, even if w is restricted
to W \W ′. But the set of w for which this property is not true anymore is the
union of a finite number of linear subspaces of dimension K − 1 of IRK and thus
is not dense in IRK . Therefore for most of the w ∈ W \W ′, the wu,u ∈ U are
all distinct.

The pdf of wS can be written as

p(y) =
∑

u∈U
Pr(u)

1

σ
φ
(y −wu

σ

)
; (3.92)

but some of the wu,u ∈ U can be arbitrarily close to each other. In this case
it is of interest to group the corresponding terms in (3.92) together. Thus we
rewrite p(y) as

p(y) =

N∑

n=1

∑

u∈Vn

Pr(u)
[ ∑

u∈Vn

Pr(u)∑
u∈Vn

Pr(u)

1

σ
φ
(y −wu

σ

)]
,

where V1, . . . ,VN is a partition of U . This pdf is still of the form (3.2) with

πn =
∑

u∈Vn

Pr(u), Kn(y) =
∑

u∈Vn

Pr(u)

πn

1

σ
φ
(y −wu

σ

)
.

The partition V1, . . . ,VN can and should be chosen so that

d(w)
.
= min

16n6=m6N
min

u∈Vn,u′∈Vm

|wu−wu′| ,
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is bounded below by some given positive number. In other words, all the vectors
u ∈ U yielding the same value of wu must be grouped in a same subset Nn. To
this end, note that, as is shown in the proof of Lemma 14, w∗ is associated with
a partition U∗

0 , . . . ,U∗
r of U such that w∗u takes the same value for all u ∈ U∗

j

(1 6 j 6 r∗), and the values associated with different U∗
j and the w∗u,u ∈ U∗

0 ,
are all distinct. Thus infw∈W |wu − wu′| > δ for some δ > 0 for all u 6= u′

and u,u′ do not belong to a same U∗
j , j = 1, . . . , r∗. We take N = r∗ + ][U?

0 ],
where ][U?

0 ] denotes the number of elements of U?
0 , Vj = U∗

j , j = 1, . . . , r∗ and the
remaining Vj to be disjoint sets containing only a single element of U ∗

0 . Then, the
partition {V1, . . . ,VN} = {{u},u ∈ U∗

0 ,U∗
1 , . . . ,U∗

r∗} satisfies d(w) > δ,∀w ∈ W.
The above partition is not fine enough in order to apply Lemma 13 and to
obtain the desired lower bound for h[p]. The application of this lemma with πn,
Kn, n = 1; . . . , N would yield a lower bound involving H[π]. By construction,
H[π] = H[w∗U] while we would need a strict inequality. We thus refine the
partition {V1, . . . ,VN} by splitting one of the sets U∗

j , j = 1, . . . , r∗ into two
subsets. The splitting rule is as follows: for each U∗

j arrange the wu,u ∈ U∗
j in

ascending order and look for the maximum gap between two consecutive values.
The set U∗

j that produces the largest gap will be split and the splitting is done
at the gap. For w ∈ W \ W ′, this maximum gap can be bounded below by a
positive number δ′ (noting that there is only a finite number of elements in each
U∗

j ); hence for the refined partition, d(w) > min(δ, δ′). Of course, the partition
constructed this way depends on w, but there can be only a finite number of
possible partitions. Hence, one can find a finite number of subsets W1, . . . ,Wq

which cover W \W ′, each of which is associated with a partition of U such that
the corresponding d(w) is bounded below by min(δ, δ′) for all w in this subset.
In the following we shall restrict w to one such subset, Wp say, and we denote
by V1, . . . ,VN the associated partition.4

We now apply Lemma 13 with πn,Kn, n = 1, . . . , N defined as above and
with the sets Ωn defined by

Ωn
.
= {y : min

u∈Vn

|y −wu| < d(w)/2}.

Then we have, writing d in place of d(w) for short,

εn 6 1−
∫ d/(2σ)

−d/(2σ)

φ(x)dx = Erfc
( d

2
√

2σ

)

ε′n =
∑

u∈Vn

Pr(u)

πn

∫

R\Ωn

1

σ
φ
(y −wu

σ

)
log

supKn

Kn(y)
dy.

In each term in the sum in that last right hand side, one applies the bound

supKn

Kn(y)
6

σ supKn

[Pr(u)/πn]φ[(y −wu)/σ]

4Note that the partition obtained after the split obviously counts one more element than
the corresponding partition before the split. However, the same symbol N is used for both
partitions to simplify the notation
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which yields,

ε′n 6
∑

u∈Vn

Pr(u)

πn

∫

[x|>d/(2σ)

φ(x) log
σ supKn

[Pr(u)/πn]φ(x)
dx

=
[
log sup(σKn)−

∑

u∈Vn

Pr(u)

πn
log

Pr(u)

πn

]
Erfc

( d

2
√

2σ

)

+ h[φ]−Hd/σ(φ).

Therefore, putting hn = −∑
u∈Vn

[P (u)/πn] log[P (u)/πn] and noting further

that sup(σKn) 6 supφ = (2π)−1/2, one gets

N∑

n=1

πnε
′
n +

N∑

n=1

πn

[
log
(max16m6N supKm

πn supKn

)
+ 1
]
εn 6

[
1− log(2π)

2
+

N∑

n=1

πnhn

]
Erfc

( d

2
√

2σ

)
+ h[φ]−Hd/σ(φ) .

Since d = d(w) > min(δ, δ′),∀w ∈ Wp, the last inequality shows that for any
η > 0,

h[p] >
N∑

n=1

πnh[Kn] + H[π]− η, ∀w ∈ Wp,

for σ small enough. On the other hand, since log x 6 x− 1,
∫

1

σ
φ
(y −wu

σ

)
log

Kn(y)

φ[(y −wu)/σ]/σ
dy 6 0.

Multiplying both members of the above inequality by Pr(u)/πn and summing
up with respect to u ∈ Vn, one gets h[φ] + log σ − h[Kn] 6 0. Therefore

h[p] > h[φ] + log σ + H[π]− η .

But by construction H[π] > H(w∗U) (see the proof of Lemma 14); therefore,
taking η < H[π] − H(w∗U), one sees that for σ small enough h(wS) = h[p] >
h(w∗S) for all w ∈ Wp. Since this is true for all p = 1, . . . , q, we conclude as
before that h(wS) admits a local minimum in W ′.

�

3.8.7 Proof of Lemma 16 (wording p. 140)

Let us fix the distinct indexes 1 6 i, j 6 K and the small scalar ζ. Note that
in some pathological cases, the sign of ζ cannot be arbitrarily chosen, otherwise,
the w + δwζ

ij ∈ V1
K may be not satisfied (for example, if w = ei, then we must

obviously take ζ < 0 and ξ > 0). The w + δwζ
ij ∈ V1

K constraint yields:

ξ2 + 2w(j)ξ + ζ2 + 2w(i)ζ = 0 . (3.93)
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Both roots of the previous equation will lead to the same absolute value of
w(r) + δwζ

ij(r), for all 1 6 r 6 K. We focus on the single root of (3.93)

satisfying |ξ| < |w(j)| (w + δwζ
ij ∈ V1

K), which gives (3.42).

With this value of ξ, observe that ‖δwζ
ij‖ → 0 as |ζ| → 05.

Finally, by definition of δwζ
ij , the r-th entry of w equals the r-th entry of

w + δwζ
ij except if r ∈ {i, j}, which gives the ∆C̃R(w + δwζ

ij ,w) given in the
lemma.

�

3.8.8 Proof of Theorem 18 (wording p. 141)

We freely assume ζ > 0. If ∆C̃1R > 0, the Theorem is obviously trivially proven.
Consider then the unique alternative ∆C̃1R 6 0; we will show that in this case,
∆C̃2R > 0.

Combination of equations (3.42) and (3.43) with w /∈ {e1, . . . , eK}, ∆C̃1R 6 0
and ζ a strictly positive small scalar gives:

−∆C̃1R = R(Si)ζ +R(Sj)
(
−w(j) +

√
w(j)2 − (2w(i)ζ + ζ2)

)

> 0 . (3.94)

Then,

R(Si)ζ > R(Sj)
(
w(j)−

√
w(j)2 − (2w(i)ζ + ζ2)

)
. (3.95)

On the other hand,

−∆C̃2R = R(Si)(−ζ) +R(Sj)
(
−w(j) +

√
w(j)2 − (−2w(i)ζ + ζ2)

)
,

i.e.

R(Si)ζ = ∆C̃2R −R(Sj)w(j) +R(Sj)
√

w(j)2 − (−2w(i)ζ + ζ2) .

Hence, by Eq. (3.95):

∆C̃2R −R(Sj)
(
w(j)−

√
w(j)2 − (−2w(i)ζ + ζ2)

)

is greater than or equal to

R(Sj)
(
w(j)−

√
w(j)2 − (2w(i)ζ + ζ2)

)
,

5Observe that there is no restriction to make ζ tending to zero since V1
K is a connected set:

Vλ
K defines the surface of the K-dimensional sphere centered at the origin with radius λ in

RK
+ , i.e. a continuous manifold in RK

+ .
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yielding

∆C̃2R > R(Sj)
(
2w(j)−

√
w(j)2 − (2w(i)ζ + ζ2)−

√
w(j)2 − (−2w(i)ζ + ζ2)

)

> R(Sj)w(j)

([
1−

√
1− 2w(i)ζ + ζ2

w(j)2

]
+

[
1−

√
1 +

2w(i)ζ − ζ2

w(j)2

])
.

Then, using Taylor development,

{ √
1− ε = 1− ε

2 − ε2

8 + o(ε2)√
1 + ε′ = 1 + ε′

2 − ε′2

8 + o(ε′2)
, (3.96)

where o(ε2) and o(ε′2) denote terms tending to zero faster than ||ε2|| and ||ε′2||,
respectively. Hence, for sufficiently small ε, ε′, one gets:

{
1−
√

1− ε > 1− (1− ε
2 )

1−
√

1 + ε′ > 1− (1 + ε′

2 )
. (3.97)

Then, by letting ε
.
= ζ 2w(i)+ζ

w(j)2 and ε′
.
= ζ 2w(i)−ζ

w(j)2 , we have for ζ small enough:





1−
√

1− 2w(i)ζ+ζ2

w(j)2 > 1− (1− 2w(i)ζ+ζ2

2w(j)2 )

1−
√

1 + 2w(i)ζ−ζ2

w(j)2 > 1− (1 + 2w(i)ζ−ζ2

2w(j)2 )
. (3.98)

By (3.98) and using inequality (3.96), it comes that for sufficiently small ζ > 0 :

∆C̃2R > R(Sj)w(j)

(
2w(i)ζ + ζ2

2w(j)2
− 2w(i)ζ − ζ2

2w(j)2

)

=
R(Sj)ζ

2

w(j)

> 0 .

�

3.8.9 Proof of Lemma 17 (wording p. 149)

The computation of the first derivative is trivial; it yields the stationary point
condition:

R(Si)

|wi|
=

∑K
l=1 |wl|R(Sl)

‖w‖2 . (3.99)
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Let us now turn to the second derivative expressions at stationary points. For
i 6= j:

∂2 R(wS)√
Var[wS]

∂wi∂wj
=

(sign(wi)R(Si)2wj − wisign(wj)R(Sj)) ‖w‖2
‖w‖5

−

(
sign(wi)R(Si‖w‖2 −

∑K
l=1 |wl|R(Sl))

)
3wj‖w‖

‖w‖5
= −wjsign(wi)R(Si)‖w‖−3 − wisign(wj)R(Sj)‖w‖−3

+3wiwj

K∑

l=1

|wl|R(Sl)‖w‖−5

= (−wjsign(wi)R(Si) + 2wisign(wj)R(Sj))‖w‖−3

=
wiwj

∑K
l=1 |wl|R(Sl)

‖w‖5 . (3.100)

On the other hand

∂2 R(wS)√
Var[wS]

∂w2
i

=

(
sign(wi)R(Si)2wi −

∑K
l=1 |wl|R(Sl)− |wi|R(Si)

)
‖w‖3

‖w‖6

−

(
sign(wi)R(Si‖w‖2 − wi

∑K
l=1R(Sl))

)
3wi‖w‖

‖w‖6

=
|wi|R(Si)−R(Si)‖w‖2/|wi|

‖w‖3

=
R(Si)

|wi|‖w‖3
(w2

i − ‖w‖2) . (3.101)

�

3.8.10 Proof of Lemma 19 (wording p. 151)

To compute the partial derivatives of C̃R given by Eq. (2.42), we note that

d|Wij |/dWij = sign(Wij) if Wij 6= 0 ,

and that from [Petersen and Pedersen, 2005]

∂ log |detW|
∂Wij

=

[
∂ log |detW|

∂W

]

ij

=
[
W−1T

]
ij

= W ij .

Let us compute the partial derivative of W ij with respect to Wkl. We note that
W ij = Tr(EijW

−1) where Eij is the matrix with only one nonzero element at
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the (i, j) place which equals 1 and Tr denotes the trace, hence [Petersen and
Pedersen, 2005]

∂2 log |detW|
∂Wkl∂Wij

=
∂Tr(EijW

−1)

∂Wkl

= −
[
(W−1EijW

−1)T
]
kl

= −
[
W−1EijW

−1
]
lk

= −W ilW kj .

This yields the formula for the partial second order derivatives of the restriction
of C̃R to MI(K) as given by the lemma.

3.8.11 Proof of Corollary 15 (wording p. 152)

By Lemma 20, for the restriction of C̃R to MI(K) to admit a local maximum
point, it is necessary that the sections I1, . . . , IK of I be all disjoint. On the other
hand, none of these sections can be all empty since otherwise MI(K) would be
empty. Therefore these sections must be reduced to a single point: Ii = {(i, ji)},
i = 1, . . . ,K where j1, . . . , jK are indexes in {1, . . . ,K}. These indexes must
be distinct since otherwise MI(K) would be empty. But a matrix in MI(K)
where I = {(1, j1), . . . , (i, jK)} with j1, . . . , jK being a permutation of 1, . . . ,K,
is simply a product of a diagonal and a permutation matrix and is thus similar
to IK . Such a matrix is already known to realize the global maximum of C̃R.
This completes the proof.

3.8.12 Proof of Lemma 20 (wording p. 152)

Let W ∈ MI(K) be a stationary point (if it exists) of the restriction of C̃R to
MI(K), we shall show that it cannot realize a local maximum of this function.
By assumption, there exists i, j, k in {1, . . . ,K} and i 6= j, such that (i, k)
and (j, k) are both in I. Therefore, by Corollary 15, W ik and W jk are non-
zero, hence by Lemma 19: ∂2C̃R/∂Wik∂Wjk = −W ikW jk 6= 0. Also, by the

same corollary, ∂2C̃R/(∂Wik)2 = ∂2C̃R/(∂Wjk)2 = 0. Thus, let W̃ be a matrix

differing (slightly) from W only at the indexes (i, k) and (j, k): W̃ik = Wik + ε,
W̃jk = Wjk + η, then since the first order partial derivatives of C̃R vanish at W,
a second order Taylor expansion yields:

C̃R(W̃) = C̃R(W)−W ikW jkεη +O((|ε|+ |η|)3)

as ε, η → 0. Therefore, C̃R(W̃) > C̃R(W) if ε and η both are small enough and
their product have the same sign as W ikW jk. This shows that W cannot realize
a local maximum of C̃R in MI(K).

3.8.13 Proof of Lemma 21 (wording p. 152)

It is obvious that WWT ∈ RP×P is symmetric. It is also invertible since it is
full-rank : rank(WWT) = rank(W) = P .
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Computation of first order derivatives

∂ log |det(WWT)|
∂Wij

=
1

|det(WWT)|
∂|det(WWT)|

∂Wij
(3.102)

But, noting the trace operator by Tr(.):

∂|det(WWT)|
∂Wij

= det(WWT)Tr

(
(WWT)−1 ∂(WWT)

∂Wij

)
. (3.103)

Further, note that

∂(WWT)

∂Wij
= W

∂WT

∂Wij
+

∂W

∂Wij
WT (3.104)

yielding

∂(WWT)

∂Wij
= WJji + GijWT . (3.105)

In the above equality, Jji ∈ ZK×P and Gij ∈ ZP×K are single-entry matrices :
[Jji]kl = [Gij ]lk = δkjδli, (k, l) ∈ ZK×P (only the (i, j)-th entry of both Jij and
Gij matrices is non-zero, and is set to one).

Observe that for any matrices U,V with appropriated size:

Tr(VJij) = [VT]ij (3.106)

and
Tr(VGijU) = [UV]ji (3.107)

Then, one gets

Tr

(
(WWT)−1 ∂(WWT)

∂Wij

)
= Tr

(
(WWT)−1WJji

)

+Tr
(
(WWT)−1GijWT

)

=


((WWT)−1W)T︸ ︷︷ ︸

.
=W+




ji

+


WT(WWT)−1

︸ ︷︷ ︸
.
=W+




ji

= 2[W+]ji = 2[(W+)T]ij (3.108)

�

Computation of second order derivatives

∂2 log |det(WWT)|
∂Wkl∂Wij

=
∂

∂Wkl
Tr

(
(WWT)−1 ∂(WWT)

∂Wij

)

= Tr

(
∂

∂Wkl

[
(WWT)−1 ∂(WWT)

∂Wij

])
.
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But, from (3.105)

Tr

(
∂

∂Wkl

[
(WWT)−1 ∂(WWT)

∂Wij

])
= Tr

(
∂
[
(WWT)−1(WJji + GijWT)

]

∂Wkl

)

= Tr

(
∂
[
(WWT)−1WJji

]

∂Wkl

)

+Tr




∂


(WWT)−1 GijWT

︸ ︷︷ ︸
(WJji)T




∂Wkl




= Tr

(
∂
[
(WWT)−1

]

∂Wkl
WJji

)

+Tr

(
∂
[
(WWT)−1

]

∂Wkl
(WJji)T

)

+Tr

(
(WWT)−1 ∂

[
WJji

]

∂Wkl

)

+Tr

(
(WWT)−1 ∂

[
(WJji)T

]

∂Wkl

)
.

But, denoting Hki the single-entry matrix in RP×P :

Tr

(
(WWT)−1 ∂

[
WJji

]

∂Wkl

)
= δljTr[(WWT)−1Hki] (3.109)

= δlj [(WWT)−1]ki , (3.110)

and similarly, Tr

(
(WWT)−1 ∂[(WJ

ji)T]
∂Wkl

)
= δlj [(WWT)−1]ik. Consequently,

Tr

(
(WWT)−1 ∂

[
(WJji)T

]

∂Wkl

)
+Tr

(
(WWT)−1 ∂

[
WJji

]

∂Wkl

)
= 2δlj [(WWT)−1]ik .

But, noting that

∂F−1

∂Wij
= −F−1 ∂F

∂Wij
F−1 (3.111)

we can see that

Tr

(
∂
[
(WWT)−1

]

∂Wkl
WJji

)
+ Tr

(
∂
[
(WWT)−1

]

∂Wkl
(WJji)T

)
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equals

−
{

Tr

[
(WWT)−1 ∂(WWT)

∂Wkl
(WWT)−1WJji

]
+

Tr

[
(WWT)−1 ∂(WWT)

∂Wkl
(WWT)−1(WJji)T

]}
.

that is from Eq. (3.105):

− Tr
[
(WWT)−1[WJlk + GklWT](WWT)−1[WJji + GijWT]

]
.

The last expression is equal to the following sum of four traces :

Tr


(WWT)−1W︸ ︷︷ ︸

(W+)T

Jlk (WWT)−1W︸ ︷︷ ︸
(W+)T

Jji


+ (3.112)

Tr


(WWT)−1W︸ ︷︷ ︸

(W+)T

Jlk(WWT)−1GijWT


+ (3.113)

Tr


(WWT)−1Gkl WT(WWT)−1

︸ ︷︷ ︸
W+

WJji


+ (3.114)

Tr


(WWT)−1Gkl WT(WWT)−1

︸ ︷︷ ︸
W+

GijWT


 . (3.115)

To deal with the above traces, observe that

Tr[AJpqBJrs] = [A]sp[B]qr (3.116)

and
Tr[AJpqBJrsC] =

∑

m=1

[A]mp[B]qr[C]sm (3.117)

This yields the following equalities:

Tr
[
(W+)TJlk(W+)TJji

]
= [W+]li[W

+]jk

Tr
[
(WWT)−1GklW+WJji

]
= [(WWT)−1]ik[W+W]lj

Tr
[
(W+)TJlk(WWT)−1GijWT

]
=

∑

m

[W+]lm[(WWT)−1]ki[W]mj

= [W+W]lj [(WWT)−1]ki

Tr
[
(WWT)−1GklW+GijWT

]
=

∑

m

[(WWT)−1]mk[W+]li[W]mj

= [W+]li[W
+]jk .
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Finally, since the inverse of a symmetric matrix is symmetric, [(WWT)−1]ki =
[(WWT)−1]ik, and it comes that

∂2 log |det(WWT)|
∂Wkl∂Wij

= 2
{
[(WWT)−1]ki(δjl − [W+W]lj)− [W+]li[W

+]jk

}
.

