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ABSTRACT

In the recent years, Independent Component Analysis (ICA) has become a
fundamental tool in adaptive signal and data processing, especially in the field of
Blind Source Separation (BSS). Even though there exist some methods for which
an algebraic solution to the ICA problem may be found, other iterative methods
are very popular. Among them is the class of information-theoretic approaches,
laying on entropies. The associated objective functions are maximized based
on optimization schemes, and on gradient-ascent techniques in particular. Two
major issues in this field are the following: 1) Does the global maximum point
of these entropic objectives correspond to a satisfactory solution of BSS 7 and
2) as gradient techniques are used, optimization algorithms look in fact for local
maximum points, so what about the meaning of these local optima from the BSS
problem point of view?

Even though there are some partial answers to these questions in the liter-
ature, most of them are based on simulations and conjectures; formal develop-
ments are often lacking. This thesis aims at filling this lack as well as providing
intuitive justifications, too. We focus the analysis on Rényi’s entropy-based con-
trast functions. Our results show that, generally speaking, Rényi’s entropy is
not a suitable contrast function for BSS, even though we recover the well-known
results saying that Shannon’s entropy-based objectives are contrast functions.
We also show that the range-based contrast functions can be built under some
conditions on the sources.

The BSS problem is stated in the first chapter, and viewed under the informa-
tion (theory) angle. The two next chapters address specifically the above ques-
tions. Finally, the last chapter deals with range-based ICA, the only “entropy-
based contrast” which, based on the enclosed results, is also a discriminant con-
trast function, in the sense that it is theoretically free of spurious local optima.
Geometrical interpretations and surprising examples are given. The interest of
this approach is confirmed by testing the algorithm on the MLSP 2006 data
analysis competition benchmark; the proposed method outperforms the previ-
ously obtained results on large-scale and noisy mixture samples obtained through
ill-conditioned mixing matrices.
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INTRODUCTION

The XX-th century has been marked by the born of a new area in mathe-
matical science: communication. Its main contributor is certainly, up to now,
its inventor: Claude E. Shannon. Since 1948 Shannon’s seminal paper entitled
“A mathematical theory of communication”, statistical signal processing has re-
vealed to be an unmissable tool in the electrical engineering community. In his
paper, Shannon has suggested to model the communication problems by stochas-
tic processes. He was the first to ask (and answer) the following question: “Can
we define a quantity which will measure, in some sense, how much informa-
tion is contained in a message that has been emitted by a so-called information
source?”. He showed that the entropy function, a concept due to Boltzmann and
already widely used in physics, fulfills the above requirement.

Nowadays, this quantity plays a fundamental role in, among others, physical
chemistry, physics, mechanics, cosmology and obviously, signal processing. A
considerable and unexpected power of the entropy is its intuitive interpretation:
it tells us about the randomness of a process, it is the key point of the second law
of thermodynamics and, even more surprisingly, it is the more common way to
define the direction of time! [see Greene, 2005, Reinchenbach, 1984, Gell-Mann
and Hartle, 1996]

Shannon has modeled communication systems as information sources (phys-
ical entities) that are sending a given message (e.g. an audible sound with a
specific meaning). The latter is converted in a signal (most often an acoustic or
electrical signal) via a transmitter (e.g. a microphone), and sent to a receiver
via a propagation medium (electric wire, air, ...). The received message might
be contaminated by some additional noise. The signal is then converted by the
receiver (a.o. loudspeakers) to a message (again an audible sound), which should
be ideally very close to the original message sent by the source. Finally, the mes-
sage is forwarded to a destination, a second physical entity to which the original
message had to be sent.

Nowadays, the world is full of emitters and receivers, between which signals
are transmitted and, unfortunately, interferences are observed. This tendency to
spread sensors around us should continue to increase, as recently pointed out by
Martin Vetterli in the plenary talk Distributed signal processing for sensor net-
works given at EUSIPCO 2006 (such a popular kind of sensors are the Berkeley

xxiii



xXiv INTRODUCTION

motes). Therefore, an extension of the “one-to-one” Shannon’s communication
model, including several physical entities that are communicating simultaneously
in a common medium at same time, is needed. This specific area of signal pro-
cessing considers the additional problem that each receiver records a mixture
of the original messages; the channel “perturbations” are related to each other.
Assuming a specific propagation model for the messages, we would like to know
if it is possible to recover the original information that has been sent by the
individual emitters knowing the recordings that have been collected by the sen-
sors. Clearly this is possible when “source coding” can be managed (think about
radio-emission, mobile phones, etc). For example, you can select a specific ra-
diophonic program if the emission bandwidths of the radio stations are different
by using frequency or amplitude modulation/demodulation and filtering. But
this is not always possible.

For instance, the problem that consists in separating acoustic speech signals
or astrophysical signals does not enter this framework as we have no way to
adapt the source coding; we have no way to access (and thus code) the source
signals. They have to be processed directly, as they are sent in the medium by
the physical sources. This problem, called “source separation”, is a critical issue.
When no (actually, very weak) information is known about the sources and/or
the propagation medium, the problem is refer to as Blind Source Separation
problem (BSS); the separation is based on the signals collected at the receivers
only. This often occurs in biomedical applications.

BSS seems to be untractable: how can we recover source signals without
knowing them neither the mixing system? This is possible for the human being:
even if some people are simultaneously speaking in the same room, we can un-
derstand what a specific person is saying without knowing in advance anything
about the speaker or his message, or knowing the mathematical description of
the message propagation through the ambient medium. But we can exploit ad-
ditional information which is not available to a machine. For example, assume
that the four source signals, shown in the left of Fig. I.1., are waveforms of sound
signals linearly mixed to produce the mixture signals plotted in the middle of
the figure. We assume that neither the mixing coeflicients nor the source signals
are known; only the mixtures are available.

If one listens to the four mixed sound signals one shall probably recognize
at the end that each of them is a mixture of the first notes of the James Bond
“Goldeneye” theme, the “Ketchup song”, the sentence pronounced by a female
“si vous comprenez cette phrase, votre algorithme de separation fonctionne cor-
rectement” (said twice) and a noisy sound. Transcribing each of these signals is
another thing but, still, one can make some use of the information emitted by
these sources as they can be “separated”. For the computer, however, none of
these signals has a specific meaning: they are nothing but electrical signals. Con-
sequently, will a sufficiently intelligent machine be able to separate them, too?
The answer is yes: according to 1994 Comon’s paper “Independent Component
Analysis, A New Concept?”, the source messages can be recovered under mild
assumptions by globally maximizing a so-called contrast function. More con-
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Figure I.1. Blind processing of mixed signals (middle), which are linear mixtures
of source signals (left) produces estimated sources (right) by estimating the demixing
system.

cretely, maximizing a suitable contrast function based on the signals shown in
the middle of Figure I.1. yields the demixing coefficients: the estimated sources,
whose temporal waveform are shown in the right of Figure I.1. resemble the
waveforms of the original “soundtracks”, possibly up to a permutation.

The above considerations briefly specify the context of this thesis, which deals
with these two exciting areas of electrical engineering: the use of entropy (and
its generalized form due to Alfred Rényi) in the framework of blind source sep-
aration. More specifically, we shall analyze the contrast properties of entropy-
related criteria: are they all contrast functions? How “suitable” are there from
the optimization point of view?

In order to fix the framework, Chapter 1 presents BSS and its relationship to
Independent Component Analysis. Entropy, which is nothing but a measure of
information, is shown to be a promising criterion for BSS. Based on the defined
concepts, the issue of the thesis can then be more clearly stated.

In Chapter 2, the critical points of entropies are studied in the BSS con-
text, and some tools for building contrast functions from this concept are given.
In addition to the state-of-the-art, some additional results due to Dinh-Tuan
Pham are provided regarding Shannon’s entropy based on a Taylor’s develop-
ment. Next, the support (or range) function is proved to be a contrast based
on the Brunn-Minkowski inequality, a similar form of Entropy Power Inequality,
a well-known theorem regarding Shannon’s entropy. These two approaches are
seen to be particular cases of Rényi’s entropy. It is then natural to try to develop
a more general theory that would unify all the approaches based on Rényi’s en-
tropy. Unfortunately, we conclude that generally speaking, some conditions that
are difficult to check have to be met when general Rényi’s entropy is used in the
BSS context (without restriction on the value of Rényi’s exponent).