�

3.8.14 Proof of Lemma 23 (wording p. 154)

Let W ∈ MP×K
I be a stationary point (if it exists) of the restriction of C̃R to

MP×K
I . We shall show that it cannot realize a local maximum of this function.
Consider the case where ∪P

i=1Ii contains more than P elements. Then there
must exist an index j ∈ ∪P

i=1Ii for which ej , the j-th row of the identity matrix
of order K, is not contained in the linear subspace spanned by the rows of W,
since this subspace of of dimension P . By definition, there exists i ∈ {1, . . . , P}
such that (i, j) ∈ I. Let W̃ be a matrix differing from W only in the entry Wij

by ε. Then by the Taylor expansion up to second order, noting that the first
partial derivative of C̃R vanishes at W and using Corollary 17,

C̃R(W̃) = C̃R(W) +
1

2
[(WWT )−1]ii(1− [W+W]jj)ε

2 +O(|ε|3) , (3.118)

as ε→ 0. It can be checked that W+W is idempotent (i.e. (W+W)2 = W+W)
and symmetric, and hence the same is true for IK −W+W. Thus the j-th
diagonal element of IK −W+W, which is 1 − [W+W]jj , is the same as the
squared norm of its j-th row. Therefore, 1− [W+W]jj > 0 with equality if and
only if the j-th row of IK−W+W vanishes, or equivalently ej = ejW

+W. But
since ej is not in the linear subspace spanned by the rows of W, this cannot
happen. On the other hand, WWT is symmetric and positive definite, implying
that so is its inverse, and thus there exists a nonsingular matrix P such that
PPT = (WWT)−1. Consequently, each (i, i) entry of (WWT)−1, which is the
squared norm of the i-th row of P, is strictly positive. Hence, the second term
of the right hand side of (3.118) is strictly positive, yielding C̃R(W̃) > C̃R(W)
for all ε 6= 0 and small enough; W is not a local maximum of C̃R on MP×K

I .
Consider now the case Ii ∩ Ij 6= ∅ for some i 6= j in {1, . . . , P}. Let

k ∈ Ii∩Ij . By Lemma 22: ∂2C̃R/(∂Wik∂Wjk) = [(WWT)−1]ji(1−[W+W]kk)−
[W+]ki[W

+]kj . Also, by Corollary 17, ∂2C̃R/(∂Wik)2 = [(WWT)−1]ii(1 −
[W+W]kk) and ∂2C̃R/(∂Wjk)2 = [(WWT)−1]jj(1 − [W+W]kk). Thus, let W̃
be a matrix differing (slightly) from W only at the indexes (i, k) and (j, k):
W̃ik = Wik + ε, W̃jk = Wjk + η, then since the first order partial derivatives of

C̃R vanish at W, a second order Taylor expansion yields:

C̃R(W̃) = C̃R(W)

+
1− [W+W]kk

2
[ε η]

[
[(WWT)−1]ii [(WWT)−1]ij
[(WWT)−1]ji [(WWT)−1]jj

] [
ε
η

]

−εη[W+]ki[W
+]kj +O((|ε|+ |η|)3) (3.119)
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as ε, η → 0.
We have shown that 1−[W+W]kk > 0. Further, from the positive definiteness

of (WWT)−1, one gets

[ε η]

[
[(WWT)−1]ii [(WWT)−1]ij
[(WWT)−1]ji [(WWT)−1]jj

] [
ε
η

]
> 0 .

Therefore C̃R(W̃) > C̃R(W) − εη[W+]ki[W
+]kj + O((|ε| + |η|)3) implying that

C̃R(W̃) > C̃R(W) for εη having opposite sign to [W+]ki[W
+]kj and |ε|+ |η| > 0

and small enough. This proves that W cannot realize a local maximum of C̃R.

�

3.8.15 Proof of Corollary 18 (wording p. 155)

By Lemma 23, for the restriction of C̃R to MP×K
I to admit a local maximum

point, it is necessary that the sections I1, . . . , IP of I be all disjoint and their
union have at most P elements. On the other hand, none of these sections can
be empty since otherwiseMP×K

I would be empty. Therefore these sections must
reduce to a single point: Ii = {(i, j(i))}, i = 1, . . . , P where j(1), . . . , j(P ) are
distinct indexes in {1, . . . ,K}. By definition j(i) denotes the column index of
the unique non-zero elements of the i-th row of W. Thus W has a single non
zero element per row and at most one nonzero element per column, meaning
that W ∈ WP×K . Hence, a necessary condition for W to be a local maximum
point of CR(B) is that BA ∈ WP×K . This concludes the proof since, from
Theorem 16, it is also a sufficient condition.

�



CHAPTER 4

MINIMUM RANGE AND LEAST

ABSOLUTE BOUND METHODS

Abstract. Many general-purpose ICA algorithms offer an appealing trade-
off between performance and speed. However, when some a priori knowledge is
available on the sources, one could decide to rather exploit a specific contrast, fit-
ted to the properties of the sources. For instance, objective functions exploiting
sparsity, non-negativity or finite measure support of the sources have been pro-
posed in the scientific literature; other constraints can also be dealt with. Any a
priori information regarding source signals may help to improve BSS algorithms,
from at least four different viewpoints:

• To improve speed and convergence rate.

• To improve separation in terms of a performance index.

• To relax assumption (such as the source independence or on the square
size of A).

• To derive cost functions with more interesting properties (e.g. discrimi-
nant).

For example, if the sources are bounded, the minimum support-based algo-
rithm may satisfy, depending of the context, the last three points. From all the
information-theoretic contrasts that have been analyzed in the previous chap-
ters, that is the contrasts based on Rényi’s entropies, only the extended Rényi
entropy with r = 0 is a discriminant contrast. Therefore, a detailed analysis of
this criterion seems interesting.

187
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Contribution. We propose geometrical interpretations of the range-based
contrast function and discusses its practical use. The use of averaged quasi-
ranges is suggested and a result of Chu giving a bound on the difference of order-
statistics is used to propose a way for choosing a default value for the parameter
of the averaged quasi-range range estimator. A simple optimization algorithm
is proposed for the maximization of non-differentiable contrasts. We show why
the criterion successes in separating correlated images if some post-processing is
applied in the case of two images. The optimization over the orthogonal group
is then extended to avoid cumulation errors in deflation: the rigid constraint is
replaced by a smooth constraint. Finally, the criterion is extended to sources
that are bounded on one side only. Part of this work (sections 4.3.1, 4.4.1.2 and
4.4.2) results from a close collaboration with my friend and former colleague J.A.
Lee.

Part of the results presented in this chapter was or will be published in the
following papers (see Appendix B): JA2, ICB3, ICB4, ICB5, ICP9, ICP11,
ICP12.

Organization of the chapter. In this chapter, the geometrical interpreta-
tion of the criterion is first sketched for the simultaneous and deflation extraction
schemes. Next, some statistical methods for estimating the extreme points of
a distribution are reminded, from which the range can be deduced. Yet an-
other one, suitable for our purposes is proposed; a default value for the single
parameter and simple minimization algorithms are also provided. The impact
of the source independence assumption is analyzed through a simple example
involving correlated images separation. Finally, a non-orthogonal extension of
the separation method, as well as the extension to only upper- or lower-bounded
signals reveals to be promising, even on large-scale and low sample data sets,
with possible dependency between the sources.

4.1 GEOMETRIC INTERPRETATION OF THE MINIMUM RANGE
APPROACH

Looking at the scatter plots of two independent and bounded sources, of two
non-trivial linear mixtures of them, or of the whitening of these mixtures pro-
vides an intuitive view of how the bounded sources can be recovered. Because
the sources are bounded and independent, the boundary of the scatter plot is
clearly a rectangle with edges parallel to the source axes and the corners being
located at (inf S1, inf S2), (inf S1, sup S2), (supS1, inf S2), (sup S1, sup S2). Obvi-
ously, even if the edges of the joint pdf form a rectangle, the pdf itself is not
necessarily uniform in the rectangle; it depends on the marginal sources densities
as pS1,S2

(x, y) = pS1
(x)pS2

(y) (as an example, one source could have a sinusoidal
temporal structure). This is shown in Fig 4.1.(a) for two white uniform sources.
Mixing these signals through a mixing matrix yields a parallelepiped with edges
parallel to the columns of A (Fig. 4.1.(b)). Consequently BSS aims here at find-
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Figure 4.1. Scatter plots of independent sources and their linear mixtures.

ing a transformation B such that the edges of the joint density pb1X,b2X(u, v)
form a rectangle aligned with the axes. As usual, this can be done either by
using a deflation or a simultaneous approach.

4.1.1 Interpretation of the simultaneous approach

From the above considerations, the direction of the columns of the mixing matrix
A can be recovered by estimating the edges of the convex hull of the mixture pdf,
which is a parallelepiped. This method was proposed in [Prieto et al., 1998]. The
major problem with this approach is its relatively high computational complexity.

We adopt here another point of view, leading to the simpler criterion CR(B),
which is proved to have interesting geometrical interpretations. We propose here
two of them, adopting different viewpoints.

4.1.1.1 Interpretation in the mixture space

In the output space, the surface of the smallest rectangle (dashed) including
the joint pdf of the outputs (gray) having its edges parallel to the orthogonal axes

is given by
∏K

i=1R(Yi) (see Fig. 4.2.(a)). In the mixture space, as X = B−1Y,

this rectangle looks like a parallelepiped of volume VX(B) =
∏K

i=1R(Yi)/|detB|;
this is illustrated (dashed lines) in Fig. 4.2.(c) This parallelepiped contains the
joint pdf of the mixtures (gray parallelepiped). It is amusing (and useful) to note
that CR(B) = − log VX(B). Hence, by maximizing CR(B), we are looking for a
matrix B? that yields the smallest dashed parallelepiped including the gray one
(which represents the mixture pdf); this solution is shown in Fig. 4.2.(d) The
point is that the matrix B? is PD-equivalent to A−1; B? maps the mixture
pdf to an output pdf whose convex hull is a rectangle with edges parallel to
the output axes; in the output space, this solution looks like Fig. 4.2.(b) The
remaining indeterminacies correspond to the usual PD matrix : the order of
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the outputs does not change the volume of the “mixture” parallelepiped, which
further depends on the product |detA|∏K

i=1R(Si) only.

4.1.1.2 Interpretation in the output space

In the general case where K independent and bounded sources are involved,
the volume VY(B) of the gray parallelepiped of Fig. 4.2.(a) (i.e. the volume of
the convex hull of the output pdf) is equal to

VY(B) = |det(AB)|
K∏

i=1

R(Si) , (4.1)

while the volume of the hyper-rectangle including this parallelepiped equals∏K
i=1R(Yi) (dashed rectangles in Fig. 4.2.(a)). The point is that it can be

shown that if the gray parallelepiped has a fixed volume (which corresponds to
the |detB| = cst constraint), the dashed rectangle will have a lowest volume
(given by the product of the orthogonally projected lengths of the gray paral-
lelepiped onto an orthogonal basis, which are nothing else than the corresponding
ranges) when the gray parallelogram has a rectangular shape, with edges parallel
to the basis axes (see Fig. 4.2.(b)). We are precisely looking for a separating
matrix B? that corresponds to the last transformation subject to |detB| = c′

or equivalently |detW| = c where c, c′ are some constants. These constants do
not matter since |detW| = |detBdetA| and |detA| cannot be estimated (only

the volume of |detA|∏K
i=1 Si is known): the indeterminacy about the value of

|detW| results from the indeterminacy on the source ranges.
In our S-BSS CR(B) criterion defined in Eq. (2.41), there is no constraint

about the value of |detB| (no “subject to” restriction to the search space1), so
the above explanations only correspond to a specific separation scheme in which
|detB| is kept constant. In that case indeed, we are looking for a demixing
matrix with a given determinant that maps the gray parallelepiped of Fig. 4.2.(c)
to a scaled copy of the gray rectangle in Fig. 4.2.(b) (the scaling depends on the
fixed value of the determinant). In a more general way, what we are actually
doing when maximizing CR(B) is nothing else than minimizing a weighted sum

of log
∏K

i=1R(Yi) and log |detB|; the last term prevents the singularity of the
separating matrix (the criterion equals ∞ in this case) that would correspond
to a “zero-volume shape” (a point or a line). But can we interpret the additive
nature of the constraint? Why this specific form? Why equal weights? The
matrices being stationary points of C̃R(W) may have an arbitrary determinant:
multiplying any of its row has no impact on its stationary point specificity; it
still fulfills the stationary point condition, and this is quite natural as detA
cannot be recovered. Consequently, what we would like to do is not exactly to
fix the value of the determinant. We can see log |detB| (resp. log |detW|) as

1even if one could restrict the search space to SO(K) if a prewhitening step is performed, as
already explained
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a penalization term in CR(B) (resp. C̃R(W)), and C̃R(W) can be thought of as
the following penalized objective function:

K∑

i=1

log




K∑

j=1

|Wij |R(Sj)


− λ log |detW| . (4.2)

Any transformation of matrix W can be seen as changing the direction of
the rows as well as their scale. And what we would like to achieve actually is

to compensate exactly the variation of
∑K

i=1 log
[∑K

j=1 |Wij |R(Sj)
]

to the row

scaling. The point is that log |detW| and
∑K

i=1 log
[∑K

j=1 |Wij |R(Sj)
]

vary

exactly at a same rate to a change of scaling; both |detW| and R(wiS) are
linear in the norm of wi. By contrast, the penalization term is invariant under
rotation. This explains why λ = 1: the coefficient does not fix the value of
detW, but it fixes the rate of the change such that λ log |detW| compensates

the effects of the norm of the rows of W on
∑K

i=1 log
[∑K

j=1 |Wij |R(Sj)
]
.

Lets us come back to geometry. The above reasoning means that the volume
of the dashed rectangle can only be minimized by changing the directions of the
edges of the light gray parallelograms. In particular, if the direction of the edges
are modified by a rotation transform, the volume of the light gray parallelepiped
will again be kept constant because VY(B) remains unchanged (see Eq. (4.1)),
but the product of the output ranges can change since the penalization term
vanishes. On the contrary, the penalization term compensates exactly the effect
of stretching the rows of W on the volume of the dashed rectangle, but not
exactly the volume variation due to a modification of the directions of the rows
of W.

It is of interest to note that the linear transformation that maximizes CR(B)
are the non-singular matrices having each of their rows perpendicular to K − 1
columns of A (see Fig. 4.1.(b)). The method proposed by Prieto et al. consisted
in i) estimating the edges of the scatter plots and then ii) computing their per-
pendicular. This is rather heavy. Our analysis shows that actually, it suffices to
minimize

∏K
i=1R(Yi) without changing the volume of the gray parallelepiped,

that is to minimize VX(B), which is a scalar quantity.

4.1.2 Interpretation of the deflation approach

Further geometrical aspects of the criterion can be emphasized when focusing
on the deflation approach.

Let us suppose we have a centered rectangle and let us analyze the width
of the projection of this rectangle onto a rotating vector as a function of the
rotation angle ω. One shall face a local minimum when and only when the
vector is orthogonal to one of the edges of the rectangle, and a local maximum
when and only when the vector points to a corner; this directly results from
the Pythagorean theorem. Clearly, the global minimum is obtained when w is
orthogonal to the edges of the rectangle with minimum inter-distances.
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(a) area of light gray parall. :
VY(I2)

(b) area of light gray parall. :
VY(A−1) = VY(I2) = R(S1)R(S2)

(c) area of dashed parall. : VX(B) (d) area of dashed parall. :
VX(A−1)

Figure 4.2. Geometric interpretation of CR(B) in the output (top) and mixture
(bottom) spaces (A � I2).
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middle) and whitened mixtures (A = A3, right); bottom: evolution vs ω of RnX(ω) with
A = A1 (solid), A = A2 (dash-dot) and A = A3 (dashed).
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Actually, when one is modifying a row of the demixing matrix, we observe
the same phenomenon when we look at the corresponding output range, which
corresponds to the projection width of the rectangle onto the vector. This is
shown in Figure 4.3. for the pair of uniform sample sources vector shown in Fig.
4.1.(a) and the three mixing matrices A1 = IK , A2 = [−3, 6; 1, 5] and A3

a rotation matrix of angle close to −π/15. The top plots show the mixtures
resulting from the various mixing matrices (from left to right). The bottom
graph shows the normalized range (i.e. normalized projection widths of the
parallelepipeds). More precisely, if we denote by Rω(X) the range of the output
[cosω, sinω]X for short, the angular plot can be normalized to [0, 1] by applying
the transform

RnX(ω)
.
=

RX(ω)−minω(RX(ω))

maxω (RX(ω)−minω(RX(ω)))
. (4.3)

The solid, dash-dotted and dashed curves at the bottom of Fig. 4.1.(a) re-
spectively correspond to X = A1S, X = A2S and X = A3S. It is shown
that RnA1S(ω) reaches its local minimum value when the edges of the square
are parallel to the axes and its local maximum point when the corners are
aligned with the axis, as expected from the geometrical insights. Further, if
the sources have a symmetric pdf with ranges R(S1) = 2a and R(S2) = 2b,
the edges of the pdf form a rectangle centered at the origin and the projec-
tion widths evolve as

√
a2 + b2/ cos(ω − arctan(b/a)) for ω ∈ [0, π/2] and as√

a2 + b2/ cos(π − ω − arctan(b/a)) in [π/2, π] (there is a symmetry of order π);
all the local maxima should equal the length of the corresponding diagonal of the
rectangle. The quantity RnA3S(ω) follows a similar law as RnA1S(ω) because the
scatter plot of A3S is a rotated hyper-rectangle; the remaining rotation, i.e. the
shift between the dashed and solid curves in the bottom plot of Fig. 4.3. is due
to the mixing angle caused by the mixing-whitening steps2. What happens with
A = A2 in Fig. 4.3. seems more strange. Indeed, one could think that a local
maximum should be observed when ω points to a corner and a local minimum
when it is perpendicular to any column of A. This is not always the case, as
proved by adopting again a geometrical viewpoint.

Consider the parallelepipeds shown in Fig. 4.4.; they all have the same vol-
ume hb (here, we have set h = b = 1). The “projection widths”, noted L(ω),
of the parallelepiped onto a vector with direction ω ∈ [−π/2, π/2] for various
values of the “squeeze angle” 0 < α 6 π/2 are shown in Fig. 4.5.(b); the value
of b and h have been kept constant so that the surface is unchanged as α varies
(see Fig. 4.4.). Depending on the squeeze angle, the number of local maximum
varies. When α < π/4 (i.e. α < arctan(h/b) ) only the “outer corners” (those
joined by the largest diagonal of the parallelepiped, noted D in what follows)
induce a local maximum, while the corners being closer from the origin (located

2Observe that contrarily to the theory, the dashed and solid curves are not exactly shifted
copies of each other. Normally, the local minima must all be equal as they correspond to the
range of a unit-variance signal with uniform density (up to the normalization); this results
from a unperfect whitening based on samples only.
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Figure 4.4. Parallelepipeds for various squeeze angles α with constant volume bh.

on the shortest diagonal, noted d in the following) do no more induce a local
maximum. Similarly, the local minimum points corresponding to ω orthogonal
to the shortest sides (i.e. ω ∈ {kπ|k ∈ Z}) also vanish in this situation; this is
emphasized in Fig. 4.5.(a) where the maximum projection widths are shown for
α ∈ {π/6, π/4, π/3, π/2} (here: h = b = 1). The theoretical L(ω, α) projections
are shown. By noting b′ = L− b where L is the width of the parallelogram pro-
jected onto the horizontal line (that is, the projection width of the parallelepiped
onto the rotating vector of angle ω = π/2: L

.
= L(π/2, α)), these lengths are

given by the following formulas (each term in the max is the projection of a
diagonal of the parallelogram onto the rotating vector ω):




max
(√

1 + (1 + b′)2.| cos(π/2− ω + arctan( 1
1+b′ ))|,√

1 + (1− b′)2.|(cos(arctan( 1
1−b′ )− ω)|

)
, if α > π/4,

max
(√

1 + (1 + b′)2.| cos(π/2− ω + arctan( 1
1+b′ ))|,√

1 + (1− b′)2.| cos(arctan( 1
1−b′ ) + ω)|

)
, if α 6 π/4.

Indeed, depending on the mixing matrix, only the maximum points correspond-
ing to the corners belonging to D are observed, and only the local minimum
points corresponding to ω perpendicular to the pair of parallel edges (the largest
sides) being very close to each other are preserved (see Fig. 4.5.(b)).

Because of the relationship between i) the parallelepiped and the mixture den-
sity convex hull in one hand and ii) the projection widths and the output ranges
on the other hand, these results may seem to be contradictory to Theorem 15
given in p. 63, which basically states that there is a local minimum point of
the output range under a fixed variance constraint. This is not the case when
things are appropriately compared. Let us focus on the simple K = 2 case for
the ease of the illustration. Computing C̃R(wθ) w.r.t. θ reduces to computing
the projection widths of a rectangle (parallelogram with α = π/2) onto a unit-
norm rotating vector w. This is exactly the same as computing CR(bθ) w.r.t.
θ onto the unit-norm rotating vector bθ

.
= [cos θ, sin θ] when the mixture pdf

convex hull is a rotated rectangle (that is under prewhitening). What happens
when the mixtures are not whitened? When no prewhitening is performed, the
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Figure 4.5. Effect of the squeeze angle α on the number of local minima of the range.

normalization constraint becomes Var[bX] = bΣXbT = 1. The point is that we
are no longer searching for projections onto a fixed-length rotating vector ! The
vector b is stretched with respect to ΣX and consequently, the rotating vector
must have a varying length in order that Var[bX] = cst. This is illustrated in
the following example.

Example 26 (Local minimum point and projection widths) Consider the
mixing matrix A = [2,−.5;−.7, .7]; under a unitary source covariance matrix ΣS,
the mixture covariance matrix is given by ΣX = AAT. The parallelogram shown
in Fig. 4.6.(a) shows the mixture pdf convex hull where the (fictive) source ranges
were [−1, 1] (in other words, when the above mixing matrix is applied to the unit-
square, one obtains this parallelogram). The arrows indicate the direction of the
columns of A. Figure 4.6.(b) shows the evolution of R(bX). Depending on the
constraint on b, the corresponding manifolds are either the dash-dotted circle
(bbT = 1) or the solid ellipsoid (bΣXbT = 1). The straight lines (“radius-like”)
plotted in the first quadrant are given by the perpendicular directions to the edges
of the parallelogram of Fig. 4.6.(a); each is seen to point to a local minimum
point of R(bX) if, indeed, bΣXbT = 1. Tahis is not the case if ‖b‖ = 1 on this
example, because the “squeeze angle” α of the parallelogram is to small.

The above example shows that we recover the local minima once a pair of edges
of the parallelogram is perpendicular to the axes provided that the rotating vector

bθ is scaled by 1/
√

bθΣXbT
θ , which depends on θ if ΣX 6= IK .

In summary, the geometrical interpretation of the deflation procedure is
rather intuitive. Let us focus on the simple 2D case for visualization purposes.
The edges of the source scatter plot form a rectangle. The effect of the non-
singular mixing matrix is to stretch the “source” rectangle into a “mixture”
parallelepiped. When extracting a first source, one is looking for the rotating
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(b) Sets S(2) (dash-dot circle) and bΣXbT = 1 (solid
ellipsoid). The projected widths of the parallelogram
on the corresponding rotating vectors b are shown in
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Figure 4.6. Example 26: effect of the constraint of b on the non-mixing local
minimum points. One can see on the right panel that a local minimum of the width
of the projected parallelogram onto the rotating vector b is observed in any direction
perpendicular to the columns of the mixing matrix (shown by the arrows on the left
panel) if the bΣXb

T = 1 constraint is used, some minima disappear if ‖b‖ = 1 is used
instead.
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vector b1 such that the projection of the parallelepiped onto the vector b1 has a
minimum width (that is, the signal b1X has a minimum range). As this vector
satisfies b1ΣXbT

1 = 1, its norm must vary with the rotation angle. Such a vector

can be written as b1 = bθ/
√

bθΣXbT
θ .

The above vectors b1 corresponding to the directions perpendicular to the
edges of the hyper-parallelepiped correspond to a local minimum of the range of
the projected signals.

4.2 RANGE ESTIMATION

This section definitely does not aim at presenting a detailed review of range
estimation techniques. Neither theoretical nor empirical comparison between
these methods will be performed. The reason is that our final goal is not range
estimation, but well to achieve BSS through the maximization of a range-based
contrast function. Therefore, we shall only remind some of the most known range
estimation techniques (or endpoint estimation techniques from which a range
estimator can be found) and emphasize their limitations in our BSS context.
Next a new estimator will be proposed, in which the value of the single parameter
can be appropriately chosen without knowing the density of the parent random
variable. The proposed estimator is simple, but its simplicity allows us to point
out the problems that could be encountered in our BSS context when range
estimation is poorly managed. In spite of that, this estimation technique has
led us to promising results in terms of separation performances (analyzing more
efficient -and probably more complicated- estimators could be the purpose of
a further work). Relationship with the above existing estimators will also be
investigated. In the remaining of the chapter, we focus on the range estimation
of a random variable X, having well-defined continuous density and distribution
functions, with support convex hull of the form Ω̄(X) = (a, b) with −∞ < a <
b <∞.

Range estimation can be based on extreme points estimation (also called end-
point estimation), which is a well-known problem in statistics and econometrics.
Many estimators have been proposed in this framework, and their asymptotic
behavior have been analyzed. Some of them are recalled in the next subsection.

4.2.1 Some existing methods for endpoint estimation

In this section, we briefly recall some methods for estimating the endpoint θ of a
distribution function PR satisfying PR(0) = 0 and PR(θ) = 1; we further assume
that for all ε > 0, PR(ε) > 0 and PR(θ− ε) < 1 so that this distribution function
could be the cdf of a random variable R with support convex hull Ω̄(R) = [0, θ].
Assume that a sample set R of size N is available: R = {r1, . . . , rN} where each
ri is an observed sample of the random variable R; one can build an ordered set
R′ from these measurements R′ = {r(1:N), . . . , r(N :N)} where r(i:N) 6 r(i+1:N)
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are the ordered elements of R. In the statistical literature, the above r(i:N) are
called the i-th order statistic of R (i.e. its i-th largest element). This is actually
a slight abuse of notation since the “order statistic” expression also refers to
a random variable rather than to a sample point. More precisely, the “i-th
order statistic” appellation is also used for the random variable R(i:N), which
represents the rv describing the value of the i-th largest element in a sample set
R of size N , each of the component of R being drawn from the parent density
pR(r) [Feller, 1966]. This is because when analyzing the theoretical behavior of
a functional involving r(i:N), the variable R(i:N) are used instead.

Most probably, the simplest way to estimate the endpoint θ is to approximate
it by its largest observed value in the sample set, that is θ ≈ θN

.
= r(N :N). In

this case however, only a single point is used in the estimation. Furthermore,
in the noise-free case, θN < θ for finite N because the probability to observe
R = θ is zero since R is a continuous random variable. Therefore, it seems
appropriate to artificially “enlarge” this value: θ ≈ θN + ρ(N). Intuitively
speaking, the enlargement ρ(N) should depend on the last spacings, that is on
the differences between successive points near the boundary of the density. But
when N increases, the samples tend to “fill the support of the density”, and
ρ(N) should decrease monotonously with N . Quenouille proposed in 1949 the
following expression for ρ(N), which corresponds to a estimator of θ [Quenouille,
1949]:

ρ(N) =
N − 1

N
(r(N :N) − r(N−1:N)) (Quenouille 49) , (4.4)

it relies thus on the two largest sample points. This seems to be suboptimal
in the sense that more robust methods could be obtained by using more than
two points. Moreover, these extreme points can be outliers. In 1979, Peter
Cooke suggested a radically opposite method [Cooke, 1979]. It is still of the
form θ ≈ θN + ρ(N), but ρ(N) involves now each of the sample points:

ρ(N) = θN−
N−1∑

i=0

{
(1− i/N)N −

(
1− i+ 1

N

)N
}
r(N−i:N) (Cooke 79) . (4.5)

One year later the same author proposes in [Cooke, 1980] a compromise: an
m-points method is investigated to approximate θ :

θ̂Cooke-80

.
=

m∑

i=1

αir(N−i+1:N) (Cooke 80) . (4.6)

This estimator requires the computation of several parameters: obviously the
integerm has to be fixed and the αi coefficients have to be found. Cooke proposed
to determine them in such a way that the above estimator has the smallest
mean squared error (MSE), asymptotically as N →∞. This necessarily requires
a model for the distribution PR(r) of R in a neighborhood of r = θ, and an
additional parameter (that he noted ν) had to be estimated, or at least fixed.
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The major advantage of this method is that a closed-form solution for the vector
α
.
= [α1, . . . , αm] can be obtained in terms of the Gamma function.

Two years later, in 1982, a maximum-likelihood estimator θ̂Hall [Hall, 1982]
was proposed. The problem however is that the estimator is a solution of some
equations, which analytical form depends on the behavior of the model density
near θ. Despite the fact that the estimator is robust to a departure from the true
range pdf to the model pdf used in the maximum likelihood approach, obtaining
θ̂Hall is not an easy task, as it is the root of the following function

1
∑m−1

j=1 log
(
1 +

r(N−j+1:N)−r(N−m+1:N)

θ−r(N−j+1:N)

) − 1
∑m−1

j=1
r(N−j+1:N)−r(N−m+1:N)

θ−r(N−j+1:N)

− 1

m
,

with the additional condition that θ̂Hall > θN . Moreover this equation only
admits at least one solution with probability one as N →∞.

Another approach has been proposed more recently in [Meister, 2006]. The
endpoint θ is estimated by using the moments of R, based on the fact that
the sequence j

√
E[Rj ] converges increasingly to θ with j. Taking a small value

for j means that both small and large samples influence the estimator: the
variance decreases, contrarily to the bias. Taking a large value for j amounts
to attaching much more importance to large observed values: only few points
dominate. Therefore, we can see the j exponent as a regularization parameter
that controls the relative importance of the samples in the estimator depending
of their value. Fcor finite j, all values influence the value of the estimate and for
an infinite value of j, only the largest value does matter.

4.2.2 Existing Range estimation

In spite of the fact that the above endpoint estimation techniques are range
estimation of specific random variables (because when Ω̄(R) = [0, θ] estimating
the range is the same as estimating the endpoint θ), they can be extended to the
range estimation of random variables with support convex hull of finite measure
of the form (a, b). The random variable R could be, in our context, the observed
range RN (defined below) of the random variable X based on the sample set
X = {x1, . . . , xN} (the xi are assumed to be i.i.d.), which is always positive and
finite; this justifies the notation of the considered random variable by the letter
“R” in the previous subsection. The observed range is defined as the largest
difference between two sample points in X , i.e.

RN
.
= max

i,j
{|xi − xj |, xi, xj ∈ X} , (4.7)

or equivalently, using the order statistics notation (defining X ′ in a similar way
as R′):

RN = x(N :N) − x(1:N), x(1:N), x(N :N) ∈ X ′ . (4.8)

Like for R, the random variable associated to the i-th largest sample in a set
X of observations of X of size N is noted by a capital letter X(i:N). We assume
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that the samples xi are drawn from a random variable X with one-dimensional
continuous pdf pX(x) with finite range; our aim is now to estimate the range
of X, that is if Ω̄(X) = [a, b] with R(X) = b − a < ∞. We are looking for an
estimate of b− a from endpoint estimation techniques. Clearly, RN ∈ [0, θ] with
θ = b− a is the value that has to be estimated.

More generally, relationships between endpoint estimation of a positive ran-
dom variable and range estimation of whatever bounded variable arises: the
r(i:N ′) can be obtained from the set X via difference between its elements, that
is r(i:N ′) = |x(i′:N) − x(j′:N)| for some pair (x(i′:N), x(j′:N)) in the sample set X .
Note that both R and N ′ depend on the construction procedure of the r(i:N ′)

from the x(i:N): for example, if all the non-trivial differences are considered,
that is R = {|x(i:N) − x(j:N)|, i 6= j}, then N ′ = N(N − 1)/2. But, if we build
R = {|x(N−i+1:N) − x(i:N)|, 1 6 i 6 bN/2c}, then N ′ = bN/2c.

In the specific case of Moment-based Meister’s approach, an estimation of b−a
is given by the j-th square root of the empirical mean of the set {|xp+bN/2c −
xp|j , xp ∈ X , p 6 bN/2c}. Meister’s approach is thus approximatively based
on bN/2c differences, and should be sensitive on how the sample set is splitted
into two parts; he proposed a random choice, where the two subsets are built
from the (meaningless) time indexes p of the samples xp, but some more efficient
choice could be also possible. For instance, why not defining R as (a subset of)

{∪bN/2c
i=1 (x(N−i+1:N) − x(i:N))} ? Most probably, this is because the theoretical

behavior of the estimator is more complicated to study: each of the spacings
may have a different density. Indeed in the last differences, the indexes of the
sample points are not arbitrary anymore. As an example, the probability to
observe x(N−i+1:N) − x(i:N) close to θ should be much higher for i close to one
than for i close to bN/2c and, similarly, the probability to observe a value of
x(N−i+1:N) − x(i:N) close to 0 should be much higher for i close to bN/2c than
for i close to one. On the contrary, as the samples are i.i.d., the time indexes of
xi are meaningless so that there is no reason for the distribution of xi − xj to
differ from that of xp − xq; there is no order relation between the samples.

Just as for endpoint estimation, we can derive from [Devroye and Wise, 1980]
the following estimator of b − a, which is similar to endpoint estimators of the
form θ = θN + ρ(N):

R(X) = RN + 2ρ(N) (Devroye & Wise 80) , (4.9)

where ρ(N) is a functional parameter to be fixed. It should be decreasing in
N ; large if the tails of the density pX are smoothly decreasing and small if the
probability to observe points near the boundaries is high (sharp tails).

In the last case, efficient approaches for estimating the frontiers (also called
boundaries) of densities can be derived, possibly under measurement error; they
rely on the essential assumption that support boundaries are jump discontinu-
ity points of a density (for more details about this approach, we refer to [Hall
and Simar, 2002, Delaigle and Gijbels, 2003] and references therein). In our
application however, we would like not to rule out densities decaying (possibly
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smoothly) at the support boundaries, such as e.g. “triangular” densities, even if
this would mean that only less efficient range estimators can be found.

The main idea behind range estimation based on endpoint estimation tech-
niques is to deal with a random variable describing differences between samples.
There are other possible approaches however, as e.g. support estimation via pdf
estimation, as briefly presented in the next subsection.

4.2.2.1 Support estimation via density estimation

One of the first ideas that probably comes in mind for estimating the range
R(X) of a rv X is to estimate its pdf p̂X(x) ≈ pX(x) and then infer on its support
by identifying the set where the approximated pdf “lives”, that is

R(X) ≈ µ[{x : p̂X(x) > 0}] . (4.10)

However, this is an ill-posed problem because pdf estimation is often managed
using pointwise convergence concepts. For example, Parzen windowing is a uni-
versal approximator of continuous densities in the sense of Lp-norm or pointwise
convergence under mild conditions on the window width σK (meaning basically
that σK tends to zero not faster than 1/N as the number N of sample points
tends to infinity). For instance we can say that p̂X is a good estimate of pX in
the sense that

DA(pX‖p̂X) =

∫
|pX(x)− p̂X(x)|dx (4.11)

tends to zero with probability one as N → ∞ [Devroye and Györfi, 1985, Sil-
verman, 1986]. But the problem is that the mapping between the pdf pX to the
support Ω(X) may be discontinuous. Just think about a random variable with
support Ω(X) = [a, b] for finite −∞ < a < b < ∞. Estimating Ω(X) from a
Parzen estimate p̂X of the pdf pX is a non-sense if the support of the kernels
used in Parzen estimation is e.g. the whole real line. Clearly, it is the case when,
for example, the pdf is estimated via a weighted sum of Gaussian functions: the
observed range derived from p̂X is infinite despite the fact that DA(pX‖p̂X) can
be made as small as desired. More generally, the range estimation is highly sen-
sitive to the support of the kernel used in the pdf estimation. Of course, one
could approximate

R(X) ≈ µ[{x : p̂X(x) > ε}] (4.12)

with ε > 0 but the value of ε might be difficult to guess and clearly, depends on
the chosen kernel in case of kernel density estimation, as well as on the density
pX. In both cases, a new question arises “how to estimate the density in such
a way that the associated (possibly approximated) range matches the original
range”? This is a very difficult question actually and hence, we turn to other
estimation techniques.
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4.2.2.2 Range estimation for BSS application

The problem with most of the above range estimators, except Meister’s
moment-based technique, is that they are not really suitable for our BSS ap-
plication: either they are too näıve (no parameters, relying on extremely few
sample points and thus highly sensitive to noise) or some parameters depending
on the density of the observed range (and thus indirectly on the parent source
densities) have to be fixed. In BSS application, one does not want to spend a lot
of computational time to estimate or to model source densities as efficient and
fast methods exist to deal with the BSS problem. We want to obtain better sep-
aration performances but with similar computational complexity. Actually, the
tricky tuning parameters result from i) the need to have some theoretical results
about the estimator, and ii) the need to generalize to the much more difficult task
of support estimation of possibly noisy random vectors (i.e. of rv taking values
in higher-dimensional space). Some of them also involve computational-intensive
resampling techniques (see e.g. [Loh, 1984]), which is also a major limitation in
BSS.

Consequently, the above-described methods do not really match our require-
ments in BSS applications: they are either too simple or too complicated to tune
and to compute; comparing them in great detail would be quite useless in the
framework of this thesis. Therefore, we decided to use a dedicated estimator,
which is very simple, intuitive and seems efficient for BSS applications, even if we
admit that no theoretical and empirical comparison between the proposed and
existing range estimators have been performed. However, connections between
our estimator and some of the above estimation techniques can be pointed out.

4.2.3 Quasi-range based approach

In the remaining part of the thesis, we shall consider an order-statistics range esti-
mator, based on the empirical mean of the set {x(N :N)−x(1:N), . . . , x(N−m+1:N)−
x(m:N)}, where m < bN/2c is the counterpart of the m parameter in θCooke 80.
However, an advantage is that we focus on “relevant” differences: just like the
information near the boundaries of the support is essentially needed to estimate
the shape of pdf tails, only sample points near the boundaries (more exactly, the
last spacings) should be of primary importance in the estimation of the bound-
ary location. As it will be shown below, the proposed estimator has the great
advantage that i) m has a very simple intuitive meaning (it is half the number
of points considered in the estimator: the m smallest and m largest points of
the sample set) and ii) a threshold value for m controlling the probability of
making an error smaller than another threshold can be found without a priori
knowledge on the density of the pdf pX from which the samples have been drawn
(see Section 4.2.3.3). This is especially convenient in blind applications like BSS.
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We define the m-averaged order statistic differences by

〈R<m>
N (X)〉 .= 1

m

m∑

p=1

R<p>
N (X), with R<p>

N (X)
.
= x(N−p+1:N)−x(p:N) . (4.13)

Obviously, 〈R<m>
N (X)〉 can also be seen as the difference between the averages

of m-th first and last order statistics. The quantity 〈R<m>
N (X)〉 can be used as

a simple estimator of the range R(X). At first sight, from a statistician per-
spective, this estimator does not seem appealing: it is actually a lower bound of
the true range for finite sample size. Nevertheless, its simplicity leads to a not
time-consuming estimation technique, contrary to e.g. resampling methods. Fur-
thermore, some connections can be emphasized with the aforementioned range
estimators. With m = 1, 〈R<1>

N (X)〉 simply reduces to RN (X)
.
= R<1>

N (X),
the observed range of the sample set {x1, . . . , xN}. It corresponds to the De-
vroye & Wise estimator (4.9) with ρ(N) = 0. More generally, it corresponds to

θ̂Cooke-80 if αi = 1/m and the r(i:N) are deduced from the sample values of X by
x(N−i+1:N) − x(i:N). Setting all the αi to a same value of 1/m has advantages
and drawbacks. The major drawback is that the estimator is a lower bound on
the true range in absence of noise (it is even a lower bound on RN ). The ad-
vantage is that the estimation of an additional parameter that characterizes the
shape of the tails of the density of RN (x) is avoided. In spite of the drawback,
we shall focus in the following on the estimator 〈R<m>

N (X)〉 because, as it will
be shown soon, it suits our needs in BSS applications. Estimators available from
the statistical literature (see among other the work of Devroye, Cooke, Härdle,
Simar, Loh, Hall, Tsybakov, etc) are good, but their final objective is not to be
plugged in ICA methods. In the ICA application, a precise estimation of the
support is not really needed. By contrast, the shape of this estimator versus the
elements of the transfer matrix (i.e. when K = 2, the mixing angle), as well as
the sensitivity to the size of the sample set and to measurement noise are the hot
points; the ultimate goal is that the discriminacy and contrast properties still
hold after the range estimation step. As an example, a possible “height shift”
of the surface plotted in Fig. 3.26. has no impact on the set of local maximizers
(i.e. on the obtained demixing matrix).

In the sequel, we shall first focus on RN (X) as a näıve estimate of R(X) which
is simple, fast and does not involve the tricky adjustment of some parameters.
The analysis is then extended to 〈R<m>

N (X)〉 with m > 1 to improve robustness.
As the order statistics have been extensively studied in the statistic literature,
some interesting results can be given. In particular, a meaningful threshold value
for m can be found based on existing statistical results.

4.2.3.1 The observed range estimator

When a theoretical study of the range estimator has to be performed the i-th
largest value x(i:N) has to be replaced by the i-th order statistic X(i:N). When
these random variables are used instead, the associated observed range becomes
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a random variable as well. It will be noted as usual using the roman font (i.e.
RN(X) instead of RN (X)) and defined as:

RN(X)
.
= X(N :N) −X(1:N) . (4.14)

As for any random variable, we can compute its probability density function,
which obviously depends on the “parent density”, that is of pX. The theoretical
density pRN(X) is given by (see [Hoel, 1975, David, 1970] and in the Appendix of
the chapter, Section 4.6.1)

pRN(X)(r) = N(N − 1)

∫ sup(X)−r

inf(X)

pX(u)pX(u+ r)

[∫ u+r

u

pX(x)dx

]N−2

du.(4.15)

Observe that if inf(X) and sup(X) are not isolated points, inf(X) =
limN→∞ X(1:N) and sup(X) = limN→∞ X(N :N).

Having in mind Eq. (4.15), we can now compute the expectation and variance
of the error R(X)− RN(X) 3. Both E[RN(X)] and Var[RN(X)] depend on pX.