However, a major problem remains in the related literature, even if a very
simple model is assumed for the propagation medium: “how can we find the
global maximizer of a function?” When algebraic methods corresponding to the
criteria are available, the problem can be easily managed, but unfortunately,
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this is not the case in the BSS applications when “exact” entropy-based contrast
functions are used. Then, some optimization algorithms (like gradient-ascent
techniques) have been proposed for adaptively locally maximizing the contrast,
without guarantee that the local mazimum found will be the global (secked) one.
The problem would be much easier to solve (and actually vanishes) if the local
maxima of the contrast function are all global ones (each corresponding to the
separation of the original sources), or if all the local maxima of the contrast
correspond to a satisfactory solution of the BSS problem ! This so-called dis-
criminacy property would be very useful; it would give confidence in the results
returned by the optimization algorithm. This ideal possible behavior was the
guideline and motivation of Nathalie Delfosse and Philippe Loubaton in 1995
detailed in their key paper “Adaptive Blind Separation of Sources: A Deflation
Approach”. In this work, a kurtosis-based contrast function is proved to benefit
from this nice advantage, when the sources are extracted iteratively, one by one.

One of the main topics of this thesis is to tackle the lack of knowledge on the
BSS entropic contrasts; this is done in Chapter 3. It is proved that in specific
situations, the entopic contrast might suffer from the existence of spurious local
maxima, in which the optimization algorithm may be stuck. A same conclusion
is drawn regarding the minimum support approach. Then, a slight variant is
proposed, the minimum range approach, which benefits from the discriminacy
property whatever the extraction scheme, that is even if the signals are not esti-
mated sequentially like in the Delfosse & Loubaton method. This result deserves
to be emphasized because of its uniqueness; to our knowledge, this contrast is the
only one used in simultaneous separation for which the discriminacy property
has been established, up to now.

Therefore, Chapter 4 logically focuses on that criterion. A geometric inter-
pretation is given and the practical problems related to range estimation are
discussed. This method also proves efficient to separate correlated signals (such
as images with common shape: human face pictures, landscapes, etc.) by slightly
modifying the optimization algorithm in order to relax the rigid orthogonaliza-
tion constraint. Finally, the minimum range method, which applies only to
double-bounded signals (with finite range) is extended to signals bounded on
one side only. This method proves to perform well on the “IEEE MLSP 2006
data analysis competition” data set; this is detailed in the last section of the
thesis.



CHAPTER 1

BLIND SOURCE SEPARATION AND ITS
RELATIONSHIP TO INDEPENDENT
COMPONENT ANALYSIS AND
INFORMATION MEASURES

Abstract. This chapter aims at giving the context of the work as well
as defining mathematical and conceptual notions needed in the sequel. It is
also explained why the concept of independence measure is not the panacea to
solve the BSS problem even when the sources are independent, and that it is of
interest to sketch this problem in the context of information theory. From this
viewpoint, entropy-based approaches are unified using Rényi entropies: they are
all information measures. The issues of this thesis are then clarified.

Contribution. We define the concepts of “non-mixing matrices” and
“(sub)PD-equivalency”, that have relationship and are closely linked to the BSS
problem. The contrast function definition due to Comon in 1994 is extended
to define simultaneous, deflation and partial contrast functions; they can be
plugged into simultaneous, deflation and partial separation schemes, respectively.
We propose an information-theoretic approach to ICA, based on the concept of
“information measures” due to Hartley. This extends the usual minimum output-
dependence approach, which is shown to be meaningful for BSS in a simultaneous
separation scheme only. This viewpoint suggests that the general class of Rényi
entropies would deserve to be further analyzed for BSS (they are widely used, but
the underlying motivation remains subjective and misunderstood). We explain
why the central limit theorem is a good intuitive approach, though not a formal
proof for justifying the use of Shannon’s entropy. Rather, information-theoretic
inequalities such as the entropy power inequality (first conjectured by Shannon
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in 1948, and latter formally proved by Stam in 1959) is used to that aim. An
extended form of Rényi’s entropy is also proposed to further include the range
approach in the class of informative criteria.

Part of the work presented in this chapter was published in JP1 (see Ap-
pendix B).

Organization of the chapter. In the first section of this chapter, the Blind
Source Separation (BSS) task will first be sketched as well as the mathematical
model and corresponding assumptions. Section 1.2 introduces the well-known
method of Independent Component Analysis (ICA); based on Comon’s identifia-
bility Theorem, connections between BSS and ICA are emphasized. Section 1.3
gives a non-exhaustive list of examples of independence measures that are/could
be used in ICA. In spite of the relationships between BSS and ICA, they can-
not be seen to be rigorously equivalent problems even under the assumption of
independent sources, especially when deflation or partial separation schemes are
considered. Therefore, Section 1.4 presents the three possible extraction schemes
as well as a corresponding general formulation in terms of the optimization of
a so-called contrast function. The dimension of the definition domain of these
functions (i.e. of the search space) can be reduced thanks to the so-called whiten-
ing preprocessing, where the parameter space is the group of (semi-)orthogonal
matrices or the set of orthonormal vectors, and the corresponding contrasts are
named orthogonal contrasts; this is presented in Section 1.5. Section 1.6 reminds
gradient-ascent rules designed for the extractions schemes of the contrasts, as of-
ten, algebraic techniques are not available for the maximization of the contrast
functions. Even if the source independence assumption is still needed, Section 1.7
proposes a different way to consider the BSS problem than the usual ICA. Rather
than the output dependence, the output “complexity” is minimized, where the
complexity measure can be seen interestingly to be linked to information mea-
sure. Finally, Section 1.8 introduces the objectives of this thesis, which is mainly
the analysis of the contrast properties of the class of Rényi’s information mea-
sures.

1.1 SOURCE SEPARATION: MOTIVATION AND MODELS

One of the main reasons for justifying the impressive development of BSS-related
techniques is the wide range of applications. Let us consider the BSS problem
as first sketched in the introduction: the aim is to recover source signals from
mixtures of them. This problem is often illustrated by the so-called cocktail party
problem. Assume that K persons are simultaneously speaking in a room, as it
often occurs in a cocktail party, where in several smaller groups of persons, one
person is speaking. Assume further that a sufficient number of microphones, say
N, are located at different places in the room. Obviously, each microphone does
not record an individual speech, but rather a kind of superimposition of the sound
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messages; the recording depends on the location of the microphones. The BSS
task is to find a suitable method that would process the microphone recordings
and give, as output, the original speeches. The cocktail party problem is often
used as an illustrative and comprehensive application of the BSS. However, many
other real-world applications can be modelled as a BSS problem. Here is a non-
exhaustive list (some references can be found in [Hyvérinen et al., 2001, Cichoki
and Amari, 2002, Pham and Jutten, 2003, Antoniadis et al., 2001])

e Audio processing
e Power plants monitoring
e Seismic and astrophysical signals analysis

e Denoising

Biomedical signal analysis
e Image processing

All the above applications share the same model: K sources Si(t),...,Sk(t),
emitted by a physical entity, have to be recovered via N mixtures of them, say
Xi(t),...,Xn(t); these signals are random variables (¢ is implicitly assumed to
be discrete). The resulting mixtures obviously depend on the original sources,
their respective location compared to the microphones, the propagation medium,
and the characteristics of the sensors. Such a model can be written in a quite
simple way.

Denote, at time ¢, the sources vector by S(t) = [S1(¢),...,Sk(t)]T, the record-
ings by X(t) = [X1(t),..., Xy (t)]T. They are linked by the following relation:

X(t) :]-'((S(t),S(t— 1),...),t) : (1.1)

where F(-,t) denotes the mixing system at time t. With these notations, we can
sketch a first definition of the general BSS task.

Definition 1 (General BSS) Assuming that a vector X(t) of N mixtures is
known and that X(t) = F(S(t),t), where F(-,t) is the unknown mizing system at
time t and S(t) is a vector of K source signals, the BSS task is to blindly find a
demizing system G(-,t) such that

S(t) = G(X(t), 1) . (1.2)

The usual approach of classical signal processing would be to model the mix-
ing system F(.,t) by using the physical specificities of the propagation medium
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and of the sensors and then, to invert this system. However, this is a tedious
task, since it requires to have a lot of information on both the mixture scheme
and the sensor specificities, which is often lacking (just think about biomedical
applications).