Example 27 Let U be a uniform r.v. in (0, 1) with pdf pU(u) = 1 for u ∈ (0, 1).
Then,

pRN(U)(r) = N(N − 1)rN−2(1− r) . (4.16)

This result leads to

E[RN(U)] =
N − 1

N + 1
, (4.17)

and

Var[RN(U)] =
N(N − 1)

(N + 1)(N + 2)
− (N − 1)2

(N + 1)2
(4.18)

=
2(N − 1)

(N + 2)(N + 1)2
. (4.19)

Let L be a r.v. following the linear law pL(x) = 2x with x ∈ [0, 1]. Then,
tedious manipulations give

pRN(L)(r) =
NrN−1

2(N + 1)

{
(2− r)N−1

r

[
(2− r)2(N − 1)− r2(N + 1)

]
+ 2rN

}
.

(4.20)

3Absolute value symbols have been omitted since, in the noise-free case, we always have
Pr(inf(X) < xi < sup(X)) = 1 for all 1 6 i 6 N with N <∞ implying that 0 < RN(X) < R(X)
with probability one.
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In the linear pdf case, because of the difficulty to compute the analytical form
of the first two moments of RN (L), a numerical integration of r and r2 with
respect to the above density pRN(L)(r) will be preferred.

The performances of RN(X) as an estimator of R(X) can be analyzed from
various viewpoints. The bias and variance of RN(X) are computed. We also
investigate the effects of the sample size N , the density pX of X and of additive
Gaussian noise Gn ∼ N (0, σ2

n).
In what follows, we adopt the following notation for the random variables.

The symbols U, L, T and V represents random variables with uniform, linear,
triangular and “V”-shape densities, respectively. These pdfs and the related cdfs
are illustrated on Fig.4.7.
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Figure 4.7. Densities and distributions of uniform (U), linear (L), triangular (T) and
”V” (V) random variables defined on (0, 1).

• Bias

Looking at Eq. (4.17), it is obvious that RN(U) is an asymptotically unbi-
ased estimator of R(U). For instance, if Ω(U) = (0, 1):

lim
N→∞

E[RN(U)] = 1 . (4.21)

Even if we are not able to extend this result to other densities (because of
the difficulty to compute E[RN(X)] when pX is not uniform), we conjecture
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that if X is a random variable with support Ω(X) such that the support
convex hull is of the form (a, b), and if there exists ε > 0, ε ∈ R such that
(a+ ε) ∈ Ω(X), (b− ε) ∈ Ω(X), then RN(X) is an asymptotically unbiased
estimator of R(X); i.e. :

lim
N→∞

E[RN(X)] = R(X) = b− a . (4.22)

The above result shows that the mean value of the error

EN (X)
.
= R(X)− RN(X) (4.23)

tends to zero when the sample size increases.

• Consistency

Another estimator property is the consistency. The estimator RN (X) is
consistent if it converges in probability to R(X) with increasing N .

Definition 25 (Convergence in probability) A sequence X1,X2, . . . is
said to converge in probability to a random variable X if for every ε > 0

lim
N→∞

Pr(|XN −X| > ε) = 0 .

It is rather intuitive that Pr [EN (X) < ε] 6 Pr [EN ′(X) < ε] for N ′ > N .
The equality case only holds if PRN′ (X)(R(X) − ε) = PRN(X)(R(X) − ε),
i.e. the cdf of RN(X) should not depend on N , which seems not nat-
ural. Therefore, it is reasonable to conjecture that for any 0 < ε <
R(X), if N < N ′, then Pr [EN (X) < ε] < Pr [EN ′(X) < ε]. Consequently,
limN→∞ Pr [EN (X) < ε] = 1, which is the definition of the consistency of
RN(X) as an estimate of R(X).

Let us rigorously show that RN(U) is a consistent estimator ofR(U) (special
case where pX = pU is uniform). In this case:

Pr [EN (U) < ε] = Pr [RN(U)−R(U) > −ε]
= 1− PRN(U)(R(U)− ε)

= 1− R(U) + ε(N − 1)

R(U)

(
R(U)− ε
R(U)

)N−1

.

By the L’Hospital rule, the last chain of equalities leads to
limN→∞ Pr [R(U)− RN(U)) < ε] = 1.

• Variance

The variance Var[EN (X)] reduces to Var[RN(X)]. When pX = pU, then

lim
N→∞

Var[RN(X)] = 0 , (4.24)
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and again, we conjecture that this result holds for other densities under
the same conditions as for the asymptotically unbiased property.

• Effect of pX(x)

Even if e.g. linear random variables are not often encountered in real-world
applications, the four random variables whose pdfs and cdfs are shown in
Figure 4.7. permit us to emphasize the effect of the density shape.

In practice, the density (4.15) is difficult to use because of the difficulty
to compute the integral. However, it is possible to deal with it in simple
cases, as e.g. when X is a uniform or linear random variable.

Figure 4.8. illustrates that the density pRN(X)(r) as a function of N clearly
depends on the pdf pX. We can see that the most probable values for
RN(X) converge to one for both uniform and linear variable when N goes
to infinity, but the rates of convergence are different. The above result is
purely theoretical. Note that in the linear case, E[RN(X)] is estimated using
a numerical integration of pRN(X) with respect to r setting pX(x) = 2x.

• Effect of the noise

The robustness to noise is expected to be very poor. Therefore we shall first
consider another estimator that will be analyzed under various viewpoints,
including robustness to additive Gaussian noise.

4.2.3.2 The m-averaged quasi-range estimator

In the above subsection, we have analyzed the performances of 〈RN
<1>(X)〉

as an estimator of R(X). In practice, this estimator can suffer from a lack of
robustness in presence of additive noise, because it only relies on two “extreme”
sample points. A simple way to modify this estimator is to take an average of
order-statistic differences, i.e. to consider 〈RN

<m>(X)〉 where m is an integer
greater than or equal to 1 but smaller than N/2−1. As we have done for RN, we
will focus on basic estimator properties, in a theoretical way as far as possible4.

As for the empirical range, here are some comments about the performances of
the estimator. The bias and the variance of the estimator are explicitly computed
for the uniform parent density.

4Other estimators, than are not necessarily biaised for finite N , like it was the case for RN
<m>

or 〈RN
<m>(X)〉 have been investigated in a similar way as Cooke has done, i.e. by adding a

weighted sum of the last spacings. The corresponding results were disappointing in the sense
that no improvement can be observed from the BSS separation results viewpoint, which is our
target goal. On the contrary, the adjustment of additional parameters (i.e. the number of
spacings and the corresponding weights) revealed to be tricky. They are not shown here to
keep conciseness.
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Figure 4.8. Evolution of pRN(.)(r) vs r (N is varying) for uniform (top left) and
linear (bottom left) variables defined on (0, 1). The joint pdf pRN(r)(r,N) for uniform
(top right) and linear (bottom right) r.v. are shown, and the most probable values of
pRN(r)|N are indicated by the dashed curve.

• Bias

As for the m = 1 case, 〈RN
<m>(X)〉 with 1 < m 6 bN/2c is an asymptoti-

cally unbiaised estimator, when m does not depend on N . For example, if
m is fixed then, using the Appendix of the chapter given in Section 4.6.2:

E[〈RN
<m>(U)〉] =

1

m

m∑

p=1

N − 2p+ 1

N + 1
=
N −m
N + 1

. (4.25)
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By contrast, this is not necessarily true if m is a function of N , e.g. if m
is an integer multiple of N . Assume k = N/m ∈ Z:

lim
N→∞

E[〈RN
<N/k>(U)〉] = lim

N→∞
k/N





N/k∑

p=1

N − 2p+ 1

N + 1





= lim
N→∞



1− 2k/N

N + 1

N/k∑

p=1

p





= 1− lim
N→∞

N/k + 1

N + 1
= 1− 1/k . (4.26)

On the other hand, if m is of the form (N/k)q with k > 0, 0 < q < 1, the
estimator can be asymptotically unbiaised.

We have not addressed the possible consistency property, due to the diffi-
culty of computing P〈RN

<m>(X)〉 for m > 1.

• Variance

We find easily that if we define

E<m>
N (.)

.
= R(.)− 〈RN

<m>(.)〉 , (4.27)

then Var[E<1>
N (U)] = Var[RN(U)] = 2(N−1)

(N+2)(N+1)2 . More generally,

Var[E<m>
N (U)] can be rewritten as

Var[〈RN
<m>(U)〉] =

1

m2

{
m∑

p=1

Var[RN
<p>(U)]

+2
∑∑

16i<j6m

Cov
[
RN

<i>(U),RN
<j>(U)

]


 .

Noting that, from the Appendix given in Section 4.6.3, Covp<q

[
U(p:N),U(q:N)

]
=

p(N+1−q)
(N+2)(N+1)2 , we find:

Covi<j

[
RN

<i>(U),RN
<j>(U)

]
= 2i

N + 1− 2j

(N + 2)(N + 1)2
. (4.28)

We have, using basic properties:

m∑

p=1

Var[RN
<p>(U)] =

(N + 1)m(m+ 1)− 2/3m(m+ 1)(2m+ 1)

(N + 2)(N + 1)2
,

(4.29)
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Density Analytical form Support Ω(.) Range

Uniform fU (ζ) = 1
2
√

3
[−
√

3,
√

3] 2
√

3

Linear fL(ζ) = ζ+
√

8
9 [−

√
8,
√

8/2] 3/2
√

8

Triangular fT (ζ) = ζ+
√

6
6 (ζ ∈< 0) [−

√
6,
√

6] 2
√

6√
6−ζ
6 (ζ > 0)

“V”-shape fV (ζ) = −ζ/2 (ζ < 0) [−
√

2,
√

2] 2
√

2
fV (ζ) = +ζ/2 (ζ > 0)

Table 4.1. Four unit-variance random variables: their pdf, support and range
(note: fX(ζ) = 0 if ζ /∈ Ω(X)). The pdf and cdf are plotted in Fig.4.7. where the
supports are scaled to be included in (0, 1).

and

∑∑

16i<j6m

Cov
[
RN

<i>(U),RN
<j>(U)

]
=

m(m− 1)

6(N + 2)(N + 1)2

×
{
−3m2 +m(2N − 3) + 2N

}
.

Some algebraic manipulations lead to:

Var[〈RN
<m>(U)〉] =

−3m3 + 2m2(N − 2) + 3mN + (N + 1)

3m(N + 2)(N + 1)2
. (4.30)

The theoretical curves showing E[〈RN
<m>(U)〉] and Var[〈RN

<m>(U)〉] (re-
spectively given by Eq. (4.25) and Eq. (4.30)) are plotted in Fig. 4.9.
They are compared to their empirical counterparts Et[〈R<m>

N (U)〉],
Vart[〈R<m>

N (U)〉] where the subscript t means that the quantities are esti-
mated via empirical mean/variance with t trials. They perfectly match.

• Joint effect of pX(x) and m

Because in ICA contexts one often deals with white signals, we shall con-
sider here the whitened versions of U,L,T,V (the notation are the same
as for those with range in [0, 1] in order to avoid defining yet new symbols;
the context should avoid confusion). The ranges of these white signals are
given in Table 4.1. The samples are built by using the “sampling via in-
version of the cdf” method, based on the property that the cdf PX(x) is
uniformly distributed on (0, 1) [Feller, 1966].

Figure 4.9. shows the empirical mean Et and variance Vart over t trials of
〈R<m>

N ()̇〉 as a function of m. The variance of the estimator decreases with
m for linear and triangular random variable, while this behavior cannot
be observed for the white random variable U or V; the variance of the
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Figure 4.9. Empirical expectations E1000[E<m>
500 (X)] (top) and variances

Var1000[〈R<m>
500 (X)〉] (bottom) as a function of m for various rv X. The theoretical curves

for the uniform case are shown in dashed. Legend: uniform (‘�’), linear(‘*’), triangular
(‘◦’) and “V”-shape (‘�’) whitened variables.

estimators increases when unreliable points (i.e. corresponding to a low
value of the pdf) are taken into account. The shape of Vart[〈Rm(U)〉] is
more surprising, but has been confirmed by the analytical equations given
in Eq. (4.30).

• Performances comparison on Noisy Observations

The above results show that m = 1 leads to a good choice in the sense
that obviously, the bias is minimized for this value of m. In addition, for
a given N , E[E<m>(U)] and Var[E<m>

N (U)] both increase with m.

But this is in the noise-free case. In the case of unbounded additive Gaus-
sian noise, the polluted random variable is noted Un .

= U+Gn where Gn is

Gaussian with variance σ2
n given by the SNR 10 log Var[U]

σ2
n

(i.e. −20 log σn

when white rv are considered). When Gn is fixed, Et[〈R<m>
N (U)〉] and

Vart[〈R<m>
N (U)〉] decrease with m, and respectively tend to the theoreti-

cal values E[〈RN
<m>(U)〉] and Var[〈RN

<m>(U)〉] obtained without noise.
This is shown on Figure 4.10. for a SNR equal to 35 dB.

A similar asymptotic behavior is expected for 〈RN
<m>(X)〉 whatever the

density pX, even if we are not able to compute the exact expectations and
variances. Therefore, the higher m, the lower the noise effect on the expec-
tation and variance of E<m>

N (X). As a conclusion, in noisy environment,
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the value of m must be kept “quite small”; there is a tradeoff. The param-
eter m must be chosen neither too small (upper-estimation of the range
and high variance due to noise), nor too high (the noise effect is cancelled
but the theoretical noise-free bias increases with m).
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Figure 4.10. Top: theoretical expression of E[〈R2000
<m>(U)〉] where U is a rv with

support Ω(U) = [0, 1] (solid) and its empirical counterpart E200[〈R<m>
2000 (Un)〉] where

Un is the same as U but with additive Gaussian noise (dashed). Bottom: theoretical
Var[〈R2000

<m>(U)〉] (solid) and empirical Var200[〈R<m>
2000 (Un)〉] variances (dashed) (log

scale). The signal-to-noise ratio involved in the noisy data set is 35 dB.

4.2.3.3 Impact on robustness of minimum-support ICA algorithms

We shall compare the effect of several parameters (namely: the sample size,
the source density and the signal-to-noise ratio) on the robustness of minimum-
support approaches to ICA when 〈R<m>

N (.)〉 is used as an estimator of the true
range R(.). This is actually the most relevant viewpoint to test the quality of
our estimator; for instance, even if the bias is high but constant with respect to
θ, minimizing the estimated range would give the original sources. In our BSS
framework, the robustness of a range estimator is viewed as the probability to
induce a spurious solution by using the above range estimator in minimum range-
based ICA methods; i.e. the lower the probability to face a spurious solution,
the more robust the estimator.



214 MINIMUM OUTPUT RANGE METHODS

For this study, we assume K = 2 and i.i.d. white and bounded sources,
for simplicity purposes. The transfer vector is noted wθ leading to the output
Yθ = wθS.

• Impact of pX(x)

We start by considering the m = 1 case before discussing the joint impact
of pX(x) and m on the quality of the range estimator for BSS.

The objective function R(Yθ) requires an estimation of the support width
based on sample observations of Yθ only. One of the simplest estimations
of R(Yθ) is the statistical range RN (Yθ) = 〈R<1>

N (Yθ)〉.
Figure 4.11. shows that the support estimation quality decreases when i)
the source density is low near the bounds, and ii) the sources are more and
more “mixed” (θ increases in from 0 to π/4).
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Figure 4.11. EN (Yθ) vs N and θ when S1 and S2 are two white uniform, linear,
triangular and ”V” white random variables.

Actually, both effects result from the same phenomenon. The density of
the sum of two independent random variables is the convolution of their
densities. Then, the density of Yθ varies with θ, and pYθ

has less and less
points in the neighborhood of its bounds when θ moves from 0 to π/4 (as
an illustration, remind that the convolution of two rectangles is a trapeze
or a triangle). This is illustrated by the histograms of Fig. 4.12.
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Figure 4.12. Samples histograms of Yθ when both white sources follow a uniform,
linear, triangular or a ”V”-shape density.

The support estimation approach to ICA can give spurious solution, since
if only few points are available, the estimated range of Y(2k+1)π/4 can be
lower than the one of Ykπ/2 (even if this is not possible when considering
the true range itself). Then, the minimum support approach could suggest
Y(2k+1)π/4 as an estimate of one of the source, i.e. the algorithm is totally
misled. If there are not enough sample points (i.e. N too small), and if the
source pdf have a low density near its bounds w.r.t. the density near the
center of the pdf (as is e.g. the case for a triangular pdf), then we could
have RN (Yπ/4)−RN (Ykπ/2) < 0 with k ∈ Z (see Fig. 4.13.)

The following simulation results give a final illustration. Again, we can
observe in Fig. 4.13. that R<m>

N (Yθ) is a bad estimate of the true support
when i) θ is very different from the closest kπ/2 angle, ii) when the number
of sample points is small, and iii) when the source pdf is concentrated
around its mean.

As a conclusion, Figure 4.14. shows that the minimum-support method
can be applied to noiseless BSS with the observed range estimator, but the
required number of sample points to have satisfactory performances and
to avoid spurious minima depends on the last pdf.

What about another choice of m? Figures Fig. 4.15. and Fig. 4.16. show
Et[〈R<m>

N (Yθ)〉] and Vart[〈R<m>
N (Yθ)〉] for various values of m; the usual
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Figure 4.13. E50[RN (Yπ/4) − RN (Ykπ/2)]. The width of the curve is
2Var50[RN (Yπ/4) − RN (Ykπ/2)], and the curve tend to the upper side of the bounding
box as N → ∞. We observe that one can face RN (Yπ/4) − RN (Ykπ/2) < 0 when
simultaneously N is too small and the common source pdf has a low density near the
bounds.

concave shape is lost when m is too large compared to N . Even the worst
case can occur. Assume that we have two white uniform sources. For
θ = π/4, the output Yθ has a triangular density, and this output still has
a unit-variance. The hot point is that it is feared from Figure 4.9. that for
sufficiently large m compared to N , the range of the unit-variance triangu-
lar r.v. can be underestimated in a so strong way (compared to the error
made on the range estimation of a white uniform r.v.) that the estimated
range 〈R<m>

N 〉 of a white triangular r.v. can be lower than the estimated
range of a white uniform source; clearly this is an aberration as the true
range of a white triangular density (which equals 2

√
6) is always larger than

the true range of a white uniform rv (which equals 2
√

2). The estimator
however, could yield such a paradoxical value. Indeed this phenomenon
can be observed for m ≈ 100 if N = 500. The best choice of m is thus
very difficult: neither too small (large variance), neither to high (spurious
minima at θ = (2k + 1)π/4).
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Figure 4.14. E100[〈R<m>
N (Yθ)〉] vs θ for m = 1. We observe a rather low bias for

a given N , rounded shape as desired, but high variance between trials (low confidence).
Legend: pair of uniform (‘�’), triangular (‘◦’), “V”-shape (‘�’) and linear (no marker)
sources.

• On the choice of m

Is the choice of m critical? In any case, it does matter, so how can we
choose the value of m? The quantity E<m>

N increases with m, at a rate
depending on the density pX . In order to have m so that 〈R<m>

N (X)〉 is
still a “relevant image” of the support (from the BSS point of view), m
must be small enough, but not equal to one, in order to save robustness. In
this section, we propose a method to choose a value for m. The main idea
is to fix m such that the error E<m>

N (X) is lower than an error threshold
ετ with a high probability, whatever the density of X. In other words, we
try to find m0 such that for all m 6 m0:

Pr
[
E<m>

N (X) 6 ετ
]

> L(m0) , (4.31)

where L(m0) is a probability threshold ideally close to, but lower than one.

The problem is that if ετ is constrained to be a constant, the latter probabil-
ity depends on PRN

<m> (that is on pX), which is supposed to be unknown
here. The trick consists in choosing ετ of the form R(X)− (ξα− ξβ), where
ξα is the α-th quantile of PX, i.e. PX(ξα) = α, with 0 6 α 6 1.

By doing so, the value of ετ cannot be found explicitly without knowing
the density of PX, but it can be made small by taking α close to one and
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Figure 4.15. E100[〈R<m>
N (Yθ)〉] vs θ for m =

�
N/2. We observe a higher bias for

a given N , acceptable but flatter shape, low variance between trials (better confidence).
Legend: pair of uniform (‘�’), triangular (‘◦’), “V”-shape (‘�’) and linear (no marker)
sources.

β close to zero. In order to find a suitable bound L, we start from an
inequality due to Chu [Chu, 1957]:

Pr[X(s:N) −X(p:N) > ξα − ξβ ] >
N∑

i=p

(
N
i

)
βi(1− β)N−i

−
N∑

i=s

(
N
i

)
αi(1− α)N−i .(4.32)

Let us choose β = 1 − α, α > 1/2 and set s = N −m0 + 1, p = m0; this
implies that

Pr[R(X)− RN
<m0>(X) 6 R(X)− (ξα − ξ1−α)︸ ︷︷ ︸

ετ

] (4.33)
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Figure 4.16. E100[〈R<m>
N (Yθ)〉] vs θ for m = N/5. High bias for a given N ,

dangerous shape, but extremely low variance between trials (higher confidence). Legend:
pair of uniform (‘�’), triangular (‘◦’), “V”-shape (‘�’) and linear (no marker) sources.

is lower-bounded by

L(α,m0, N)
.
=

N∑

i=m0

(
N
i

)
(1−α)iαN−i−

N∑

i=N−m0+1

(
N
i

)
αi(1−α)N−i .

(4.34)
Note that for large numbers, numerical problems may occur when comput-

ing

(
N
i

)
. Therefore, it is recommended to use the following logarithmic

trick:

(
N
p

)
= e

[
N∑

i=1

log i−
N−p∑

i=1

log i−
p∑

i=1

log i

]
. (4.35)

It is obvious that L(α,m0, N) is also a lower bound on Pr[E<m0>
N (X) 6 ετ ]

whatever the density of the random variable X. Indeed, any lower bound
on Pr[RN

<m0>(X) > R(X) − ετ ] = Pr[R(X) − RN
<m0>(X) 6 ετ ] can be
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used as a lower bound on: Pr[R(X)− 〈RN
<m0>(X)〉 6 ετ ]:

Pr � E<m0>
N 6 ετ � = Pr � 〈R<m0>

N (X)〉 > R(X) − ετ �
= Pr � 〈RN

<m0>(X)〉 > R(X) − ετ |RN
<m0>(X) > R(X) − ετ �

×Pr � RN
<m0>(X) > R(X) − ετ �

+ Pr � 〈RN
<m0>(X)〉 > R(X) − ετ |RN

<m0>(X) < R(X) − ετ �
×Pr � RN

<m0>(X) < R(X) − ετ �
> Pr � RN

<m0>(X) > R(X) − ετ � , (4.36)

where the inequality results from the fact that 〈RN
<m0>(X)〉 >

RN
<m0>(X) with probability one.

The parameter m is thus chosen once α (controlling the lower bound
on 〈RN

<m>(X)〉) and L(α,m0, N) (controlling the probability that
〈RN

<m>(X)〉 is greater than ξα − ξ1−α) are fixed, ideally close to one.
We choose m = m0, i.e. the largest value of m such that 〈RN

<m0>(X)〉 >
(ξα− ξ1−α) with a probability higher than a threshold Pτ . Both Pτ and α
have to be fixed, and m comes by finding the largest value m0 such that
L(α,m0, N) > Pτ holds. Figure 4.17.(a) shows the area in the (m,N)
space where the bound L is useful (i.e. strictly positive).

Figure 4.17.(b) shows L+(0.95,m,N) where

L+(α,m,N) = max (0, L(α,m,N)) (4.37)

(negative probability bounds are useless) as a function of (m,N). We
see that m0 is given by finding the maximum value of m such that the
inequality L(0.95,m,N) > Pτ holds, with fixed Pτ , e.g. Pτ = 90%. The
value m] is a value given by the rule of the thumb

m](N)
.
= max

(
1,<

([(N − 18

6.5

)0.65

− 4.5
]))

, (4.38)

where α denotes the nearest integer to α, which aims at approximating the
largest value m0 of m such that L(0.95,m,N) > .95. This highly improves
the computational requirement for finding a suitable value of m.

Part of the above results were published [Vrins and Verleysen, 2006a,b].

4.3 RANGE MINIMIZATION ALGORITHM: SWICA

Usually, when one desires to optimize a criterion for which an algebraic solu-
tion cannot be found, iterative methods are used, as explained in Section 1.6.
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Figure 4.17. Dependency of the probabilistic error bound on the range estimation vs
(m,N), α = 0.95.
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When gradient-ascent methods are plugged in BSS methods, the obtained so-
lution is given by the stationary point corresponding to the local maximum of
the criterion. The problem is that when considering the range-based contrast
function, the local maximum points are not stationary points of the gradient-
ascent update rule as the gradient does not exist at these points. Therefore,
iterative maximization schemes have to be developed for such kind of criteria.
This is precisely the aim of this section: a specific algorithm for the optimization
of non-differentiable contrasts is proposed. The algorithm actually performs a
geodesic optimization of the BSS criterion over the manifold of the orthogonal
matrices. It is proved to succeed in maximizing the range-based D-BSS contrast
CR(b). This algorithm was first proposed in [Lee et al., 2005]. Note that even
simultaneous and partial counterparts may be easily found based on the theo-
retical criteria, we focus our experiments on deflation extraction schemes as it
seems that they yield more interesting results even in high-dimensional spaces.

4.3.1 Algorithm

The simple algorithm shown in Table 4.2. may be used to compute each row of
B. Briefly, the so-called “ICAforNDC” algorithm looks at a given contrast C(.)
value in some (mutually perpendicular) directions.

It could be interesting to use prewhitening in order to reduce the dimension
of the search space, as previously explained. In other words, we would like to
perform a geodesic optimization over the group of orthogonal matrices.

How to modify the bi’s while not affecting the orthogonality of B? As each bi

is orthogonal to any other row bj , any linear combination of the form cos(α)bi +
sin(α)bj will be orthogonal to any row bk of B where k /∈ {i, j}. Obviously, this
new value of bi is no longer orthogonal to bj . A new value for bj which is
orthogonal to any other row of B is given by cos(α)bj − sin(α)bi (it can be
checked that the dot product between the new values of bi,bj is zero).

For short, we can note the above positive and negative angular variations of
bi as

bi↑j = cos(α)bi + sin(α)bj , (4.39)

bi↓j = cos(α)bi − sin(α)bj , (4.40)

where α is a kind of “learning parameter”, which value (decreasing between two
iterations) controls the “amount of the variation”. Then, the orthogonality of B
is preserved if bi is replaced by bi↑j provided that bj is replaced by bj↓i.

Observe that these update rules can be jointly generated by left-multiplying
the current demixing matrix by the Givens matrix: B← Gα

ijB (see Section 1.6).
In this case, because of the group structure of SO(K) and Gα

ij ∈ SO(K), the
algorithm actually performs a geodesic optimization on SO(K) if the initial
demixing matrix is in this subset. More precisely, the algorithm allows us, at
each step, to explore the contrast in SO(K), but only in specific (pairwise or-
thogonal) planes spanned by the pair of row-vectors (bi,bj) (i.e. only along
Jacobi trajectories).
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[BV] = ICAforNDC(C,X(t))

1. Whiten the mixtures using an eigenvalue value decomposition:

(a) remove the mean: X(t)← 1
N

ΣN
t=1X(t)

(b) compute the whitening V matrix of X(t) by using Eq. (1.47)

(c) compute the projected whitened mixtures: X(t)← VX(t)

2. Initialize B← IK .

3. To extract the i-th source, with 1 6 i 6 K, do, for k ranging from 1 to 50:

(a) α← π0.75k.

(b) For j ranging from i+ 1 to K, determine the best contrast value:

• if C(bi↑j) > C(bi) and C(bi↑j) > C(bi↓j) then bi ← bi↑j ,bj ← bj↓i

• else if C(bi↓j) > C(bi) and C(bi↓j) > C(bi↑j) then bi ← bi↓j ,bj ← bj↑i

• end.

4. return BV

Table 4.2. Pseudo-code for the deflation ICA algorithm for non-differentiable
contrast functions C(.).

The corresponding contrast values can be written as C(bi↑j) and C(bi↓j) (re-
mind that the mixtures are supposed to be whitened).

When the learning parameter is set to the default value of 0.75, the algorithm
usually converges after ten or twenty iterations; default is 50 for security.

By construction, the algorithm is monotonic: the contrast is either increased
or kept constant. For this reason, if spurious maxima of the contrast exist, then
the algorithm could fall in one of them, especially if the initial values of α are
too small or if α decreases too fast during the first iterations.

When the range-based D-BSS contrast CR(b) is used in the algorithm, it is
referred to as SWICA (the acronym stands for “Support Width ICA”).

Remark 22 The first goal of this thesis was not to develop optimization schemes
but rather to analyze the theoretical behavior of entropic contrast. Therefore, a
wide comparison of optimization techniques of non-differentiable functions has
not been performed. However, other algorithms using more sophisticated tech-
niques have been tried too. Unfortunately, they lead to worse results than the
proposed methods both in terms of computational complexity and separation per-
formances. In addition, they involve a larger number of parameters, which are
tedious for adjusting. We are convinced that the speed of the contrast maximiza-
tion schemes presented below could be largely improved by investigating other
optimization tools, such as sub-differential techniques [Erdogan, 2006]. Never-
theless, in spite of their (probably) sub-optimal convergence rates, the simple
proposed algorithms would deserve attention as they yield very promising results
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in terms of separation performance indexes compared to other general-purpose
separation algorithms in some situations.

Another fact that deserves to be emphasized is that Jacobi-like algorithms (like
ICAforNDC) may be stuck in spurious optima, even when the (possibly non-
differentiable) contrast function is discriminant. This is e.g. the case of the
range criterion as explained in Section 3.4.5 (probably due to the fact that the
function is not differentiable everywhere). In particular, Jacobi-like algorithms
can yield spurious solutions even for piecewise g-convex contrast function, as
defined in Section 3.4.2.2.

4.3.2 Performance analysis of SWICA for OS-based range estimators

In this section, we compare the extraction performances of 3 ICA algorithms:
FastICA (developed in [Hyvärinen and Oja, 1997]), JADE (introduced by [Car-
doso, 1989, Cardoso and Souloumiac, 1993]), and SWICA with the following
range estimator R(X) ≈ 〈R<m>

N (X)〉 (when this specific range estimator is
plugged in the SWICA approach, the method is referred to as “AVOSICA”,
for “sAveraged Order Statistics ICA”).

Note that other “SWICA” approaches involving different range-based estima-
tors (R(X) ≈ R<m>

N (X) or R(X) ≈ R<1>
N (X) = 〈R<1>

N (X)〉) have been tested
too, but they are not shown here as they lead to worse results.

The default value for the parameter m was chosen equal to m], given by Eq.
(4.38). The algorithms have been tested on the extraction of 5 bounded and
white sources from 5 mixtures (the source densities are given in Table 4.1.). The
mixing matrix is built from 25 random coefficients uniformly distributed in (0, 1).

Figure 4.18. compares the histograms of the SPI (Square Performance Index)
for each extracted source in the noise-free case for N = 2000 and m = m](N):

SPI(Si)
.
=

∑n
j=1W

2
ij

maxj W 2
ij

− 1 . (4.41)

The global SPI is defined as the average of the SPI(Si) over i (i.e. over the
sources). A zero SPI(Si) indicates that Yi is proportional to a source, while a
high SPI(i) means that Yi results from the superimposition of several sources.

We can observe in Figure 4.18. that AVOSICA gives the most interesting
results, in comparison to JADE and FastICA (pow3), especially for the separa-
tion of sources with linear and triangular pdf. It must be stressed that even if
AVOSICA performs quite satisfactorily for small values of N , the performances
are improved for large N .

Figure 4.19. summarizes the global SPI performances of ICA algorithms for
various noise levels. Note that the performance results are analyzed from the
mixing matrix recovery point of view; the source denoising task is not considered
here. The good results of AVOSICA can be observed, despite the fact that the
value of m has not been chosen to optimize the results, i.e. we always have taken
m = m](N). It must be stressed that the value of the parameter m is not critical
when chosen around m](N).
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Figure 4.18. 12-bins histograms of SPI for each extracted source, for 100 trials,
N = 2000, and m = m](N) = 37. The analyzed algorithms are AVOSICA (‘A’), JADE
(‘J’) and FastICA (‘F’). The global SPI is the averaged SPI computed from the individual
source SPIs for a given trial.
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Figure 4.19. 100-trials-averaged empirical means and variances of global SPI
performances of several ICA algorithms as a function of additive Gaussian noise with
standard deviation σn: N = 500 (top panel) and N = 2000 (bottom panel).
Legend: AVOSICA (solid), JADE (dashed), FastICA-pow3 (dotted), FastICA-gauss
(dash-dotted). The noise has been added to the whitened mixtures, so that for a given
σn, the “mixture SNRs” equal −10 log σ2

n; the noise variance does not vary between
trials, and does not depend of the mixing weights). For AVOSICA, the parameter is
m = m](N).

JADE is a very good alternative when the dimensionality of the source space
is low. The computational time of FastICA is its main advantage.

Part of these results appeared [Vrins and Verleysen, 2006b].

4.4 EXTENSIONS AND APPLICATIONS OF THE MINIMUM RANGE
APPROACH TO ICA

It has been already mentioned that when the sources are truly independent, one
can first apply a decorrelation transform to the mixtures, and then look for a
linear transformation that preserves the covariance matrix yielding independent
outputs. This makes sense because correlation is a linear dependency. But what
happens if the sources are not perfectly independent (their mutual information
is non-zero)? In this section, we present an application involving correlated
sources.

The ICAforNDC algorithm (and in particular, SWICA) performs a geodesic
optimization over the group of orthogonal matrices. In other words, SWICA
performs rotations of the mixing-whitening matrix VA. In some cases however,
as explained below, one desires to find a demixing matrix which is not orthogonal,



EXTENSIONS OF THE MINIMUM RANGE 227

even after a prewhitening step; this is e.g. the case when the source signals are
correlated: VA is no longer orthogonal. Even if the convex hull of the source
scatter plot forms a rectangle (in spite of the correlation), the whitened mixture
scatter plot convex hull forms a parallelepiped. Therefore, we are looking for
a demixing matrix that maps a parallelepiped to a rectangle. To that end, we
consider an extension of the SWICA algorithm, namely the NOSWICA method
(where the acronym stands for Non-Orthogonal SWICA). The motivation and
the method are described below. Under the source independence assumption,
both yield the same solution, but SWICA performs the optimization in SO(K)
while NOSWICA performs an optimization in IRK×K . Therefore, NOSWICA
can be seen as a least dependent component analysis in which decorrelation (linear
dependency) is not enforced; the “least dependent” point of view is obviously
related to the range. This is explained below.

4.4.1 The problem of blind images separation : NOSWICA

4.4.1.1 Application of SWICA on correlated images separation

Images separation has proved to be a successful and realistic application of
BSS [Almeida and Faria, 2004]. The most common example is the case where
each face of a tiny sheet of paper is scanned. Both scans reflect the information
of the corresponding face that has been scanned, but the information located on
the other face also appears in the scan. Then, each of the scans is a mixture of
two (assumed to be independent) images. In this work, we shall consider a toy
example involving a linear mixture of images. It seems that non-linear mixing
schemes are more realistic, but linear mixing schemes can be seen as first approx-
imations of more complicated models. Furthermore, even if the linear mixture
does not really correspond to reality, it emphasizes an interesting problem that
is difficult to address with standard BSS algorithms, but that can be dealt with
by using geometric-based method, such as SWICA.

When considering similar images such as two landscapes, two human face pic-
tures (etc), they may seem to be independent (the pictures represent different
landscapes, or different persons), but actually, the images are correlated. This
is because the image can be divided in two parts: a “background part” and a
“detail part”. For instance, two landscapes have a common shape: globally, they
are built from horizontal shapes; two human face pictures shows a background
and a “disk” representing the face. Of course, the precise landscapes and faces
make that the pictures look different but globally, they share a same “template”.
Hence, even if exceptions seem to exist [Yang and Amari, 1997], two mixed im-
ages can be more independent than the dependent sources; in particular, they
can be decorrelated (linearly independent). Several tools have been designed to
address this issue. The most efficient one seems to be filtering (frequency mask-
ing) [Cichocki and Georgiev, 2003]. In that case, it is assumed that a frequency
band exists (corresponding to the “detail” part of the figure, as described above),
in which the source images are statistically independent. By filtering the image
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mixtures outside this frequency band, new mixtures are obtained and processed
by a usual ICA algorithm. Once the latter has converged, the computed unmix-
ing matrix is used for separating the initial (unfiltered) mixed images [Cichocki
and Georgiev, 2003].

Even if the previous method looks very efficient, additional parameters ap-
pear, like the cutoff frequencies and the order of the filter, which may be difficult
to adjust. For instance, finding the frequency band that makes unknown images
fully independent, starting from mixtures of them may be a tedious task. To our
knowledge, no simple or automatic method exists to solve this problem. There-
fore, we suggest another way of solving this problem, based on the geometric
nature of the images scatter plot that is precisely exploited by SWICA. This
approach was presented in 2005 (see [Vrins et al., 2005c]).

The major limitation of range-based methods is that sources having pdf with
flat tails are extremely difficult to extract, because the true range of the mixture
is badly estimated, as explained in Section 4.2.3.3. This estimator works best
for abruptly bounded variables. When the tails of the density are longer and
less dense, as for platykurtic variables, the estimator may fail to give a good
approximation of the support (see Fig. 4.20.(a)). The reason is that there are
not enough observations in ‘critical areas’ (the ‘corners of the square’ in the
figure). In the following of the section, SWICA refers to AVOSICA with m = 1,
for short. SWICA may be completely misled: it has minimized the support of
Y1, but this output does not correspond to a source (we have set m = 1 to better
point out the problem). Of course, if four well-chosen observations are available
(located by the arrows in Fig. 4.20.(b)), the problem disappears. This shows

−5  5 

−5

 

5 

(a) Essential points for the estimation of
R(Y1) are missing: the source extraction
failed.

−5  5 

−5

5 

(b) Four points have been added at the
borders of the source jpdf (located by
the arrows); these “artificial” points allow
SWICA to extract the sources.

Figure 4.20. AVOSICA (m = 1) applied on super-Gaussian signals with m = 1:
scatter plots of the source signals (dots) and of the outputs (circle).

once again that the AVOSICA approach is very sensitive to a small number
of observations when m is small. But we remind it as we shall exploit this
weakness later on. Fortunately, the densities of the pixel intensities in an image
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are usually abruptly bounded, due to particular implementation choices (small
encoding range) and image properties (because neighboring pixels often have
similar values, there are usually few outliers). Observe, in addition, that only
these four points are considering in the range estimation, whatever the mixing
matrix (iff m = 1); the inner structure of the scatter plots does not play any
role in the contrast evaluation. This will also be exploited in image separation,
as shown in the next example.

Example 28 Consider the source images in Fig. 4.21.(a) and 4.21.(d); they
are two gray-level landscapes whose 8-bits coded pixel intensities range from 0
to 255. A random linear mixing matrix and a decorrelation transformation are
then applied; mixed images are shown in Fig. 4.21.(b) and 4.21.(e) (after trans-
lation and scaling to map the mixtures in the full range [0, 255], for readability
purposes). The correlation between the images rises to 26%. This correlation
is visible when looking at the scatter plot of the source images (Fig. 4.22.(a));
they are not independent because the joint probability density function cannot be
factorized (for instance, look at several horizontal – or vertical – slices in the
scatter plot (reflecting conditional densities): they are not equal to each other).
Let us compare these results with FastICA and JADE. As could be feared, both
fail to recover the source images (see Fig. 4.22.(b) and 4.22.(c)).

We shall use the SWICA deflation algorithm (remind that in this section,
it is assumed that the range estimator is R(X) ≈ RN (X) = 〈R<1>

N (X)〉). The
extraction of the first and second sources are considered separately.

• Extraction of the first source

SWICA behaves rather differently from JADE and FastICA and recovers
one of the sources (the second one, see the corresponding estimated image
in Fig. 4.21.(c) and the output scatter plot in Fig. 4.22.(d)). The output
scatter plot is a parallelogram and two of its edges are parallel to the vertical
axis (this is more clear for the well-drawn leftmost edge): values of Y1

computed by SWICA nearly equal those of S1. Unfortunately, it is seen
from Fig. 4.22.(d) that the two other edges of the parallelogram are not
parallel to the horizontal axis, meaning that Y2 does not correspond to the
yet un-extracted source (i.e. to the first one). Looking at the corresponding
output image in Fig. 4.21.(f), one can see that the mountain of the second
source image is not perfectly removed.

Understanding why both JADE and FastICA fail in this example is straight-
forward: because the source images are correlated, looking for (as indepen-
dent as possible) outputs constrained to be uncorrelated is inadequate. In
the case of two landscapes, these components are not the source images but
new images (e.g. component 1 could account for the shared soil/sky con-
trast whereas component 2 could account for varying trees, mountain and
clouds).

Contrarily to other ICA contrasts, the range criterion extracts a very lim-
ited piece of information out of the marginal pdf of the currently estimated
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(a) Source 1 (b) Mixture 1 (c) Output 1

(d) Source 2 (e) Mixture 2 (f) Output 2

Figure 4.21. Example of images separation using SWICA (Cov(S1, S2) = 0.26);
source images (a,d), rescaled mixed images (b,e), rescaled extracted images (c,f).

source Y1: the bounds. In our image application, bounds are particularly
interesting parts of the image density. Indeed, images may be assumed to
involve three more or less important parts: (i) a global shared shape, (ii)
local independent details and (iii) encoding techniques. The global shared
shape leads to highly correlated and dense spots in the scatter plot. On the
other hand, local independent details contribute to fill the scatter plot in a
spread (“uniform”) but very sparse way. Finally, encoding techniques gen-
erally produce saturation effects (towards full white and/or black), which
are independent (source images are independently encoded). Usual ICA
contrasts are especially sensitive to the global shape, which is dominating
in correlated images, and thus try to make the images independent. On the
other hand, the range focuses on the bounds of the scatter plot: these bounds
are generally well drawn due to parts (ii) and/or (iii) of the images and con-
tain most of the independent features of the images. As an example, if there
exist pixel indexes (that can be assumed to be uni-dimensional after a con-
catenation of the rows of the images) t1, t2, t3, t4 such that S(t1) = [0, 0]T,
S(t2) = [0, 255]T, S(t3) = [255, 0]T and S(t1) = [255, 255]T, the four “cor-
ner points” are observed. This should be the case for a pair of different
contrasted images if they contains detail points. Of course, if parts (ii)
and (iii) in the image are negligible, the edge of the scatter plots disappears
and SWICA is likely to fail.

This explains why SWICA can match its first output Y1 to one of the
sources (see Fig. 4.21.(d) and Fig. 4.21.(c)): the rotation of the whitened
mixture scatter plot that yields the minimum value of R(Y1) corresponds
to Fig. 4.22.(d) But why does SWICA fail to recover the second source im-
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(a) Normalized sources (b) Results of FastICA: SPI(S1) = 0.246,
SPI(S2) = 0.449.