Rigourously speaking, BSS should refer to the problem of separating the
sources whatever they are and whatever the mixture scheme. Unfortunately,
this is not possible in practice: some assumptions have to be made. Conse-
quently, a new challenge consists in making some assumptions on the mixing
system, and then trying to estimate the parameters of this model according to
the estimation theory, i.e. by using e.g. maximum likelihood techniques. We fix
a specific model for the demixing system G(:|©,¢) where © denotes the (set of)
parameter(s) involved in the model, belonging to some parameter space 7, i.e.
we assume that G has a specific form, and that there exists a (set of ) parameter(s)
©* € T such that G(-|©*,t) = F~1(-,¢t).

In the BSS community, the acronym blind has thus a specific meaning: im-
plicitly, mild assumptions are made. Several assumptions on the pair [mixture
scheme, sensor] can be drawn. One can deal with linear, convolutive, post-
nonlinear, or convolutive post-nonlinear mixture schemes (see e.g. the mono-
graph [Hyvérinen, Karhunen, and Oja, 2001]). This thesis focuses on the sim-
plest (but also most used) BSS model. It is assumed that the mixing system is
linear, time invariant and instantaneous: in other words,

F(S(t),t) = AS(t) , (1.3)

where A is an N x K mixing matrix.

Consequently, the demixing system G also reduces to a single matrix B, and
GoF is the identity mapping if and only if BA = I with I the identity matrix
of order K.

Then, ©* = B* with B*A = I and 7 = R®*Y . Since the mixing system is
memoryless and time-invariant, we can drop the time index ¢. The new aim of
BSS is thus the following:

Definition 2 (Linear, instantaneous, time-invariant BSS) Let us assume
a mizture model F(S) = AS for the miztures, where both the mizing matriz and
the vector of sources are unknown. The goal of BSS is to find a demixing system
G(X) = BX such that G o F(S) =S, that is to find the demizing matriz B such
that BA = IK.

The above definition sates the problem, but does not ensure that the sources
are separable, yet. In other words, we have no guarantee that without further
hypothesEs, we are indeed able to find such a demixing matrix B* from the
mixture vector X only. Actually, the above assumptions on the mixing system are
not sufficient to ensure separability; we need further hypotheses on the sources.
As for the mixing system, a wide variety of hypotheses can be made, each one
yielding to a specific method solving the BSS problem: the sources can e.g. be
independent and identically distributed (i.i.d.) or, on the contrary, with temporal
structure; they can be bounded, take only positive values, etc.
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When the assumptions are much stronger, as it is the case when additional in-
formation is available on the mixing system (the entries of the mixing matrix are
constrained to be positive coefficients, some of them are known, ...) or on the
sources (some of the sources pdf are available, sparse, ... ), the problem is often
referred to as semi-blind source separation. For instance, these approaches in-
clude among other Bayesian methods, support-based criteria, application-driven
information such as in audio source separation (sparsity, time-frequency masking,
ete).

In spite of the terminology, the general BSS problem is thus untractable. So
why reserving this term to a problem which is impossible to solve in practice?
Rather, the BSS problem usually refers to Definition 2 (p. 4), with additional
assumption on the sources and still further constraints on the mixing system.
They are summarized in the following list.

Assumptions on the mixing matrix A
A A is a square matrix of size K x K: A € R¥*¥,

Ay A is invertible, and thus of full rank : rank(A) = K.

e The joint assumption A2 = A; A As is equivalent to the requirement
A € M(K), where M(K) is the General Linear group of degree K, defined
by :

M(K) = {M € R**X . rank(M) = K} . (1.4)

It should be stressed that 4; is actually too restrictive. Clearly, if A is not
square, it is not invertible, but if N > K and row-rank(A) = K it is still possible
to recover the K sources. Indeed, if N > K the mixture scheme is said to be
overdetermined (or undercomplete), and it suffices to “discard” some components
of the mixture vector X that can be generated by a linear combination of other
rows of the mixing matrix. Clearly, N — K such mixtures exist as the rows of A
span a K-dimensional space.

Finding these redundant mixtures is a priori not an easy task. It is possible,
however, to use ad-hoc preprocessing methods, such as Principal Component
Analysis (PCA), to project the mixture data from a N-dimensional space to
a K dimensional one without any loss of information [Hyvérinen, Karhunen,
and Oja, 2001] (only the redundancies vanish). This procedure yields a new K-
dimensional vector X (which is not simply composed of K of the N components
of the original mixture vector, but rather of linear combinations of them), which
could have been generated by a full-rank K x K mixing matrix, which is clearly
invertible. Therefore, such a preprocessing ensures that A; now holds.

More precisely, let us define the statistical expectation of a function f of a
random variable (r.v.) X with respect to its density px by

Ex[f(X)] = > px(z)f(x)if X is a discrete r.v. (1.5)
zeAx

Ex[f(X)] = /GQ( )px(z)f(x)d:r if X is a continuous r.v. (1.6)
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In the last definitions, Ax is the countable alphabet of X and (X) is the support
set of X, the latter is defined in the one-dimensional space as

QX)={zr e R:px(z) >0} . (1.7)

Note that if we extend the pdf definition domain to IR such that px(z) = 0 for
z € R\ Q(X), then
BF(X)) = [ px(a)f(o)ds (1.9
R

where the subscript X is dropped for short when no confusion is possible.
PCA consists in projecting the data onto the eigenvectors of

Cov[X] = E[XX'] - E?[X] , (1.9)

(the covariance matrix of the noise-free observed mixtures) associated with the
K non-zero eigenvalues among the N obtained via e.g. eigenvalue decomposition
(EVD) of Cov[X]. It only cancels the linear redundancies contained in the data
by projecting them onto the basis formed by the eigenvectors of Cov[X] which is
orthogonal because the covariance matrix is symmetric (this yields, in addition,
uncorrelated signals, see Section 1.5). Then, we shall assume N = K even if the
more general case N > K can be easily managed.

Assumptions on the sources

Az The sources are identically distributed; for each source index i €
{1,..., K}, the probability density function (pdf) ps, ) (Si(t)) of S;(t) does
not depend on the time index ¢ (and this index can thus be omitted when
it is not necessary).

A4 The sources are zero-mean: E[S;]=0,i € {1,...,K}.

As The sources are mutually independent:
K
Ps(S) = Ds,....5,,(S1,- -, Sk) = [ [ ps.(Si) - (1.10)
i=1

Ag There is at most one Gaussian source; noting a divergence measure between
densities as D(pl|q) satisfying D(pl||q) > 0 with equality if and only p = q
almost everywhere we have

t{ie{l,...K}: D(psll¢s,) =0} <1, (1.11)

where ¢s, is the zero-mean Normal pdf with same variance 0, as S;

ps, = ——=—=e " , (1.12)

A /27TJ§1:
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and f[.] is the cardinal operator.

From Ao, AA™! = I where A~! is unique. We are now able to state the BSS
problem definition, which is thus not blind at all actually, as understood by the
scientific community:

Definition 3 (BSS) Assuming that X = AS where A € M(K) and the vector
of sources are both unknown (up to the assumptions As — Ag), find a demizing
matric B € M(K) such that BA = 1.

In 1994, Comon has shown that in the BSS framework defined in Def. 3 (p. 7),
B = A~! is identifiable, but only up to some indeterminacies [Comon, 1994].
Such a matrix can be found through an ICA, as detailed in the next section.

1.2 INDEPENDENT COMPONENT ANALYSIS : AN EFFICIENT TOOL
FOR BLIND SOURCE SEPARATION

Blind source separation has been defined in Def. 3 but, still, we have no way
to recover the original sources, i.e. we need some tool for estimating B ~ A~!.
Independent Component Analysis (ICA) aims at recovering independent compo-
nents from a random vector; it is thus apparently a somewhat different problem,;
however, both BSS and ICA are closely connected to each other. We shall first
review some independence-related concepts before illustrating the relationships
between ICA and BSS.