(c) Results of JADE: SPI(S1) = 0.497 and
SPI(S2) = 0.687.

(d) Results of SWICA: SPI(S1) = 1.3 ×
10−4 and SPI(S2) = 0.063.

Figure 4.22. Scatter plots between normalized sources (a) and outputs of various
ICA algorithms.

age? Actually, as for all ICA orthogonal contrasts, we whiten the mixtures
beforehand and then constrain the demixing matrix B to be orthogonal.
Unfortunately, this constraint is too restrictive in our case and amounts to
recovering sources that are not correlated. More precisely, on the one hand
we know that E[YYT] = BE[ZZT]BT = BBT = IK because of the white-
ness property (Z denotes the random vectors of the whitened mixtures, to
avoid confusion with a possible non-white mixture vector). On the other
hand, we know that E[SST] is not diagonal, which is contradictory.

• Extraction of the second source

The above-mentioned arguments explain why, when a deflation range-based
BSS approach is used, one source can be recovered, whereas the other ones
cannot be recovered when the source images are correlated and B is con-
strained to be orthogonal.
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In the easy case where K = 2, the second line of the B matrix given by
SWICA must be modified. Therefore, we minimize RN (Y′

2) = RN (b′
2Z)

with respect to b′
2, where b′

2 is not constrained to be orthogonal to b1

anymore. In order to avoid converging to Y1, we take b2 (the second row
of B given by SWICA) as a first guess for b′

2. This procedure is applied only
on the second output, without changing the first one, and allows separating
the second source, as shown in Fig. 4.23. This procedure can be extended

(a) Results of SWICA: SPI(S1) = 1.3×
10−4 and SPI(S2) = 1.4× 10−4.

(b) Second output Y′
2 after mapping to

(0, 255).

Figure 4.23. Results after extraction of the second source image: the low SPI values
indicate that both sources are correctly recovered. Compared to Fig. 4.21.(f), the “white
mountain” has been eliminated, such that the result better matches to the first source
given in Fig. 4.21.(a)

for a larger number of source images, by deriving a deflation algorithm to
correct the bias due to the orthogonality constraint. This is discussed in
the following subsection.

4.4.1.2 NOSWICA: a non-orthogonal extension of SWICA

In the above method, a standard SWICA is applied and gives a first estimate
of one of the sources; the second row is an orthogonal version of the first row,
and thus because of the source correlation, a post-processing is performed on
the second row of the demixing matrix in order to extract a second source.
This two-step procedure is not optimal. Then, an extension of SWICA, called
NOSWICA, involves a “smooth” orthogonal constraint; this non-rigid constraint
is implemented as a penalization term preventing to extract several times a same
source, without forcing a non-natural orthogonalization between the rows of B.
We shall first focus on a simultaneous separation scheme before considering a
deflation method.

Simultaneous NOSWICA
Without prewhitening, recall that our goal is to find the smallest parallelepiped
including the mixture joint density or, from the sample view point, to find the
parallelepiped of smallest volume including all the sample points of the scatter
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plot of the mixtures. As explained in Section 2.3.3, this can be found via the
maximization of the criterion CR(B) given by Eq. (2.41). The first term of this
equation can be rewritten as [Hyvärinen et al., 2001, Pajunen, 1999]

log |detB| =
K∑

i=1

log ‖(IK −Pi)b
T
i ‖ , (4.42)

where Pi
.
= BT

i (BiB
T
i )−1Bi is a projection matrix onto the subspace spanned

by the columns of matrix BT
i
.
= [bT

1 , . . . ,b
T
i−1], that is the first i − 1 rows of

the demixing matrix B. It can be checked that it is square, symmetric and
idempotent. We take the natural convention P1 = 0K .

Therefore,

CR(B) =

K∑

i=1

log
‖(IK −Pi)bi

T‖
R(Yi)

. (4.43)

This suggests that one actually minimizes the product of the output ranges sub-
ject to a “smooth orthogonality constraint”. We are looking for a vector bi such
that i) the range of the associated output Yi = biX is small and simultaneously
ii) the distance between this vector and the hyperplane spanned by the previous
rows of the demixing matrix is high.

Note that the numerator equals one under the orthonormality constraint of
the rows of the separating matrix [Pajunen, 1999].

Deflation NOSWICA
One can trivially derive a deflation method based on the above simultaneous
contrast by considering only a given row index i at a time. An i-th row is
extracted by maximizing

CR(bi) = log
‖(IK −Pi)bi

T‖
R(Yi)

. (4.44)

In particular, the recovering of the first row of B is given by maximizing (the

log of) ‖b‖
R(bX) with respect to b. The “smooth orthogonality constraint” with

respect to the previous rows of B is implicitly contained in the projection matrix
Pi. This means that even in deflation schemes, the sources can be extracted
sequentially without imposing a rigid orthogonality constraint.

In the previous range-based deflation approach presented in (2.44), the combi-
nation of pre-whitening step and orthogonality constraint implied that the algo-
rithm necessarily led to recover a rectangle. Here, no pre-whitening is required
even for the deflation approach, and thus the algorithm can yield, generally
speaking, any non-singular parallelepiped. This is exactly what we need in im-
age separation. Note however that a prewhitening step can be useful even if the
dimensionality of the search space is not reduced in the next step. Whitening
yields transformed outputs with similar variances; this will improve convergence
of the NOSWICA algorithm when the source correlation is expected to be weak
(see the discussion in Section 4.1.2).
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[BV] = NOSWICA(X(t))

1. Whiten the mixtures using an eigenvalue value decomposition:

(a) remove the mean: X(t)← 1
N

ΣN
t=1X(t)

(b) compute the whitening V matrix of X(t) by using Eq. (1.47)

(c) compute the projected whitened mixtures: Z(t)← VZ(t)

2. Initialize B← IK .

3. Extract the first source by minimizing the normalized source: b1 ←
argminb R(bZ/‖b‖)], and define U← [bT

1 ].

4. To extract the i-th source, with 1 < i 6 K, do, :

(a) compute the winning rows by minimizing the penalized range: bi ←
argminb R(bZ/‖bT −UU

T
bT‖)

(b) update U: U ← [U, (bT
i − UU

T
bT

i )/‖bT
i − UU

T
bT

i ‖] to obtain a projection
matrix onto the space spanned by the first i− 1 rows of B.

5. return BV

Table 4.3. Deflation NOSWICA algorithm.

It is intriguing and amusing to note that this smooth orthogonality constraint
is exactly the same as the one that has been introduced in [Lee, Vrins, and Ver-
leysen, 2006b] based on more geometrical aspects. This (deflation) “NOSWICA”
algorithm is given in Table 4.3.

Observe that at each step of the algorithm of Table 4.3., the matrices UUT

and Pi (given below Eq. 4.43) are projection matrices onto the same subset.
To see that, observe that the columns of U form an orthonormal basis of the
subspace spanned by the first i− 1 rows of B. The associated projection matrix
is U(UTU)−1UT which equals UUT as the columns of U are orthonormal.
Therefore, both UUT and Pi are, at each step, projection matrices onto the
subspace spanned by the first i− 1 rows of the demixing matrix.

In practice, the exact (theoretical) range cannot be plugged in NOSWICA
and has to be replaced by a sample-based estimator. In the sequel, it is always
assumed that the m-averaged quasi-range is plugged in the method, just like in
AVOSICA: R(X) ≈ 〈R<m>

N (X)〉. In the two following examples, the algorithm
is applied on a toy example and on two image separation problems involving
human faces.

Example 29 (Toy example) It was explained in Section 2.3.4 that without a
rigid orthogonalization constraint, the minimum range approach should be able
to recover original sources provided that the edges of the source joint density
resemble the edges of independent source densities, that is the source density
convex hull is a rectangle. The correlation “inside” the source density should
have no impact on the result. To this end, dependent source signals are built as
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Si(t) = Ci(t) with probability α and Si(t) = Pi(t) with probability 1 − α. The
Pi(t) are mutually independent random variables while the Ci(t) are mutually
correlated.

Setting K = 2 and α = 0.5, each source is an equiprobable mixture of sam-
ples of both correlated and fully independent variables. The independent part
Pi(t) of the sources is built from samples drawn from the uniform density in
the interval (−1,+1). The dependent part of the sources Ci(t) is built as fol-
lows. First, two independent zero-mean unit-variance Gaussian densities are
sampled. Next, the obtained vectors are mixed by pre-multiplying them with the
matrix [0.2, 0.4; 0.4; 0.2], in order to correlate their components. Finally, all val-
ues greater than one in absolute value are replaced by ±1. The covariance matrix
of the resulting sources is:

ΣS =

[
0.25 0.07
0.07 0.25

]
.

The first plot in Fig. 4.24. shows a 500 points source scatter plot obtained ac-
cording to the above building scheme. The second plot displays mixtures of these
sources. The third plot shows the whitened mixtures. The three last plots illus-
trate the results of FastICA (deflation, pow3), AVOSICA and NOSWICA. Only
NOSWICA yields the expected result.
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Figure 4.24. Example 29: computer-generated composite densities. The six plots
show respectively the two sources, two random mixtures, the whitened mixtures and
results of FastICA, AVOSICA and NOSWICA (N = 500, m = m](N) = 12).

Example 30 (Mixtures of real images I) For this experiment, color pic-
tures of human faces were cropped in order to share the same size (192 by
144 pixels) and converted to grayscale using rgb2gray in Matlab, as shown in
Fig.4.25.

Next, the rows of pixels of each image are concatenated to obtain three row
vectors that contains the observations of each source. Finally, those vectors are
standardized so that sources have zero mean and unit variance. The leftmost
plots in Fig. 4.25. show the histograms of the sources. Computing the covariance
matrix of these sources leads to

ΣS =




1.00 −0.27 −0.25
−0.27 1.00 0.51
−0.25 0.51 1.00


 . (4.45)
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Sources Mixtures FastICA 2.5 AVOSICA NOSWICA

Figure 4.25. Example 30: mixtures of real pictures. The two leftmost columns shows
the sources (from top to bottom: Pr. M. Verleysen, Dr J.A. Lee and the present author)
and their histogram. The third column consists of three random mixtures of the sources
(mapped to [0, 255] for readability purposes). The three rightmost columns display results
of FastICA, AVOSICA and NOSWICA (N = 27648, m = m](N) = 224).

Pictures corresponding to three random linear combinations of the sources are
shown in the third column of Fig. 4.25. The three rightmost columns show the
results of FastICA (version 2.5, deflation, pow3), AVOSICA (m = m](27648))
and NOSWICA (m = m](27648)). As in the case of the toy example, NOSWICA
clearly outperforms the two other algorithms. The quality of the results may be
assessed using the SPI performance index (Eq. (4.41)).

In Fig. 4.26., the three algorithms are ran 100 times with different mixtures
and histograms of the SPIs are displayed for each source or for all of them (av-
erage SPI); we have chosen m = 500 ≈ 2m](N) due to the very large number N
of samples; this leads to a slightly better result than for m = m](N). As it can
also be seen in Table 4.4., the average result of NOSWICA is pretty good. On
the other hand, its robustness is more disappointing: the variance of the SPIs is
not negligible. Because the orthogonality constraint is relaxed in NOSWICA, the
space of solutions is larger than for the two other algorithms. This could account
for the result variability.
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Figure 4.26. Histograms of the SPIs (N = 27648, m = 500); the sources are the
left-most pictures of Figure 4.25., “top-down” ordered. Lowest values are the best ones.

SPI FastICA 2.5 AVOSICA NOSWICA

Source 1 0.01 (5× 10−6) 9× 10−4 (8× 10−8) 5× 10−3 (7× 10−4)
Source 2 0.24 (3× 10−2) 0.07 (2× 10−5) 6× 10−3 (5× 10−4)
Source 3 0.31 (2× 10−5) 0.27 (7× 10−5) 6× 10−3 (3× 10−5)

Average 0.19 (3× 10−3) 0.11 (1× 10−5) 6× 10−3 (2× 10−4)

Table 4.4. Mean and variance (between parentheses) of the SPIs for the
example in Fig. 4.25., over 100 trials with different random mixtures, m = 500.
Best values are bolded; the sources are the left-most pictures of Figure 4.25.,
“top-down” ordered.

Example 31 (Mixtures of real images II) Figure 4.27. shows the same ex-
periment as in Example 30 but in which the source pictures are those of the
thesis Jury (PhD advisor excluded; he was already involved – 101 times !– in the
previous experiment). The source covariance matrix is in this case:

ΣS =




1 −.33 −.04 .55 .06
−.33 1 .20 −.33 −.06
−.04 .20 1 −.11 −.05
.55 −.33 −.11 1 .08
.06 −.06 −.05 .08 1




.

In spite of the fact that some of the source images are “pixelized” (their common
size is 74×77 pixels only), one can see in the figure that the results are less good.
However, note that AVOSICA and NOSWICA still outperform FastICA5. A first
reason for explaining that observation results from the fact that the pictures are
not saturated enough. Indeed, in order that range-based ICA techniques perform,
one needs to have sample points in the corner of the scatter plot; in other words,

5A single experiment is shown here as it is given to emphasize the limits of the method only.
Furthermore, the convergence problems encountered by FastICA do not allow us to compare
the results easily.
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we need “sharp-boundaries histogram figures”. This is not the case for several
pictures (e.g. C. Jutten and P. Lambert). The picture of P. Delsarte is weakly
contrasted while, on the contrary, those of E. Oja and J.-D. Legat match our
requirements. We mention that the most “suitable pictures” (in the sense of
NOSWICA) are often pretty well extracted. FastICA almost fails to recover
more than one source image (we mention in passing that in many cases, Erkki
Oja – one of the inventors of the algorithm– is surprisingly correctly extracted by
this algorithm). But this also emphasizes other problems and, in particular, the
effect of a too weak ratio of sample points-to-source dimensionality. Compared to
Example 30, the number of samples has decreased (from 27648 to 5698), while the
source dimensionality is higher (5 instead of 3). When the number of sources K
increases, the theoretical number of corners points (2K) increases exponentially.
But the source space becomes more and more empty (to see that, imagine N
points in a unit square, a unit cube, . . . ); this is often referred to as “the empty
space phenomenon” or the “curse of dimensionality”. Therefore the probability
to observe such “corner points” decreases if the density of the sources have flat
tails (the joint density is the product of the marginals as the sources are i.i.d.).
The common effect of too weakly contrasted sources (flat tails) and their number
(i.e. the number of corner points) is that the probability to observe “interesting
points”, that would lead range-based approaches to the right solution, decreases.
Observe however that range-based approaches become robust to the dimensionality
of the source space when the densities are uniform or “V”-shape because in that
case, more and more points are observed in the boundary (this robustness will
be emphasized on a variant of the NOSWICA algorithm in Section 4.4.2.4).
Figure 4.28. emphasizes these origins of the problem. In this experiment, we
have artificially saturated the pictures of the Jury members (sorry about that):
all the pixels having a value less than 45 are set to 0 and those higher than 215
are set to 255. This leads to much more contrasted pictures. As there are more
points near 0 and near 255 (see the related histograms), there is more chance that
corner points (like [0, 0, 0, 0, 0], [255, 0, 0, 0, 0], . . .) will be observed. This would
clearly help the range-based algorithms to succeed.

4.4.2 Application to lower- or upper-bounded sources with possible infinite

range

In this section, the application field of minimum range methods is extended from
bounded sources (with finite range) to sources with possibly infinite range, but
having either a lower or an upper bound. This extension was proposed in [Lee,
Vrins, and Verleysen, 2006a], in the framework of MLSP 2006 competition on
data analysis.

4.4.2.1 LABICA

A variant of the minimum-range approach is proposed for extracting source
signals that are possibly bounded on one side only: min(sup(Si), | inf(Si)|) <∞
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Figure 4.27. Example 31: mixtures of real pictures. The two leftmost columns shows
the sources (from top to bottom: Pr. P. Delsarte, Pr. P. Lambert, Pr. C. Jutten,
Pr. E. Oja and Pr. J.-D. Legat) and their histogram. The third column consists of
three random mixtures of the sources (mapped to [0, 255] for readability purposes). The
three rightmost columns display results of FastICA, AVOSICA and NOSWICA (N =
5698, m = m](N) = 77).

while the minimum range approach required that a stronger condition holds:
max(sup(Si), | inf(Si)|) < ∞. As sources can only be recovered up to a sign
change, this leaves two solutions: one can either maximize the infimum of the
whitened mixtures or minimize the supremum, which can be related to Erdo-
gan’s approach [Erdogan, 2006] (minimization of the supremum for symmetric
bounded signals). These two possibilities can be merged into a single objective
function, namely the Least Absolute Bound (LAB):

LAB(biZ)
.
= min{− inf(biZ), sup(biZ)} , (4.46)

which has to be minimized: b?
i

.
= minbi

LAB(biZ). Defining CLAB(bi) =
−LAB(biZ), we are led to maximize CLAB(bi).
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Sources Mixtures FastICA 2.5 SWICA NOSWICA

Figure 4.28. Example 31: mixtures of (artificially) saturated pictures. The two
leftmost columns shows the artificially saturated sources and their histogram. The third
column consists of three random mixtures of the sources (mapped to [0, 255] for readability
purposes). The three rightmost columns display results of FastICA, AVOSICA and
NOSWICA (N = 5698, m = m](N) = 77).

The above function assumes working on whitened mixtures Z. Otherwise,
a normalization with respect to the output variance or demixing vector bi is
needed, just as for the range.

Under the whiteness assumption on the independent sources, the minimization
of the LAB criterion is equivalent to the maximization of

C̃LAB(wi)
.
= −min{− inf(wiS), sup(wiS)} (4.47)

with respect to wi and w?
i = b?

i VA where w?
i

.
= maxwi

C̃LAB(wi) since
C̃LAB(biVA) = CLAB(bi) according to our notation convention.

As the LAB only focuses on the bounded part of the random variable, it
behaves like the range from the local minima point of view. To see that (in the
K = 2 case), compare the angular variation of R(Y1) and LAB(Y1) as a function
of the mixing angle θ = φ + ϕ in Fig. 4.29.; the two sources are assumed to be
double-bounded (left panel) or lower-bounded (right-panel). When the sources
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(a) Minimum range approach (b) Least absolute bound approach

Figure 4.29. Graphical interpretation of the minimum range and least absolute
bound approaches; the minimum values of the criteria are labelled ‘?’ and are seen to
correspond to the extraction of one particular source. The solid lines represents the
support boundaries and the large solid arrows represent the current axes.

are lower- and upper-bounded, both criteria are similar. The same holds true
when at least one of the sources is double bounded; in particular, LAB(Y1) is
finite, whatever the value of the transfer angle θ. Things are different if the two
sources have an infinite extremum (assumed to be the supremum in Fig. 4.29.(b)).
For θ ∈ [0, π/2] ∪ [π, 3π/2], the LAB behaves like the range, and on the other
quadrants (boundaries excluded), it may be (theoretically) infinite. In practice,
the LAB criterion will take very large values in the second and fourth quadrants,
so that the global minimum must be in the quadrant where the LAB behaves
similarly as the range. Consequently, the location of the local minimum point is
still θ ∈ {kπ/2|k ∈ Z}, and the global minimum corresponds to the extraction
of the source having the lowest absolute bound.

4.4.2.2 Practical estimation

Estimating a finite extreme point of a distribution is not an easy task but is
close from range estimation. Therefore, the order-statistics based method that
has been presented in Section 4.2 can be used. It is proved to yield promising
results as shown in the following subsection.

Assuming that Y′
i denotes the sorted i-th output, the contrast estimator can

be written as

ĈLAB(bi)
.
= −min

{
− 1

m

m∑

k=1

Y′
i(k),

1

m

m∑

k=1

Y′
i(N+1−k)

}
, (4.48)
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where Y′
i(k) is the k-th lowest value of Yi(t), Y′

i(N+1−k) the k-th highest one
and m is an integer between 1 and bN/2c. We shall use a similar “hat” notation
for the empirical counter part of LAB(biZ). The sample size N is supposed to be
large enough so that the accuracy of the above estimator is sufficient. In other
words, the observed minimum sample should be close to the true theoretical
infimum (and likewise for the observed maximum and theoretical supremum)
to ensure that the empirical criterion will behave similarly as the theoretical
one. Under the same condition, 1

m

∑m
k=1 Y′

i(k) ' mint Yi(t), and likewise for
1
m

∑m
k=1 Y′

i(N + 1− k).
In the noise-free case, m can be taken close to one; otherwise, m must be

slightly increased. In a mimetic manner, we can take m = m](N).

4.4.2.3 Optimization scheme for “hard” ICA problems

In this section we shall give an ICA algorithm that aims at solving “hard”
ICA problems (mainly: source separation from ill-conditioned and large-scale
mixtures).

The optimization strategy is basically the same as the one of AVOSICA,
except that several additional precautions have been taken:

• The prewhitening step involved SVD rather than the usual EVD to save
robustness;

• the possibly (say p) last signals that have been poorly whitened are simply
discarded from the mixture set; only K ′ 6 K (K ′ = K − p) are considered
in what follows and thus K ′ sources shall be estimated; the last p source
signals are simply guessed by setting them equal to the p badly decorraleted
signals. Hence, K ′ sources can recovered in a satisfactory way because
“unreliable signals” have been discarded, but p of them (with hopefully
small p) are really bad estimates;

• Rigid orthogonalization is avoided and the demixing matrix is only pre-
vented to be singular (the minimum allowed angle between two of its rows
is of π/12);

• the computation cost should be minimized as we are dealing with large-
scale problems. Hence the number of criterion evaluations has to be kept
quite small.

• An alternative to gradient-ascent has been recently proposed [Lee, Vrins,
and Verleysen, 2006a]. In this paper, it is proposed to adapt the conver-
gence rate of the algorithm to “how close we are from a point far from the
solution”. Such a point is clearly the “corner” of the scatter plot.

Let us briefly detail the last item. Let u denote the direction of the average
of the m points used in the criterion evaluation before projection on the vector
w. These points are easily found because they are the z-points corresponding
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Figure 4.30. Principle of the proposed algorithm in the 2D case. In those three
examples, vector u points towards sample points (symbolized by the bold black line or
black triangle) that determine the value of ˆLAB(wS). This provides information about
how to update b1: if u 6= b1, then rotate b1 away from u (see text).

to the m output samples involved in the “winner minimum” in Eq. (4.48). Most
of the time, these points are grouped around a corner (this becomes more and
more true for increasing N), but when we are close to a solution, these points
can be spread along a face of the scatter plot (the edge when K = 2) which is
perpendicular to the vector w; see Figure 4.30. The interesting point is that the
criterion reaches a local extremum when w is co-linear with u. Depending on
the case, this local extremum may be a minimum (Fig. 4.30. (a).) or a maximum
(Fig. 4.30. (c).) point.

The cosine between the current vector w and the closets corner u is an element
of how close w is from a point that is far from being a good solution. Except
at the solution point, if the last cosine is large, w can be largely updated but
on the contrary, if the angle between these vectors is large, the update should
be moderate. In other words, the projection of u on a plane orthogonal to w
can be seen as a “pseudo-gradient”, which acts as a gradient (Fig. 4.30.). This
projection is zero when we are at an extremum point (local maximum when w
points to a corner, local minimum when w is perpendicular to an edge of the
density). Note that between two iterations, u can “jump” between two directions
because the closest (i.e. winner) corner may differ, even with a small learning
rate, when we are close to the solution. Another drawback is that like the
gradient, it does not decrease smoothly to zero when approaching the solution;
both can take large values right near a solution point. However, this should
not prevent convergence if the learning rate decreases. Indeed, the optimization
scheme will approach the solution point, when w tends to be perpendicular to
an edge. When we are very close to the solution, u is nearly perpendicular to
the edge, and thus nearly co-linear with w; the pseudo-gradient indicates that
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Figure 4.31. Illustration of step 4.(e) in the algorithm of Table 4.5.

a large update is needed (because we cannot make the difference with the case
of Fig. 4.30. (c).). However, in that situation, the learning rate should be small
(and in any case, will decrease), so that in practice, the update is kept “quite
small”. Observe that similar things could be done by using the gradient even if
the gradient does not exist at the solution point (just like the closest corner point
does not really have a meaning when we are at the solution point). However, the
corner-based approach has a nice advantage: the computation of u is trivially
obtained through the contrast evaluation step.

The detailed algorithm is proposed in pseudo-code in Table 4.5. The main
idea (step 4.(e)) is to update b according to u: if b 6= u, we shall move b away
from u.

Note that in the above algorithm, α is a learning rate, even if used via circular
functions. The idea behind the step 4.(e) is illustrated in Fig. 4.31.

Remark 23 In order to avoid the cumulation of errors, which may have critical
consequences when K is large, it has been explained that a smooth orthogonality
condition might be better than a rigid one. There are two possibilities to imple-
ment this non-rigid orthogonality constraint. In the first one (named “A)”), we
look for a non-orthogonal demixing matrix in RK×K based on a penalized crite-
rion. A second possible way to deal with a non-rigid orthogonalization (named
“B)”) we apply a two-step procedure to extract an i-th source. This procedure
consists in 1) arbitrarily setting the i-th the row of B such that it is not to close
(from an angular point of view) to the previous i−1 rows that already correspond
to the extraction of i−1 distinct sources and 2) based on this first guess, to relax
the row-orthogonality constraint by minimizing LAB(Yi) (the rows of B are thus,
at the end, only constrained to have a unit-norm, just as in A)). Note that in
B), there is a “re-initialization” procedure if bi converges to one of the first i−1
rows of the demixing matrix. The approach A) was sketched in Figure 4.3., but
B) was used in the algorithm of Table 4.5. This is because based on the simula-
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[B,V] = LABICA(X(t))

1. Whiten the mixtures using a singular value decomposition:

(a) Center the sample by removing its mean: X(t)← X(t)− 1
N

ΣN
t=1X(t).

(b) Compute the SVD of the centered sample: XT = USV
T.

(c) Compute Z(t) directly: Z =
√
N UT.

(Depending on the convention, U is either N×K or N×N ; in the latter case, keep
only the K first columns of U.)

2. Discard the p incorrectly whitened mixtures (i.e. rows Zi(t) having a variance lower than
one and/or nonzero covariances).

3. Compute the radial projection of Z on the unit sphere:

Z◦(t) =
Z(t)

‖Z(t)‖
for 1 6 t 6 N .

4. To extract the i-th source, with 1 6 i 6 K − p, do:

(a) Initialize bi to any random direction and the update angle α to π/4.

(b) Check loose orthogonality: if for some j < i the inequality |bib
T
j | < cos(π/12)

holds then make bi orthogonal to all bj : bi ← bi − Σjbib
T
j bj ; bi ← bi

‖bi‖
.

(c) Compute i-th ICA output: Yi(t) = biZ(t) for 1 6 t 6 N .

(d) Estimate the LAB of Yi(t) using mean order statistics:

• Determine the indexes of the m lowest and m highest values of Yi(t).

• Average the two corresponding sets of values to obtain the infimum and
supremum of Yi(t); keep their minimum absolute value as in (4.48) to obtain

ˆLAB(Yi).

• Use the same indexes to compute the direction u as the average of the cor-
responding columns of Z◦.

• If u 6= bi, make u orthogonal to bi and normalize it: u⊥ = u − ubT
i bi;

u⊥
n = u

⊥

‖u⊥‖
, u← u⊥

n .

(e) Update bi and α:

• Compute b′i = cos(α)bi − sin(α)u and ˆLAB(b′iZ) (see step (d) above).

• If ˆLAB(b′iZ) < ˆLAB(Yi), then let α← 1.01α and bi ← b′i, else α← α/1.2.

(f) Go back to step 4(b) if convergence is not attained.

5. Append the p incorrectly whitened mixtures to the extracted sources: ∀i > K −
p, Yi(t)← Zi(t).

Table 4.5. LABICA: ad hoc deflation procedure to minimize ˆLAB. After robust
SVD-based whitening, sources are extracted one-by-one, with a loose orthogonality
constraint preventing error accumulation. The gradient is replaced by
contrast-dependent information: the closest support corner direction.
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tion results shown below, the procedure B) is more efficient than A). We are not
able to find clear arguments for justifying the results of the different approach;
it seems that in practice, in a high-dimensional source space, the penalization
jeopardizes the recovering of the sources so that it is preferable to focus on the
criterion only.

4.4.2.4 Application of LABICA to the MLSP’06 competition benchmark: perfor-
mances analysis

LABICA, the extension of SWICA to sources that are bounded on one side
only, has been tested on a competition benchmark organized in the framework
of the 2006 IEEE Workshop on Machine Learning for Signal Processing. There
were four subproblems to deal with, each of them containing an equiprobable
mixture of source signals drawn from two densities. The first source density was
the uniform density with support set defined in [0, 1] (double-bounded sources),
the second is a kind of sparse density taking values in IR+ (lower-bounded
sources). For more details, see the data analysis competition announcement
in the Appendix A.

In order to assess the quality of the source recovery, the competition resorts
to the Signal-to-Interference Ratio (SIR), which involves the transfer matrix
W = BA and can be defined as follows:

SIR = 10 log10 SPI

=
1

K

K∑

i=1

10 log10

maxj W
2
ij∑K

j=1W
2
ij −maxj W 2

ij

, (4.49)

and expressed in dB. Within the framework of the competition, the SIR is used
in a Monte-Carlo process. The SIR should be higher than 15dB for at least
90% of the runs, i.e. P90 > 15dB, where P90 is the 90-th percentile of the SIR.
Basically, this means that the SIR should be higher than 15dB with a probability
of 90%.

The algorithm performances were analyzed under various angles; four sub-
problems were proposed to test the robustness to high dimensional source space,
small sample set, mixing matrix with low condition number (defined as the ratio
of its largest singular value to the smallest one) and to additive white Gaussian
noise. The behavior of the algorithm was tested in the four cases by finding
the limit conditions such that the success criterion P90 > 15dB holds. More
explicitly, we had to find

1. the largest number K of sources with fixed sample size (N = 5000) and
random mixing matrix,

2. the smallest number N of samples with fixed number of mixtures (K = 50)
and random mixing matrix,

3. the largest number K of sources with fixed sample size (N = 5000) where A
is a Hilbert matrix multiplied by a random Givens matrix (a Hilbert matrix
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Figure 4.32. Results for Subproblem 1: SIR performances vs number of sources K
for 20 Monte-Carlo runs of LABICA and FastICA with 5000 sample points. P90 > 15dB
holds for more than 300 sources.

H ∈ IRK×K is defined element-wise as Hij
.
= (i + j − 1)−1, and becomes

more and more difficult to invert for increasing K as the determinant tends
rapidly to zero),

4. the largest noise variance with K = 50, and N = 1000,

under the condition that the success criterion is met.

• Subproblem 1: Large-scale problem. In this first subproblem, the sample
size is fixed (N = 5000) and the number of sources/mixtures is growing
(K > 50). The algorithm proposed in Table 4.5. solves it for a quite large
number of mixtures. Graphical results in Fig. 4.32. show that outstanding
SIR values are attained for more than 400 mixtures (P90 is still higher than
30dB). Processing so many mixtures obviously requires long computation
time, even with the fastest algorithms (e.g. FastICA), and justifies the
restriction to only 20 Monte-Carlo runs.

• Subproblem 2: Small training set problem. In this second problem, the
number of sources is kept constant (K = 50) but the sample size N varies.
The results are shown in Fig. 4.33. for two algorithms: the proposed one
and FastICA (with ‘gaus’ nonlinearity and fine tuning enabled). As can
be seen, less than 250 sample points are required to achieve a SIR greater
than 15dB in 90% of the cases.

• Subproblem 3: Highly ill-conditioned problem. In this third subproblem, the
mixing matrix is the product of a Hilbert matrix with a random Givens
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Figure 4.33. Results for Subproblem 2: SIR performances vs sample size N for 100
Monte-Carlo runs of LABICA and FastICA with 50 sources. Less than 250 observations
are needed to achieve P90 > 15dB. All the PX curves of FastICA are below the 15dB
threshold line.
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Figure 4.34. Results for Subproblem 3: SIR performances vs the number of sources
K for 100 Monte-Carlo runs of LABICA (m = N/200), FastICA and MyfpICA with 5000
sample points. P90 > 15dB holds up to 14 sources.
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Figure 4.35. Results for Subproblem 4: SIR performances vs the noise standard
deviation, for 100 Monte-Carlo runs of LABICA and FastICA with 5000 sample points
and 50 sources; the corresponding SNR curve is plotted alongside.

matrix. Hence, as the number of mixtures is growing, the separation prob-
lem gets more and more ill-conditioned. The results are shown in Fig. 4.34.
for three algorithms: the proposed one, FastICA (as above) and a ‘hacked’
version of FastICA. The latter, called MyfpICA, works with a SVD-based
whitening stage and a kurtosis-driven nonlinearity (either ‘kurt’ or ‘gaus’
depending on the kurtosis). In this subproblem, achieving a correct whiten-
ing is the main difficulty. The proposed algorithm brings a significant per-
formance gain by using the SVD of the centered sample instead of the
EVD of the sample covariance matrix. However, beyond 10 mixtures in
this problem, the determinant of the mixing matrix A is so close to zero
that no more than 10 mixtures can be whitened properly, even with the
SVD (to understand why, note that with only K = 6, detH ≈ 1E−18). It
has been experimentally observed that additional mixtures after whitening
are actually not white; some of them may be correlated and/or have a
variance lower than one. In this situation, the trick consists in temporarily
discarding these still correlated mixtures after whitening, as proposed in
Section 4.4.2.3, so that the separation algorithm can run in good condi-
tions.

• Subproblem 4: Noisy mixtures problem. The value of estimator ĈLAB(bi)
relies on a few sample points only, namely onm sample points withm� N .
Consequently the proposed approach is expected not to be very robust
against noise and outliers, especially with low values of m. As can be seen
in Fig. 4.35., the quality of the results is rapidly decreasing as the noise
variance is growing.
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4.5 CONCLUSION OF THE CHAPTER

In this chapter, we have proposed order-statistic-based range estimators for min-
imum range BSS approaches. Within the simultaneous ICA framework, Pham
was the first to propose to use order-statistics and, more specifically, to use them
to approximate the range [Pham, 2000]. However, order statistics can also be
used in ICA methods in a different manner, as e.g. to estimate the source pdf/cdf
or score functions. For more details about these approaches, we refer to [Even,
2003, Blanco and Zazo, 2004] and to the references therein. Some properties, ad-
vantages and drawbacks of our range estimator have been discussed, both from
the range estimation and separation performance viewpoint. An important issue
was to develop an ad-hoc optimization procedure for our range-based criterion
because its gradient does not exist on the seeked (solution) points. A simple
algorithm based on Jacobi updates have been proposed. Then, it has been ex-
plained why and how the above method may be customized to separate specific
correlated signals such as images sharing a same template; the corresponding
algorithm was named NOSWICA. Furthermore, the method was extended to
perform on source signals being possibly bounded on one-side only, to yield the
LABICA algorithm. This algorithm was designed to perform on “hard ICA
problems” (involving noisy mixtures with few sample points, generated from ill-
conditioned large mixing matrix and mixtures). Generally speaking, range-based
and absolute bounds-based techniques are expected to suffer from a lack of ro-
bustness in the presence of additive noise on the mixtures; some experiments
have confirmed that drawback. However, the LABICA algorithm was tested
on a competition benchmark: outstanding results were obtained compared to
other well-known algorithms as well as compared to other dedicated techniques
presented in the framework of the related competition. The method is proved
to be highly robust to the dimensionality of the source space, to the condition
number of the mixing matrix and still performs well when few data samples are
available. Improving the robustness to mixture noise remains a challenging issue;
that could be dealt with by using more sophisticated range estimators.

4.6 APPENDIX

4.6.1 Proof of relation (4.52)

The key idea to find pRN (X)(r) is to first compute the joint pdf of the extreme
samples, i.e. gX(1:N),X(N:N)

(u, v). Noting that if the i-th order statistics X(i:N) is
used instead of the i-th largest value of a sample set of size N in the definition
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of RN (X), X(N :N) = RN (X) + X(1:N), we find:

pRN (X)(r) =

∫

u

gX(1:N),X(N:N)
(u, r + u)du , (4.50)

where the range of the above integration is over the possible values of u when r
is fixed (that is such that gX(1:N),X(N:N)

(u, r + u) exists).
Let us now turn to gX(1:N),X(N:N)

(u, v). To this end, observe that the proba-
bility that each of the N (assumed i.i.d.) realizations of X is in (u0, v0) is

N∏

i=1

Pr [u0 6 X 6 v0] = [PX(v0)− PX(u0)]
N

=

[∫ v0

u0

pX(x)dx

]N

. (4.51)

On the other hand, since u0 6 v0, one has

Pr
[
X(1:N) > u0 & X(N :N) 6 v0

]
=

∫ v0

u=u0

∫ v0

v=u

gX(1:N),X(N:N)
(u, v)dudv .

Therefore, we have

−
∫ u0

u=v0

∫ v0

v=u

gX(1:N),X(N:N)
(u, v)dvdu =

[
−
∫ u0

v0

pX(x)dx

]N

.

Remind that u0 and v0 are arbitrary values in Ω(X). Let us first keep v0 fixed
and differentiate w.r.t u0 before doing the opposite, we get, using the standard
differential calculus:

gX(1:N),X(N:N)
(u, v) = N(N − 1)pX(u)pX(v)

[∫ v

u

pX(x)dx

]N−2

.

Finally, since r = v − u, one gets, putting Ω(X) = (a, b):

pRN (X)(r) =

∫

u

gX(1:N),X(N:N)
(u, r + u)du

= N(N − 1)

×
∫ b−r

a

pX(u)pX(u+ r)

[∫ u+r

u

pX(x)dx

]N−2

du. (4.52)

4.6.2 Expectation of the order statistics cdf differences

In this appendix, we show that E[PX(x(N :N)) − PX(x(1:N))] = N−1
N+1 . It is

obviously the case when PX = PU since we have shown that in this case
E[RN (U)] = N−1

N+1 . We show that this result still holds whatever the pdf PX.
Let us first give an original proof of the following (known) result.

Proposition 6 Let X be a r.v. drawn from pdf pX(x) and cdf PX(x). Then,
for i ∈ [1, N − 1] (N > 2) we have E[PX(x(i+m:N)) − PX(x(i:N))] = m

N+1 and
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E[PX(x(N−p+1:N))−PX(x(p:N))] = N−2p+1
N+1 , which does not depend on the pdf of

X.

Proof: Let U(i:N) = PX(X(i:N)) be the random variable corresponding to the
cdf PX(x) value of X evaluated at a point x corresponding to the realization of
X(i:N); this r.v. is uniformly distributed on [0, 1]. By using basic properties of
expectation, we have:

E[U(i+1:N) −U(i:N)] =

∫ 1

0

xpU(i+1:N)
(x)dx−

∫ 1

0

xpU(i:N)
(x)dx . (4.53)

On the other hand, it is known from [Rose and Smith, 2002] that if X is drawn
from the pdf pX(x), then the pdf of the i-th order statistics X(i:N) of X is:

pX(i:N)
(x) =

N !

(i− 1)!(N − i)! [PX(x)]i−1[1− PX(x)]N−ipX(x) . (4.54)

Since here U(i:N) = PX(X(i:N)), then PU(i:N)
(u) = u and pU(i:N)

(u) = 1. Eq.
(4.53) can be rewritten as:

E[U(i+1:N) −U(i:N)] =
N !

i!(N − i− 1)!

∫ 1

0

xi+1(1− x)N−i−1dx

− N !

(i− 1)!(N − i)!

∫ 1

0

xi(1− x)N−idx .(4.55)

Algebraic manipulations lead to

E[U(i+1:N) −U(i:N)] =
1

N + 1

N !

i!(N − i− 1)!

∫ 1

0

xi(1− x)N−i−1dx . (4.56)

Applying iteratively the following formula [Spiegel, 1974]

∫
xm(ax+b)ndx =

xm(ax+ b)n+1

(m+ n+ 1)a
− mb

(m+ n+ 1)a

∫
xm−1(ax+b)ndx (4.57)

shows that the integral in (4.56) equals i!(N−i−1)!
N ! .

On the other hand,

E[PX(x(N−p+1:N))− PX(x(p:N))] =

N−p∑

i=p

E[PX(x(i+1:N))− PX(x(i:N))] , (4.58)

which is equal to N−2p+1
N+1 .

�

Setting p = 1, in the above Proposition, we find again E[PX(x(N :N)) −
PX(x(1:N))] = N−1

N+1 .
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4.6.3 Variance of the order statistics cdf differences

Proposition 7 Let X be a r.v. drawn from pdf pX(x) and cdf PX(x), and
X(i:N) be the i-th order statistics of an N -sampling of U. Then, for i ∈
[1, N − 1] (N > 2) we have Var[PX(X(i+m:N)) − PX(X(i:N))] = m(N+1−m)

(N+2)(N+1)2

and Var[PX(X(N−p+1:N)) − PX(X(p:N))] = 2p(N−2p+1)
(N+2)(N+1)2 , which does not depend

on the pdf of X.

Proof: Similar development as above on the p-th order statistics of a Uniform
variable on [0, 1] leads to

Var[U(i:N)] =
i(N − i+ 1)

(N + 2)(N + 1)2
= Var[U(N−i+1:N)] (4.59)

On the other hand, by using basic variance properties, we have that

Var[X−Y] = Var[X] + Var[Y]− 2Cov[X,Y] . (4.60)

Since we know from [Papadatos, 1999, Szekely and Mori, 1985] that for rect-
angular (and thus uniform) pdf and 1 6 i < j 6 N :

Corr[U(i:N),U(j:N)] =

√
i(N + 1− j)
j(N + 1− i) (4.61)

we obtain

Cov[U(i+m:N),U(i:N)] =
i(N + 1− i−m)

(N + 2)(N + 1)2
. (4.62)

We find

Var[U(i+m:N) −U(i:N)] = Var[U(i+m:N)] + Var[U(i:N)]− 2Cov[U(i+m:N),U(i:N)]

=
m(N + 1−m)

(N + 2)(N + 1)2
. (4.63)

The proposition is proven by using equations (4.60) and (4.63) setting i = p
and m = N − 2p+ 1.

�

Setting i = 1 and m = N − p in Proposition 7 gives

Var
[
(PX(X(N :N))− PX(X(1:N))

]
=

2(N − 1)

(N + 2)(N + 1)2
. (4.64)

The last result is valid for all random variables X.