1.2.1 PD-equivalency and Non-mixing matrices

Let P(K), D(K) be the subgroups! of permutation and diagonal invertible ma-
trices, with thus P(K) € M(K) and D(K) C M(K). We now define two
important other sets of matrices.

Similarly to Eq. (1.4), we define by MP>*K the set of full row-rank P x K
matrices:

MPE = tM e RP*E : row—rank(M) = P, P < K} . (1.13)
Important subsets of M(K) and MP*X are the sets of non-mixing matrices.

Definition 4 (Set of non-mixing matrices) The set of non-mixing matrices
of order K is defined as the set of K x K matrices having a single non-zero
element per row and per column

W(K) = {M:3A € D(K),II € P(K),M = AII} . (1.14)

L1t is easy to observe that these sets have indeed the group structure under matrix multiplica-
tion satisfying closure, associativity, inverse and identity.
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It is easily seen that W(K) forms a group, also called the group of monomial
matrices.

A K x K matriz M is said to be non-mizing if M € W(K). Similarly, a
P x K rectangular matriz, P < K, is said to be non-mizing if each of its row is
a distinct row of a given matric M € W(K) (it has a single non-zero element
per row). If we define IL as a matriz composed of P distinct rows of II € P(K),
then the set WEXE of P x K non-mizing matrices is

WEXE = IM :3A € D(P),M = ALl} . (1.15)

This set is the set of rectangular matrices with a single non-zero element per row
and at most one per column; it satisfies WEXE = W(K).

Example 1 (Non-mixing matrices) From the above definition:

-2/3 0 0 01 0
0 0 4|ew®d),but |0 2 1/4 | ¢ W(3)
0 03 0 6 0 0

and
-1.0 0 0 Lo o
0 0 0 2 €W3X4,but{0 ) 1}¢W2X3
0 3 00

Let us now define the PD-equivalency operator.

Definition 5 (PD-equivalence) A matriz M is said to be PD-equivalent to
B, noted M ~ B, if there exists two matrices II € P(K), A € D(K) such that
B = AIIM or, equivalently, if there exists a non-mizing matric N € W(K) such
that B = NM.

Observe that the PD-equivalency operator is, by definition, scale and permuta-
tion invariant but it also further satisfies three important properties, summarized
in Lemma 2. The following lemma is useful for proving Lemma 2.

Lemma 1 For any product IIA where II € P(K), A € D(K), there exists A’ €
D(K) such that TIA = A'TI. Conversely, for any product AIL, there eists
A € D(K) such that ATl = TIA'.

Proof: We only show the first claim; the converse is proved in the same way.
By definition of permutation matrices, any i-th row of IT corresponds to a j-th
row e; of the identity matrix Ix. Let us denote by j(¢) the column index of the
single non-zero element of the i-th row of the permutation matrix IT (that is the
indice j of the row of I corresponding to the i-th row of IT); for all 1 < i < P,
[IT];; # 0 if and only if j = j(¢). The matrix ITA is obtained by replacing the
i-th row of A by the j(i)-th one. On the other hand, AII is obtained by replacing
the é-th column of A by the j'(i)-th one, where j'(7) is defined as j(#) but with
II7 instead of II: for all 1 < i < P, [HT]U» # 0 if and only if j = j/(i).
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The equality TIA = A'II is equivalent to IIATI ™! = A’ with II"! = 11T
because IT is a permutation matrix. Let us now prove that IIAII" is in the set
D(K) of K x K diagonal matrices. As explained above, the left-multiplication
of A by a permutation matrix moves the (k,[)-th element to the (j(k),1)-th
place. The right multiplication of a matrix by IT (resp. II") moves the (k,1)-th
element to the (k,5’(1)) (vesp. (k,j(1))). Hence, the elements of A’ are related
to those of A by the relation [Al]y = [A];.(k))j(l) which shows that A’ € D(K)
since {j(i),7 € {1,...,K}} forms a permutation of {1,...,K} and therefore
j(k) = j(l) if and only if k = [.

O

Lemma 2 The following holds true for the PD-equivalency operator.
o it is transitive: if M1 ~ My and My ~ M3, then My ~ Ms.

e it is invariant under right multiplication: if My, ~ My, then M1Mjz ~
MyMs;.

o it is symmetric: For any pair of matrices My, My € M(K),

M; ~My < My ~M; . (116)

Proof: By definition of PD-equivalency, there exists Ay, Ay € D(K), I1;, I, €
P(K) such that M1 = A1H1M2 and M2 = A2H2M3, i.e. Ml =
AT1; AoTIoM3. But by Lemma 1, there exists Ag s.t.AxIly = IIsAs. Thus,
noting that II3 = II}II, € P(K) and II3A3 can be rewritten as A4Il,
M; = A{A4II3M; yleldlng M; ~ Mj since A1Ay € D(K) This proves the
first property.
The second property is trivial because M1M3 ~ ATIM; M3 and of Lemma 1.
M
2
Finally, the last property results from the group structure of P(K) and D(K)
(each element of the sets of permutation and diagonal matrices is invertible and
the inverse is in the respective set: if M = A1TI{ M5, we have My = II, A My,
where IT; = Hfl and Ag = Afl. The property is shown by using Lemma 1.

O

Definition 6 (Invariance under PD-equivalency preserving transforms)
A function f(-) is said invariant under PD-equivalency preserving transforms if
7(B) = (M) for M ~ B.

The PD-equivalence operator can be extended as follows.

Definition 7 (SubPD-equivalence) A matriz M; € MP*K s subPD-
equivalent to a square K x K matric My € M(K), P < K, if for all
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ie{l,...,P} 3j() € {1,...,K} and X > 0 such that [Ip];M1 = NIk]; Mo
where [Ig], denotes the k-th row of Ig. They are noted My ~, M.

In other words, each of the P < K rows of M, is proportional to a distinct row
of My (they must be distinct since otherwise rank(M;) < P and M; ¢ MP*K),

Lemma 3 (SubPD-equivalence operator and right multiplication)
Let M € MP*E {M;, My} € M(K). Then, if M ~, M;, MMy ~,, M;Ms,.
As a corollary, if MM ~, I, then M ~, M7 .

Proof: If M ~, My, there exists IT ~,, II, A ~, A where I € M(P), II €
P(K), A € D(P) and A € D(K) such that A IIM ~,, M;. It is always possible
to define a matrix M € M(K) such that ATIM ~ M;. But because of Lemma 2,
AHMMQ ~ M1M2 and thus AEMMQ ~u MlMg, i.e. MM2 ~u MlMg.

O

Obviously, two PD-equivalent matrices are trivially sub-PD-equivalent and these
definitions are equivalent if P = K.
We get the following corollary:

Corollary 1 (PD-equivalence and set of non-mixing matrices) If a ma-
triz M is (sub)PD-equivalent to a non-mizing matriz, then M is non-mixing and
conversely, if M is non-mixing, it is (sub)PD-equivalent to a non-mizing matriz.

The following equivalences hold between PD-equivalence relation and member-
ship to set of mon-mixing matrices:

e For a pair My, My of matrices in M(K): M ~ My <~ MlMgl €
W(K);

e For a pair My € MP*E My € M(K): My ~, My < MlMgl €
WPXK.

Proof: The proof of this corollary is trivial; we deal here with the square case, but
the extension to sub-PD-equivalency is straightforward. Let My € W(K) and
M, ~ M. From Lemma 2, M;M; ' ~ I implying that there exists A € D(K),
IT € P(K) such that M;M; "' = ATII, that is M;M; "' € W(K). Conversely, if
M = M;M,; ' € W(K), it exists A € D(K), IT € P(K) such that M = ATIIx
which proves Ix ~ M.

O
As a consequence, the set of non-mixing matrices can alternatively be defined as
WE)={Me M(K):M~Ig} (1.17)

and
WEAE =M e MK M ~, Ix} (1.18)
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1.2.2 Independence and ICA

Let us consider the random variables X and Y that are continuous and for which
we can define their probability density functions (pdf) px(z), py (y), expectations
E[X] and E[Y], variances Var[X] and Var[Y], covariance Cov[X,Y] and Pearson
correlation coefficient (correlation, for short) Corr[X,Y]:

Var[X] = E[X - E[X])? (1.19)
Cov[X,Y] = E[XY]-EXE[Y] (1.20)
Corr[X,Y] \m , (1.21)

where the expectation E[] is defined in Eq. (1.8).
Observe that the statistical definition of independence matches the intuitive
one. Indeed, for two independent variables X and Y, we have:

px.v(7,y) = px(2)py(y) - (1.22)

Noting pxy(z|y) the conditional pdf of X given Y = y and using Bayes’ rule,
it comes that

px.y(,y) (1.23)

px|Y($|y)= oy(y)

where px v (z,y) is the joint density of (X,Y) at (z,y). Hence, we obtain that

pX\Y(x\y) =px(z) . (1.24)
In other words, there is no information brought on X by knowing that Y = y.

Definition 8 (ICA-1) Assume that AS_ | A; hold. Knowing a K-dimensional
vector of observations X, ICA aims at finding a linear transformation B € M(K)
such that the components of Y = BX are as independent as possible.

Observe that by contrast to the BSS problem definition as stated in Def. 2
(p. 4), ICA-1 is a tractable problem since it does not involve neither A nor S.?

ICA can be seen as an extension of decorrelation. Instead of searching a ba-
sis in which the components are decorrelated, we try to find a basis in which
the components are made independent. It aims at recovering underlying inde-
pendent components from the mixture; it is a kind of higher order, non-linear
decorrelation. Indeed, while decorrelation between two centered variables X and
Y is achieved if and only if E[XY] = E[X]E[Y], independence between these vari-
ables requires that E[f(X)g(Y)] = E[f(X)]E[g(Y)] for all continuous functions

2Note that this must be tempered as in practice: the output densities depend on the pair
(A,S). It is thus implicitly assumed that those pdfs can be obtained from the data.
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f, g that are zero outside a finite interval [Feller, 1966]. Indeed:

E[f(X)g(Y)] = / / F(@)9(y)px.v (@, y)dady (1.25)
- / f(@)px(x)de / g(w)py (W)dy (1.26)
— EX)ER(Y)] . (1.27)

In a similar way, while decorrelation between X and Y cancels the second-order
cross-cumulants, independence means that all higher-order cross-cumulants are
zero, too. In practice, a good approximation of independence consists in having
the fourth-order cross-cumulant equal to zero. As a reminder, the fourth-order
cumulant of a random vector Y is defined as

cumir (Y) = E[YinYle]_E[YiYi}E[Yle]—E[YiYk]E[Yle]—E[Yin]E[YJ(Yk] )
1.28

1.2.3 ICA and BSS

A similarity between ICA and BSS now arises: both aims at finding a specific
demixing matrix; in ICA, “demixing” means recovering independent outputs,
while in BSS, we are interested in recovering original sources (supposed to be
independent as suggested by As) that have been mixed through the mixing
matrix A. In the following, it will then be assumed that the BSS model defined
in Def. 3 (p. 7) holds.

In 1994, Comon has shown that under the above assumptions, the BSS prob-
lem can be solved by using ICA. In this section, we shall restrict ourselves to
showing that recovering underlying independent components form the mixture
leads to identifying the mixing matrix up to some indeterminacies.

The first step to link BSS to ICA is the so-called Darmois-Skitovitch theo-
rem [Darmois, 1953].

Theorem 1 (Darmois-Skitovitch) Let us suppose that X = Zfil a;S; and
Xg = Zfil B:S; where Si,...,Sk are independent mv and o; € R, 55 € R, j €
{1,...,K}. Then, if X1 and Xy are independent, all the S; such that a;3; # 0
are Gaussian (i.e. have a Gaussian pdf).

This theorem admits a converse (see e.g. [Theis, 2002]).

Theorem 2 (Converse DS) Let us suppose that X1 = Efil o;S; and Xo =
Zfil BiS; where Si,...,Sk are independent v and a; € R,5; € R, j €
{1,....,K}. Then, if a;3; = 0 for all 1 < i < K, then X; is independent
from Xa.

Based on Theorem 1, Comon has derived the following key theorem.
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Theorem 3 (Comon) LetS be a K-dimensional vector of independent compo-
nents where at most one of the S; is Gaussian and A € M(K). Then, setting
X = AS, the following statements are rigorously equivalent:

e Xq,..., Xk are pairwise independent;
e Xi,..., Xk are mutually independent

o A ~1Ix or equivalently, A € W(K).

Consequently, it is not possible to obtain a vector X = AS with independent
components if matrix A € M(K) is not in W(K).

The following corollary results from Theorem 3 with A «— BA, X « Y and
Definition 5.

Corollary 2 (Identifiability) Assume that there exists A € M(K) and a vec-
tor S € R¥ of sources such that X = AS and N®_;A; hold true. Then, the
components of Y = BX are pairwise independent if and only if BA € W(K) or
equivalently, if and only if B ~ A™1L.

This result basically states that the only way to make independent the com-
ponents Yq,...,Yx of Y = BAS where S satisfies /\?:3,42- is to have B ~ AL

The above identifiability theorem links, rigorously, the BSS and ICA prob-
lems. The K sources can be recovered by finding a linear transformation B such
that the components of Y = BX are independent; in this case, each output (in-
dependent component) is proportional to a distinct source signal. Formally, if
the outputs are pairwise independent:

Vie{l,...,K}3j(i)e{l,....,K}: Y;xS;u ,

where U;{j(7)} forms a permutation of {1,..., K}.

Then, BSS cannot be uniquely determined : the demixing matrix B = A~}
cannot be explicitly recovered. It can only be found up to the product of a
diagonal (scaling) and permutation (ordering) matrix; i.e. up to a monomial
transformation. Consequently, neither the order, nor the scale of the sources can
be estimated via ICA (the sources can then be assumed to be unit-variance).
From the ICA point of view, this is because independence is neither sensitive
to the order nor to the scale of the variables. From the BSS viewpoint, this is
because the mixture model X = AS remains unchanged when i) S; is divided by
a scale factor provided that the j-th column of A is scaled by the same factor,
and ii) when S; and S; are swapped provided that the i-th and j-th columns of
A are also swapped. An additional source assumption will then be considered
in the following:

A7 The sources are unit variance: Var[S;] =1 for alli e {1,...,K}.
Combined to As, we have Cov[S] = Ik.
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1.3 INDEPENDENCE MEASURES

From the above section, it seems that we have to express what is meant by
mazximizing independence between the components of a vector. In other words, we
are thus led to find a suitable independence measure to tackle the BSS problem.
A definition of independence measure is proposed below.

Definition 9 (Independence measure) An independence measure is any
mapping from a random vector Y to IR whose mazximum value is reached if and
only if the components Y; of Y are independent.

Property 1 (Divergence measure and independence) According to Def. 9,
the opposite of any divergence measure of the same form as defined in Ag can be
used as an independence measure, since

— D (py(Y)

HpY,L(Yi)) <0, (1.29)

i=1

with equality if and only if the joint pdf is separable into the product of the
marginal densities.

According to Corollary 2, if X = AS and Y = BX, the independence measure
reaches its global maximum point when B ~ A~! or equivalently from Corol-
lary 1, if BA € W(K).

Since independence measures can be obtained through a kind of “distance”
between the joint density and the product of the marginal densities, let us turn
to divergence measures between density functions.

1.3.1 Divergence measures between densities

Actually, we do not necessarily need a distance, in the sense that the measure is
not constrained to fulfill the triangular inequality nor to be symmetric.

A non-exhaustive but rather extended list of such divergence measures can
be found in [Basseville, 1989]. The most used distances in signal processing
and pattern recognition are probably the f-divergences, which forms a class of
“distances” independently derived in [Csiszar, 1967] and [Ali and Silvey, 1966].
This specific class of divergence measures between densities including the Bhat-
tacharyya, Chernoff, Variational, Hellinger and Kullback-Leibler (KL) measures,
see [Basseville, 1989]) is of the form:

(plla) = FE[e(LX))]) (1.30)

where f(-) is a non-decreasing function, E,[-] is the expectation with respect to
p, ¢(+) is a convex function and L(-) is the likelihood ratio p(-)/q(-).