CHAPTER 5

CONCLUSION

In this thesis, an information-theoretic point of view is adopted for considering
the blind source separation problem. In particular, the notion of “information
measures” was the starting point of a possible generalized class of contrast func-
tions. This unifying view leads us to the Rényi entropies. This is the purpose
of Chapter 1, where some mathematical definitions and concepts are given as
well. In the literature, some (functionals) of these entropies were proved or
conjectured, separately, to be contrast functions for the linear instantaneous
ICA problem and blind deconvolution. We have focused on the simplest mix-
ture model (instantaneous, linear); the underlying motivation for doing that is
twofold: i) it is also the most widely used BSS model and ii) some major issues
have not been investigated even in this simple situation, so far.

We summarize below the main results of this thesis and point out new chal-
lenges and open questions arising from this work.

Summary of results

Chapter 2 aims at dissecting in minute details some of Rényi’s entropy proper-
ties in order to check if deflation, simultaneous or partial contrast functions can
be built from these functionals. A positive answer was already given regarding
e.g. the Shannon entropy when used in a simultaneous approach because in
that case, Shannon’s entropy reduces to mutual information (up to a constant
term) [Comon, 1994]. Also, other criteria are used even if the underlying moti-
vation for using them remained unclear in many cases. Here, additional results

255
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show that in a deflation scheme and under a unit-variance constraint on the
output, exact Shannon’s entropy reaches a local minimum point if the output
is proportional to any of the non-Gaussian source, and (logically) a local maxi-
mum when the outputs correspond to the possible unique Gaussian source; this is
stated in Theorem 11. The partial case was recently addressed in [Pham, 2006b].
Complementary results show that the zero-order Rényi entropy (called Hartley’s
entropy) also yields a contrast function for ICA; the condition about the number
of non-Gaussian sources is replaced by the fact that the sources are supposed to
be bounded, but some normalization constraint on the output must be kept in
order not to converge to the trivial null signal. A very simple modification of this
criterion yields a more appealing functional and therefore, we directly turn to
this so-called “range-based” contrast. The opposite of the log-range can be seen
to be an extended form of Rényi’s entropy where r is set to zero. As for Shan-
non, the extended 0-Rényi entropy reaches a local minimum when the output is
proportional to a source, still under a normalization constraint. This is proved
for the simultaneous, deflation and partial separation schemes in Section 2.3.3,
Theorem 14 and Theorem 16 (combined with Corollary 6), respectively. In addi-
tion, the deflation (partial) contrast function is proved to have a local minimum
point when a (subset of) source(s) is recovered (Theorem 15 and Theorem 16).

On the contrary, it is proved in Section 2.4 that for any other value of the r
Rényi exponent (that is for any r > 0, r 6= 1), some counter-examples can be
found: in the simple K = 2 case involving two sources sharing the same pdf,
the r-Rényi’s entropy does not necessarily have a local minimum when a source
is extracted; the existence of such a local minimum is, however, a necessary
condition to ensure that the opposite of this functional is a contrast function,
under the normalization constraint. The exponential family suffices to emphasize
this drawback. This observation allows us to partially answer an important
question in the field of information theory about the possible superadditivity
of Rényi’s entropy power; this is formally stated in Corollary 11. The popular
quadratic entropy, which has been proposed several times as an ICA contrast
function based on experimental results (see [Hild et al., 2001, Erdogmus et al.,
2002a, Hild et al., 2006b]) is not, unfortunately an exception to this result. In
spite of the literature in the area (see [Bercher and Vignat, 2002, Erdogmus et al.,
2002b, 2004]), it is explained here why using Rényi’s entropy is not a good idea
for blind deconvolution, too.

Another problem is then tackled; the problem of spurious local optima of
entropy-based contrast functions. Indeed, we cannot conclude from the above
results that there is an equivalence between the set of local maximizers of a
contrast and the set of corresponding non-mixing matrices. Therefore, we have
no guarantee that mixing maximum points do not exist: adaptive optimization
algorithms could be stuck in such spurious solution. This problem is known to
occur when Shannon’s entropy is used; this has been pointed out via simulation
results by various researchers [Cardoso, 2000, Learned-Miller and Fisher III,
2003, Vrins and Verleysen, 2005b, Boscolo et al., 2004]. Surprisingly however,
neither convincing explanations nor theoretical proofs of that fact were proposed.
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Therefore, this issue is addressed in Chapter 3. The analysis is restricted to
Shannon, Hartley and extended Hartley entropies and all other entropies are
ruled out, as they have been proved to be the only Rényi entropies from which,
generally speaking, contrast functions can be built. Among this restricted class,
only the extended Hartley entropy yields a contrast that is proved not to have
a local maximum when the output is not proportional to one of the (assumed
bounded) sources. This kind of contrast functions, that has a local maximum
point if and only if the outputs are proportional to distinct sources, is qualified
of “discriminant” contrast function. The range-based contrast is proved to be
discriminant whatever the extraction scheme, even without prewhitening and
over the whole space of square matrices of same size as the source space (even
though not over Jacobi trajectories, as shown by the counter example provided
in Section 3.4.5, found via a preliminary theoretical study). To our knowledge,
this is the first result of this kind. The discriminacy of the deflation contrast is
established in Section 3.4.2 using a small variation approach, a geodesic convexity
viewpoint or yet a second order analysis of the stationary point of the criterion.
The corresponding results for the simultaneous and partial contrasts are given
in Corollary 16 and Corollary 18, respectively. In these approaches, careful
precautions are been taken because the contrast function is not differentiable
everywhere.

Conversely, Shannon’s and (regular) Hartley’s entropies do not benefit from
this interesting discriminacy property. Counter-examples are given for Shannon
and regular Hartley entropies involving multimodal source densities. Why mul-
timodal ? This question is addressed too, both from intuitive (Section 3.2.1)
and formal (Section 3.2.2 and Section 3.2.3) points of view. These counter-
examples are chosen according to theoretical and intuitive results. Hence, the
range-based contrast is the only one in the generalized entropies family to be
discriminant. However, another discriminant contrast function exists (in a de-
flation scheme [Delfosse and Loubaton, 1995] or, with K = 2, in simultaneous
separation framework [Murillo-Fuentes and Gonzalez-Serrano, 2004]), based on
the kurtosis. But, just like the range, it is proved to focus on the tails of the
densities (this is obvious for the range, and intuitively explained in Section 3.2.4
for the cumulant-based contrast), contrarily to the non-zero Rényi’s entropies
that are sensitive to the whole structure of the output densities. Note how-
ever that in these existing methods, a prewhitening is required and the search
space is restricted to the space of orthogonal demixing matrices, contrarily to
the range-based approach.

Due to the appealing properties of the range-based contrast, the range de-
served to be analyzed under other viewpoints than the purely theoretical aspects.
This is the goal of Chapter 4. In particular, various geometric interpretations
are provided and the practical estimation of the range is studied in the specific
framework of ICA. This leads to a simple but efficient deflation source separa-
tion algorithm (ICAforNDC and SWICA). A simple range estimator is proposed,
which matches the ICA requirements in the sense that it is easy to evaluate and
rather robust to a variation of the pdf shape; this is a critical point in BSS.
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This estimator is analyzed under various viewpoints, but the underlying source
separation application was always kept in mind. The good separation perfor-
mance of this algorithm illustrates the efficiency and reliability of the method.
Finally, another extension is proposed to deal with the non-orthogonal case,
that is to work even without prewhitening (NOSWICA). It has been explained
however that prewhitening might be useful in order to simplify the recovering
of the sources (better conditioning of the mixtures). But this does not imply
that the search space must be restricted to the set of orthogonal matrices. In-
deed, even if theoretically speaking, the set of satisfactory demixing matrices
belongs to the set of orthogonal matrices if a prewhitening step is performed
(and actually, one can even freely assume that the demixing matrix is a special
orthogonal matrix), a rigid orthogonalization constraint is not always desirable;
it may lead to a cumulation of errors (which is a well-known weakness of or-
thogonal deflation approaches) and consequently to a sub-optimal solution if
the sample-based prewhitening step is not perfectly achieved. Moreover, the
relaxation of the rigid orthogonality constraint may have other advantages; in
particular, a non-orthogonal version of the above algorithm is proved to succeed
well on the separation of correlated images if some conditions are met regarding
the type of source correlation. The advantages and limitations of the method
are emphasized, too. Finally, an extension of the minimum-range based tech-
nique to sources that are bounded on one side only is suggested and tested on an
IEEE competition benchmark. Our method outperforms the most popular ICA
algorithms as well as those (tailored for this benchmark) that were submitted to
the competition.

Forthcoming challenges and open questions

Even if this thesis gives (hopefully) elements of answer to some (hopefully again)
interesting issues that remained unsolved, it also raises new questions. Those
that seem the most challenging ones to us are listed below:

• The connection between class II strict additivity and the contrast function
and discriminacy has been established (see Theorem 24). The r-th root
of the r-th cumulant is class II r-subadditive (while the cumulants are
strictly additive but not class II) [Pham, 2001b]. But since all the r-th
order cumulants (r > 3) yield contrast functions [Comon, 1994], and in
particular, the kurtosis yields a discriminant contrast function [Delfosse
and Loubaton, 1995] (after a positive mapping like absolute value or an
even power), just like the range does, are there fundamental connections
between the strict additivity of the basis functional of the contrast function,
a form of r-sub/sup additivity and the discriminacy properties? Is the
discriminacy property of the r-th cumulant-based criteria preserved for
other values of r ?

• In Chapter 3, sufficient conditions (basically: strong multimodality) en-
suring that spurious Shannon entropy local minima exist have been given.
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They might not be necessary, though. Only the emerged part of the ice-
berg might have been pointed out. Specifically, the mutlimodal nature of
the source densities may be unnecessary to induce spurious local optima
even if, once again, all the theoretical and experimental results showing
the existence of such spurious optima involved several multimodal source
densities, so far. Hence, a analysis similar to the one proposed here ex-
tended to unimodal densities would be informative. In other words, is it
possible to fill the gap between [Boscolo and Roychowdhury, 2003] (which
proves that when mixtures of two “sufficiently Gaussian” and symmetric
sources are considered, the local minimum of output mutual information
with respect to the mixing angle is unique) and the results of Chapter 3?
If yes, how?

• This work addresses the characterization of the local optima of theoretical
functionals. In practice however, one works with approximated versions
of these quantities. Therefore, it would be interesting to analyze directly
these empirical criteria. Note that this has been done by Hÿvarinen to
analyze the non-mixing maxima of some approximations of the negen-
tropy [Hyvärinen, 1997, Comon, 1994]. In spite of our theoretical results,
it is not surprising that illustrating the failure of some related algorithms
(caused by spurious optima) is not an easy task; indeed, the plugged ne-
gentropy approximations are so strong that they may yield paradoxically
to discriminant contrast functions ! Indeed, the squared kurtosis is one
of these negentropy approximations [Hyvärinen et al., 2001] in the case of
symmetric sources, and is well-known to lead to discriminant contrasts.

• Generally speaking, Rényi’s entropies are not contrast functions if no ad-
ditional conditions are met. For example, Shannon’s entropy requires that
at most one source has a Gaussian density (as usual when the source in-
dependence assumption is exploited); Hartley’s entropy assumes that the
sources are bounded, such that their support measures are finite. We have
shown that in general, the opposite of Rényi’s entropy with other values
of the Rényi exponent is not a contrast function, because simple examples
of sources densities are found to meet a necessary condition implying this
non-contrast behavior. A further (but more complicated) step would con-
sist in specifying a subset of source densities for which Rényi’s entropy is a
contrast function for a given value of r. In other words, what are the nec-
essary and sufficient conditions on the source densities ensuring that the
r-Rényi entropy is a contrast function? However, this would make sense
only if one can guess if these conditions are met based on the mixture sam-
ples only so that choosing a right value for r is possible; is that feasible?
If no, then this would mean that the use of Rényi entropy for BSS should
be definitively dismissed.

• A more philosophical question that would deserve to be addressed concerns
intuitive justifications explaining why Shannon and Hartley entropies are
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suitable functionals from the viewpoint of BSS, that is from the viewpoint
of “complexity measure” as defined in this thesis. Some specificities of these
entropies compared to the other Rényi entropies have been given in the
literature [Aczel et al., 1974, Aczel and Daroczy, 1975, Knuth, 2005, Rényi,
1976b]. This is not the panacea however, as the connections between these
results (that deal with discrete random processes only) and the fact that
they lead to contrast function remains vague. Performing some research in
that field might yield to a better understanding of contrast functions and
to new separation criteria.

• Our results seem to scrap the intuition. Indeed, on the one hand it is
known that a very rough estimator of Shannon’s entropy (the kurtosis)
has no mixing maximum point (at least in the deflation scheme and un-
der pre-whitening). On the other hand, it is proved here that when using
the exact entropy-based criteria, spurious maximum points may exist in
the corresponding contrast functions (and that a spurious solution may be
found when gradient-ascent techniques are used, involving the exact or,
by extension, well-approximated source score functions). Therefore, it is
tempting to advise to prefer rough estimates of the entropy gradient than
a precise one. However, other recent results indicate that the efficiency
of (a variant of) the FastICA algorithm attains the Cramér-Rao bound
if, briefly, the true score functions are the non-linearities plugged in Fas-
tICA [Koldovsky et al., 2006, Tichavsky et al., 2006]. Therefore, if precise
results are needed, our advise is to use a two steps procedure which consists
in 1) running a first ICA algorithm, maximizing a discriminant contrast
function (i.e. possibly a rough entropy estimator) to be close to a good
(non-mixing) solution, and afterwards 2) running a second ICA algorithm
involving efficient estimates of true score functions (see e.g. [Pham, 2003]
for score function estimation), in which the result of 1) is used as a good
initial point. Is the computational time drawback of this procedure com-
pensated by significantly better results ? Is it possible to merge these two
steps to have a discriminant and simultaneously efficient algorithm ?

• How dos our results generalize to other mixing schemes such as convolu-
tive filtering? Some preliminary experimental results (not provided here
for conciseness) show that the range criterion can be used to perform blind
deconvolution (more precisely, for some mixing filters, we have been able
to blindly invert them based on the minimum range approach). But are
there other assumptions to ensure that it is a contrast function for blind
deconvolution? What about the local optima problem and the discrimi-
nacy property in this case? We expect that local optima may exist, as
Torkkola showed that when delays exist between the sources, numerous
local attractors appear [Torkkola, 1996].

• Chapter 4 addresses the practical aspects of range-based source separation.
In spite of its nice performance in terms of API, the convergence rate



261

should be improved, as well as the robustness to noise. Therefore, we
think that some research should be done in this field. Alper Erdogan
has recently proposed an alternative based on sub-differentials [Erdogan,
2006], but other solutions might be proposed. For instance, the g-convexity
could be exploited (leading to possible g-convex optimization techniques)
and other range estimators could be investigated more deeply. Similarly,
other algorithms than Jacobi-like methods should be developed, as such
optimization techniques may be stuck into spurious solutions due to the
limited number of feasible trajectories.
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APPENDIX A

ANNOUNCEMENT OF THE IEEE MLSP

2006 DATA ANALYSIS COMPETITION

Large Scale, Ill-Conditioned Independent Component Analysis With Limited
Number Of Samples

organizers: Andrzej Cichocki & Deniz Erdogmus.1

We assume the standard linear model described in matrix form as: X = AS,
where X is the K × N matrix representing K observations for N consecutive
time instants, A is an K × K nonsingular mixing matrix and S is an K × N
matrix representing sources; K is the number of sources (equal to the number
of sensors) and N is the number of available samples.

It is assumed that only the matrix X is available, while the matrices A and S

are unknown and should be estimated. The objective of this problem is to inves-
tigate the effect of increasing dimensionality n, decreasing number of samples T,
increasing ill-conditioning of the mixing matrix A and/or increasing the level of
additive noise in the sensor level for performance and reliability of independent
component analysis algorithms.

The original non-negative source signals are to be generated in MATLAB as
follows:

for k = 1 : K :

if rand 6 0.5,S(k, :) = rand(1, N);%(sub-Gaussian)

else S(k, :) = − log(rand(1, N)).∗max(0, sign(rand(K,N)−0.5)); %(super-
Gaussian)

end

1Some symbol definitions have been modified in order to match the convention of the present
thesis.
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end
The mixing matrices are to be generated in MATLAB as follows: A =

rand(K)− 0.5;
The performance is measured using the average signal-to-interference mea-

sure (SIR) which is calculated in MATLAB using: W = BA; SIR = mean(10 ∗
log10(max(W.2, [], 2)./(sum(W.∗W, 2)−max(W.2, [], 2)))); where B is the sepa-
ration matrix such that Y = BX, where Y is the matrix of separated components.

The problem consists of four sub-problems. Performance of the competing
algorithms MUST be provided for ALL four sub-problems. The algorithms need
not be new propositions, however, in the case of a tie, novel approaches will be
announced as the winner.

1. Large scale problem Determine the largest mixture dimension K for which
the algorithm achieves an SIR greater than 15dB using N = 5000 samples.
The experiment must be conducted using Monte Carlo runs where for each
run the sources and the mixing matrix are generated randomly as described
above. The SIR > 15dB condition must be satisfied in 90% of the Monte
Carlo runs for a particular value of K. Results should be presented in a
figure that shows the following curves: SIR10% vs K, SIR50% vs K, and
SIR90% vs K. In general SIRP % is the maximum real number such that
P% of the Monte Carlo SIR values for a particular K are greater than this
number. Note that SIR90% vs K should be that last curve to cross over
the desired 15dB threshold as n increases.2

2. Small training set problem Determine the smallest number of samples N
for which the algorithm achieves an SIR greater than 15dB for K = 50.
The experiment must be conducted using Monte Carlo runs where for each
run the sources and the mixing matrix are generated randomly as described
above. The SIR > 15dB condition must be satisfied in 90% of the Monte
Carlo runs for a particular value of N . Results should be presented in a
figure that shows the following curves: SIR10% vs N , SIR50% vs N , and
SIR90% vs N . SIRP % is described similar to sub-problem 1.

3. Highly ill-conditioned problem

Determine the highest dimension K for which the algorithm achieves an
SIR greater than 15dB for N = 5000. The experiment must be conducted
using Monte Carlo runs where for each run the sources are generated ran-
domly as described above. Only in this sub-problem, the increasingly ill-
conditioned mixing matrix is generated randomly as A = RHRT where
H = hilb(K) is the Hilbert matrix as generated in MATLAB and R is a
random rotation matrix generated as shown below:

ind = randperm(K); theta = 2 ∗ pi ∗ rand; i = ind(1); j = ind(2);

2There was a mistake here as SIR90% is the first curve to cross the threshold.
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R = eye(K); R(i, i) = cos(theta); R(j, j) = R(i, i); R(i, j) =
sin(theta); R(j, i) = −R(i, j);

The SIR > 15dB condition must be satisfied in 90% of the Monte Carlo
runs for a particular value of K. Results should be presented in a figure
that shows the following curves: SIR10% vs K, SIR50% vs K, and SIR90%
vs K.

4. Noisy mixture problem

Suppose that X = AS + N, where N is an K × N matrix representing
additive spatially white Gaussian distributed noise. Determine the lowest
SNR for which the algorithm achieves an SIR greater than 15dB forK = 50
and N = 5000. SNR is defined as the ratio of the average mixture power
mean(E[X2

i ]), where the mean is over mixture channels, to the noise power
σ2, converted to dB using 10log10(mean(E[X2

i ])/σ
2). The experiment must

be conducted using Monte Carlo runs where for each run the sources and
the mixing matrix are generated randomly as described above. The SIR >
15dB condition must be satisfied in 90% of the Monte Carlo runs for a
particular value of SNR. Results should be presented in a figure that shows
the following curves: SIR10% vs SNR, SIR50% vs SNR, and SIR90% vs
SNR. Notice that this measure does not consider the noise corruption levels
at the separated outputs, rather it is only concerned with the performance
of the (inverse) model estimation.

Remarks:

1. Sources are non-negative so alternative methods to ICA such as NMF (Non-
negative Matrix Factorization) or ICA with non-negativity constraints can
be also implemented and tested. The source distributions are assumed to
be unknown, therefore, preset fine-tuning that matches the source distri-
butions for optimal performance is not allowed.

2. The proposed algorithms should solve any sub-problem in reasonable com-
putation time, say, in a few minutes on a typical PC (so that Monte Carlo
runs can be run by the organizing committee using submitted Matlab codes
if necessary).

3. Report the results in a document (*.doc or *.pdf), where a brief description
of the algorithm and appropriate references, as well as experimental results
demonstrating performance on the sub-problems are included. In your sub-
mission, please also include a self-contained Matlab script of your code that
is in ready-to-run condition to replicate the Monte Carlo results/figures to
facilitate the replication of results if required.

4. Regarding the performance index, the user can additionally use the recently
provided Matlab package “BSS-EVAL”, which is a MATLAB toolbox to
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compute reliably performance measures in (blind) source separation within
an evaluation framework where the original sources are available as ground
truth. Download page: http : //www.irisa.fr/metiss/bsseval/.

5. Upon request, Matlab function to generate the random mixing matrix for
subproblem 3 is as follows (it Generates an K ×K random mixing matrix
A that has the same eigenvalues as an K ×K Hilbert matrix):

functionA = generateA(K)

H = hilb(K); ind = randperm(K); theta = 2 ∗ pi ∗ rand; i = ind(1);
j = ind(2);

R = eye(K); R(i, i) = cos(theta); R(j, j) = R(i, i); R(i, j) =
sin(theta); R(j, i) = −R(i, j);

A = RHRT.
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