INDEPENDENCE MEASURES 15

Obviously, a lot of other classes of measures can be found (see e.g. [Gray
et al., 1975],[Poor, 1980]), but the Ali & Silvey class and, in particular, the KL
measure has been preferred in the ICA community. It is a very kind measure, in
the sense that it benefits from interesting computational [Kullback, 1959, Cover
and Thomas, 1991] and geometrical properties (see e.g. [Johnson and Sinanovic,
2001] and reference therein for relationship to optimal classification rates and
associated manifolds and [Cardoso, 2003, 2000] for an interpretation in the ICA
framework). All divergence measures belonging to the Ali & Silvey’s class enjoy
specific properties [Ali and Silvey, 1966]. They are not all given here because
some of them would require a detailed discussion to be well understood, but we
point the two following ones:

e The (p|lq) coeflicient is defined for all pairs of measures p and q on the
same sample space (i.e. for all pairs of densities defined on a same support

Q);

e (p||q) is minimum when p = q almost everywhere and maximum for p 1 q
(i.e. (p|lq) must increase when p moves apart from q).

Setting c¢(x) = zlogz and f(xr) = x in Eq. (1.30), we obtain the well-known
Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951, Kullback, 1959].

Definition 10 (Kullback-Leibler divergence) Let p,q be two density func-
tions, integrable with respect to the Lebesgue measure, and p absolutely contin-
uous with respect to q (Qp) C Q(q)). Then, the KL divergence between p,q is
defined as:

KL[p|lq] = /p(x) log ZEQ dr = E, [log (2)] . (1.31)

1.3.1.1 KL properties

The KL obviously benefits from the “reasonable” properties of all the diver-
gence measures of the general Ali & Silvey class; further, other specific charac-
teristics can be emphasized [Cover and Thomas, 1991].

Proposition 1 (KL properties) For all densities p1,p2,ps for which the
quantities KL[p1||p2], KL[p1||ps] and KL[p2||p3] are well-defined:

o KL[p1||p2] = 0 with equality if and only if p1 = p2 almost everywhere (this
results directly from Jensen’s inequality);

o it is invariant under any linear invertible transformation ¢ : KL[p1||p2] =
KL (p1)ll¢(p2)];

e it is not a metric distance because it is not necessarily symmetric (in gen-
eral: KL[p1||p2] # KL[pz2|lp1]) and it usually violates the triangular in-

equality (KL[p1 | /p2] + KL[p2|/ps] # KL[p1||ps]):
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Other divergence measures between densities can be found. For instance, we
could take one of the following symmetric quantities

ol = / Ip(2) — a(@)ldz | (1.32)

or

ol = / (0(z) — a(2))*d . (1.33)

However, the benefits gained from considering the KL divergence in BSS are so
considerable from the computational simplicity viewpoint that no other diver-
gence measure has been seriously investigated, to our knowledge, in the BSS
framework, even though they can be used, exactly as the KL, to derive an inde-
pendence measure.

1.3.1.2 From KL to mutual information

From Property 1, the KL between py (the joint pdf of the multivariate random
vector) and Hf{:1 py, (the product of the marginal pdf of the components of
Y) seems to be an interesting independence measure; it is called the mutual
information.

Definition 11 (Mutual information) The mutual information of a random
vector Y = [Y1,...,Yg]T is defined as

KL Py

Hpvi] : (1.34)

i=1

This divergence measure is also equivalently noted KL(Y).

Proposition 2 (Mutual information properties) The mutual information
properties result from the KL ones but, further remarkable results are the follow-
mg.

o KL(Y) > 0 with equality if and only if the components of Y are mutually
independent; hence, —KL(Y) is an independence measure.

o Tt is symmetric: KL(Y) = KL[py, Hfil pv,| = KL[Hfil Pv,, DY)

o Let us define p(Y) = [pi(Ys:),...0ox(YK)] where the K ©;’s are linear
invertible with existing derivatives and derivable inverses mappings (i.e.
diffeomorphisms). Then KL(Y) = KL(¢(Y)).
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1.3.2 Other measures of independence

The independence can also be measured by some means different from a di-
vergence between the joint density of a random vector and the product of
the marginal densities of its components. Remind that K non-Gaussian rv
Yq,...,Yg are independent if all their cross-cumulants vanish. Hence, a mea-
sure of independence would be a functional of positive mappings of all the cross-
cumulants; independence would then be reached if and only the functional van-
ishes. In practice however, this is not feasible: we have to consider only a finite
number a cross-cumulants. Most often, existing methods assume a whitening
pre-processing (see Section 1.5) so that the outputs are decorrelated, and they
only cancel a finite number of cross-cumulants. For instance, the criterion

— Z cum?jkl(Y) (1.35)

ijkl£iiii

can be seen as an approximate measure of independence between the Y; if
E[Y;Y;] = E[Y;]E[Y,], ¢ # j (the fourth-order cumulant was defined in Eq.
1.28, p. 12); but this approximation suffices to solve the BSS problem [Comon,
1994]. Minimizing the last criterion is equivalent to maximizing Y., cum?,;(Y)
[Comon, 1994].

A variant of this criterion,

— Z cum?jkl(Y) (1.36)

ijkl£ijkk

has also been proposed [Cardoso, 1998, Cardoso and Souloumiac, 1993].
Similarly, another approximate measure would be to compute a linear combi-
nation of positive mappings of

E[f(Yi)g(Y;)] = E[f (Yi)IE[g(Y;)] for i, € {1,... K},i # j (1.37)

for a finite number of functions f, g. The possibly non-linear functions f,g € F
capture the higher-order information on X, Y, not only their covariance. The
pioneering solution to the BSS problem, which was proposed by Hérault and
Jutten in 1991, was based on this approach; they used f(y) = y* and g(y) =
arctan(y) [Jutten and Hérault, 1991].

This is the method used in [Bach and Jordan, 2002]: independence is reached
if and only if the following generalized non-linear correlation coefficient is zero:

pr = max Corr[f(X),g(Y)] = m Covlf(X). 9(¥)] . (1.38)

f.9€F = Joek /Var[f(X)]Var[g(Y)]

A review of independence measures for BSS can be found in [Achard, 2003].
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1.4 EXTRACTION SCHEMES AND CONTRAST FUNCTION
DEFINITION

In Section 1.2.3, a relation between independence (and thus ICA) and BSS was
pointed out by Theorem 3 (p. 13): maximizing any independence measure (as de-
fined in Def. 9, p. 14) of BX will provide a demixing matrix being PD-equivalent
to A1, i.e. such that each of the output Y; will be proportional to a distinct
source S;. However, even under the usual assumption on the independence of the
sources, source separation cannot be seen, generally speaking, to be equivalent
to independent component analysis; this is e.g. the case where only a subset of
whatever sources is needed.

Independence measures are rather restrictive criteria; they implicitly require
that all the outputs be considered at the same time. For instance, if one desires
to extract a single source, the viewpoint of independence maximization cannot be
easily adopted as a single signal is considered, while independence is a relative
quantity. In a more general framework, one may desire to separate P signals
from K mixtures. In this case, ICA is not equivalent to BSS, as shown in the
next example.

Example 2 (ICA is not BSS) Let W = BA, Y; = Zfil W;iSi, j €
{1,..., P} where W;; is the (i,j)-th entry of W. Assume P = 2 for simplic-
ity. We know from the Theorem 2 (the converse form of the Darmois-Skitovitch
theorem, p. 12) that if W1;Wa; = 0 for all 1 < i < K, then Y1 is independent
from Ys.

In other words, if one can find B € MP*X such that BA has exactly one
non-zero element per column, the entries of BX are independent provided that
at most one source is Gaussian. The problem is that such matrices are not
necessarily subPD-equivalent to A=Y, that is, we can find B € MP*E such that
the components of BX are independent but BA ¢ WE*K | For instance setting
P =2 and K =4, a demizing matriz B such that

1
0

O =

BA — [ 00 ] (1.39)

yields independent outputs, but none of them is proportional to a source signal:
BA ¢ WPxK,

From the above example, we conclude that ICA only solves specific schemes of
the BSS problem, in which the number of outputs equals the number of sources
involved in the mixture. Therefore, in order to deal with separation schemes more
general than the simultaneous separation of all the K sources, it is necessary to
find BSS criteria that are no more necessarily “pure” independence measure.

The purpose of this section is to review three extraction schemes that can
be used to recover (part of) the demixing matrix. For each of these schemes,
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the BSS problem is rewritten as an optimization problem; based on the contrast
function definition, solving the BSS problem reduces to maximizing a criterion,
if the latter belongs to the specific class of the BSS contrast functions.

1.4.1 Extraction schemes

When recovering the sources, three approaches can be adopted to estimate B
such that B ~, A~!. First, the demixing matrix B can be estimated globally, by
maximizing a simultaneous contrast function. Second, P < K rows b; of B can
be estimated one by one, yielding the sources sequentially. Third, P < K rows
of B can be estimated simultaneously. These three approaches are respectively
named simultaneous, deflation and partial separation.

1.4.1.1 Simultaneous separation

In simultaneous extraction, one is led to maximize a criterion f(B) with re-
spect to a K x K matrix B, so that the rows of B are estimated all at once.
After convergence, we shall have B ~ A™1.

1.4.1.2 Deflation separation

An alternative method is to compute the rows of B one by one. Instead of
maximizing the function f(B) directly in a K x K-dimensional space, K “sub-
functions” are estimated iteratively. The sources are recovered by sequentially
maximizing f(by),..., f(bk), where the b; are the rows of the target matrix B.
A decorrelation constraint is added in order to avoid recovering twice a same
source: at each step, the i-th estimated source must be uncorrelated to the i — 1
previously extracted sources.

The deflation method has an advantage compared to the simultaneous ap-
proach: it allows one to extract P < K sources by maximizing sequentially
f(b1),..., f(bp), and then considering b1 X,...bpX as the P estimates. How-
ever, this sequential technique may suffer from the cumulation of errors resulting
from the decorrelation constraint imposed between the rows.

1.4.1.3 Partial separation

Recently, a new kind of extraction has been introduced in [Pham, 2006b]: it
consists in simultaneously extracting P among K sources, for any P < K. This
method yields all the K sources if P = K (and thus reduces to the simultaneous
separation scheme) and yields the first output just as the deflation method if
P=1.



20 BSS AND ITS RELATIONSHIP TO ICA

1.4.2 Contrast functions

In this section, the BSS problem is formalized as an optimization problem for
each of the extraction schemes. For each scheme, we define the concept of contrast
function, which is the objective of the optimization problem.

1.4.2.1 Simultaneous separation
Definition 12 (Simultaneous BSS (S-BSS) contrast) A simultaneous BSS

(S-BSS) contrast is a mapping C(.) : M(K) — IR being invariant under PD-
equivalency preserving transforms and satisfying

argmax C(B) = {Be M(K): B~ A"} | (1.40)
BeM(K)
or equivalently:
argmax C(B) = {B € M(K): BA e W(K)} . (1.41)
BEM(K)

In the above definition, the mathematical expression argmax,cy f(z) has to
be understood as a the set of points X* in dom f N X such that the function f
reaches its global maximum value over the set dom fNA at, and only at points
in X*.

Note that this definition differs slightly from the contrast definition first given
in [Comon, 1994]. However, we define here a BSS contrast, i.e. a contrast in
the framework of BSS; this corresponds now to the usual common meaning of
a contrast for BSS, as accepted by the related community (see e.g. [Cardoso,
1998], etc). The major differences are the following. First, it is no more supposed
that a contrast is a mapping from the set of densities. It is here understood as a
mapping from M(K). Second, the only if statement in the third property was
not required in Comon’s definition. This additional requirement yielded, with
Comon’s terminology, to a discriminating contrast. However, this terminology
will be used for another property, which will be stated in Chapter 3.

From the Identifiability theorem (Corollary 2) and the independence measure
definition, the following corollary trivially holds.

Corollary 3 Under assumptions AS_,A;, any independence measure being si-
multaneously scale-invariant and permutation-invariant is a simultaneous con-
trast function.

1.4.2.2 Deflation separation

Definition 13 (Deflation BSS contrast) A mapping C(.) : R® — R is a
deflation BSS (D-BSS) contrast if it fulfills the following conditions:

e it is scale-invariant: C(b) = C(ab) for any a € Ry;
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o the global maximum point is attained when bA is proportional to a row of
IK.'

argmaxC(b) C {b € R¥ :bA xe;,i € {1,--- ,K}}} , (1.42)
beRK

or equivalently, by noting ||x|| the Fuclidean norm of x:

argmaxC(b) C {b € R" : ||bA| = |[bA|w} ; (1.43)
beRX

e the criterion allows complete extraction. Let Sy be the set of the source
indices that have been extracted at the k-th step: for any 1 <i <k, b;X
S;, j € Sk. Then, under the constraint that bb] =0 forie {1,...,K}:

argmaxC(b) C {b € R* : bA x e;,i € {1,--- ,K}\ Sk} . (1.44)
beRX

1.4.2.3 Partial separation

Definition 14 (Partial BSS contrast) A mapping C(.) : MP>*K — R is a
partial BSS (P-BSS) contrast if it fulfills the following conditions:

o it is scale-invariant: C(B) = C(AB) for any matriz A € D(P);
o it is order-invariant: C(B) = C(IIB) for any matriz II € P(P);
o the set of the global maximum points are P x K non-mixing matrices:

argmax C(B) C {Be MK . B~, A711 | (1.45)
BEMPXK

or equivalently,

argmax C(B) C {B €¢ M"*K . BA e WKy | (1.46)
BeMPxK

Note that the first two items are equivalent to require C(B) = C(MB) if
M ~ Ip.

It is a kind of compromise between deflation and simultaneous approaches,
combining the advantages of both separation schemes, in the sense that we can
limit the computational load if only P < K sources are needed and on the other
hand, the cumulation of errors resulting from the orthogonalization constraint is
avoided?®.

3We would like to point out here that generally speaking, there is no information about which
subset of P sources will be extracted.



22 BSS AND ITS RELATIONSHIP TO ICA

1.5 WHITENING PREPROCESSING AND GEODESIC SEARCH

Whitening is a usual preprocessing to BSS, either for simultaneous or deflation
extraction schemes. It does half the work of ICA, in the sense that the dimen-
sionality of the BSS problem is approximatively divided by a factor 2 thanks to
the whitening. In other words, half the job is done by using an algebraic tech-
nique (reminded in Section 1.5.1), so that orthogonal BSS contrast functions can
be proposed (Section 1.5.2). In the remaining adaptive optimization step, the
argument space is limited in such a way that the possible adaptive search will be
managed in a lower dimensional subspace of the original space of the demixing
matrices (Section 1.5.4).

1.5.1 Whitening

Whitening a data vector X consists in jointly i) centering the data (unneces-
sary if A4 holds), ii) linearly transform them in such a way that they become
uncorrelated (Cov[X] is diagonal), and iii) scaling the X; so that they become
unit-variance (yielding Cov[X] = Ik).

Definition 15 (whitening matrix) A matriz V € M(K) is a whitening ma-
triz of a random vector X € R if Z = VX is a white random vector: E[Z] = 0
and E[ZZ"] = 1.

A whitening matrix V of X can be found via eigenvalue decomposition (EVD).4
Let us denote by A a diagonal matrix whose diagonal entries are the eigenvalues
of the K x K covariance matrix Cov[X], and let U be an orthogonal matrix
(because Cov[X] = Cov'[X]) whose columns are unit-norm eigenvectors such
that e;UT is the eigenvector associated to the eigenvalue located at the i-th
diagonal element of A. Then,

vV = A"Y2UT (1.47)

is a whitening matrix. This results from the following equalities:

E[VX(VX)T] = VEXXT|vT (1.48)
N—_——
=UAUT
= A YV2UTUAUTUA Y2 (1.49)
S~ =
IK IK
= ATVZAATY2 (1.50)
= Ig . (1.51)

4Singular value decomposition (SVD) can also be used but is not considered here, except briefly
in the last Chapter.
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Observe that in the above developments, it is assumed that all the eigenvalues
are non-zero in order that A~/2 exist since det A = Hfil A(i,1) (in other words,
A € D(K) € M(K)). Clearly, this is the case since Cov[X] is symmetric (the
eigenvalues are real) and because the covariance matrix is positive semi-definite
(all the eigenvalues will be non-negative) leading to det Cov[X] > 0. Further,
Cov[X] € M(K) since Cov[X] is full-rank:

rank(Cov([X]) = rank(ACov[S]A™T) & rank(AAT) = rank(A) = K . (1.52)

Consequently, detCov[X] > 0 and, on the other hand detCov[X] =
det A det? U = det A, implying A € D(K) € M(K).
An important subset of IR *® is the orthogonal group.

Definition 16 (Orthogonal group) The orthogonal group of degree K is the
subset of orthogonal matrices :

OK)={Me M(K): MM™ =1} . (1.53)

A specific subset of this group is the special orthogonal group:

Definition 17 (Special orthogonal group) The special orthogonal group is
the subset of O(K) corresponding to rotation matrices, i.e.

SOK)={M e O(K):detM = +1} . (1.54)

The following property can be easily proved.

Property 2 (Whiteness preservation under orthogonal transform) LetV
be a whitening matriz of X € RE. Then, for any orthogonal matriz R € O(K),
RV is a whitening matriz of X.

The above property states that whiteness property is preserved under orthogo-
nal transforms and, consequently, that the whitening matrix of a random vec-
tor is not unique. It results directly from the fact that E[(RVX)(RVX)T] =
E[RZZ"R™] where Z = VX. The last expectation reduces to RRT = I since
Z is a white random vector.

The whitening preprocessing is seen as solving half of the ICA problem. In-
deed, even if not known, VA reduces to an orthogonal matrix, because:

E[ZZ"] = E[VAS(VAS)"] (1.55)
= VAE[SST]ATVT (1.56)

A7 (VA)(VA)T (1.57)
(1.58)

= I, 1.58
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where the last equality results from the whiteness of the zero-mean vector Z.

Because of the group structure of O(K), the inverse of the transfer matrix
VA from S to Z is also included in O(K). Consequently, one can restrict the
search of a demixing matrix B from M(K) to O(K) and even to SO(K), since
assuming det B = 41 does not add any indeterminacy on the recovered sources,
as shown by the following lemma.

Lemma 4 For any matriv My € O(K), there ezists My € SO(K) such that
M, ~ M.

If My € O(K), |det M| = 1. Hence, by definition, M; € SO(K) and we can
take My = M;. Assume now that det M; = —1. Noting by I([;i) the identity
matrix Ix in which the i-th diagonal element is replaced by its opposite. Then,
det I M, = det I ” det My = —det My = 1. But, by definition of the PD-
equivalency, My = I(K_i)Ml is PD-equivalent to M; and My € SO(K).

O

Then, since the dimension of SO(K) is K x (K —1)/2, the number of elements
to be estimated in the demixing model is approximatively divided by a factor
two. The whitening preprocessing reduces the dimensionality of the problem;
an orthogonal contrast can then be used. An orthogonal contrast is a contrast
whose argument is constrained to be in SO(K).

1.5.2 Orthogonal contrast functions

Definition 18 (Orthogonal BSS contrast) An orthogonal simultaneous (resp.
deflation) BSS contrast is a simultaneous (resp. deflation) BSS contrast where
the mizing matriz is assumed to be a rotation matriz (A € SO(K)) and the
demizing matriz is always constrained to be in the special orthogonal group. A
partial orthogonal BSS contrast is a partial contrast whose argument is con-
strained to be a semi-orthogonal matriz, that is where BBT € SO(K). The
orthogonal BSS contrasts are noted C*.

Obviously, the set of orthogonal contrasts is included in the set of (global)
BSS contrasts.

Remark 1 Note that whatever the mixing matriz A, one can still use an or-
thogonal contrast. In order to do that, one can deal with a whitened version of
the miztures since as shown in Section 1.5.1: VA € O(K) if V is a whitening
matriz of X = AS.

Assume X «— VX. Then, if B* € SO(K) mazimizes the orthogonal contrast,
the demizing matriz satisfies B* ~ (VA)™! and from Lemma 2 (p. 9), BV ~
AL

Since the mizing matriz is not necessarily orthogonal, we shall always consider
X «— VX and A — VA when dealing with orthogonal contrast functions.
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1.5.3 Angular parametrization in the K=2 case

It has been explained that if X is whitened, A can be seen to be an orthogonal
matrix. In two dimensions, an orthogonal matrix is fully determined by a sin-
gle angle, called here the mixing angle ¢. As explained above, one can freely
assume that A is a pure rotation matrix (det A = +1). Hence, the mixing and
prewhitening steps can be expressed as follows:

Xi | sing  cos¢ Si
[ Xo } o [ —cos¢ sing So | (1.59)
Furthermore, under the additional E[YYT] = Ik constraint, W also reduces to

an orthogonal (assumed rotation) matrix, parametrized by a single unmizing
angle p. Hence, for K = 2, the input-output model becomes:

] e[ weiglls] e aw

Hence, the BSS problem reduces to finding the unknown initial angle ¢ only
knowing X and Y by adjusting . Let us define § = ¢ + p. The angle ¢ is
fixed, since A is a constant matrix, but 6 is unknown, and may vary via .
Consequently, the transfer matrix, also noted W () for clarity, is non-mixing if
and only if we have found blindly (¢ is unknown) ¢ = ¢* such that o* = kr/2—¢,
k € Z. When a single output is considered in the K = 2 case, it will often be
noted

Yy = sin(6)S; + cos(6)Ss (1.61)

i.e. it corresponds to the first output Y; of the model given in Eq. (1.60) with
0=0¢+ .

1.5.4 Manifold-constrained problem and geodesic optimization

From the above subsection, we conclude that under pre-whitening constraint,
there always exists B € SO(K) such that B ~ (VA)~!. We can thus restrict
the search of demixing matrix to SO(K). Lie groups such as e.g. RX*% M(K),
O(K) or SO(K) can be given a Riemannian manifold structure [Amari, 1998,
Plumbley, 2004, Chefd’Hotel et al., 2004].

Definition 19 (Manifold) A manifold is a topological space which is locally
Euclidean.

Without entering into details, various definitions of the manifold object exist:
basically, some of them suppose that the manifold is “smooth everywhere”, the
others assume that the manifold is locally flat almost everywhere. As an example,
depending of the definition, the boundary of a square is a manifold or not, but
in any case, it is not a “smooth manifold”, because of the corners [Absil et al.,
Lee, 2003].
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In the sequel, the set notation will be used for the manifolds. Generally,
a manifold will be noted M (not related to the set of matrices M(K) and
MEXEY - In other words, it is a mathematical space in which (almost) every
point has a neighborhood which resembles the Euclidean space, but in which the
global structure may be more complicated. When these manifolds are embedded
in R¥, they are named “sub-manifolds embedded in RX”. Any open subsets
in R forms a sub-manifold. Curves and circles are examples one-dimensional
(smooth) sub-manifolds embedded in R¥ (K > 2), also named one-manifold for
short, because locally, every point has a neighborhood that resembles a line. The
surface of a sphere is an example of a two-dimensional manifold because locally,
the neighborhood of every points on a sphere looks like a plane (the surface of
the Earth was formerly believed to be a plane because on the human scale, the
surface of a sphere looks “flat”). In the following, it is always assumed that the
D-manifold is embedded in IR* (for some K large enough), and the prefix “D—"
and “‘sub-” will be omitted when unnecessary. In general, any object embedded
in R® which is “nearly flat” on small scales is a manifold embedded in R*
provided that K is large enough (to, indeed, embed it). On a manifold, the basic
usual rules of geometry do no more hold as it is not a vector space. Generally
speaking, the sum of the angles of a (curved) triangle laying on a manifold does
not equal 7, and summing two vectors belonging to this space does not result in
a third vector belonging to the manifold. By contrast, the definition says that at
each point of the manifold, there exists a tangent space on which we can use the
common calculus. Therefore, if the aforementioned triangle is sufficiently small,
the sum approximatively equals . The manifolds are seen here to be (possibly
lower-dimensional) spaces (i.e. subspaces) embedded in a higher-dimensional
Euclidean space. They may be created by a kind of “constraint”: a centered
circle of radius 7 is a one-manifold embedded in IR? associated to the vectors in
IR? having a Euclidean norm equal to 7. One can also associate manifolds to the
sets O(K) and SO(K); these are K (K — 1)/2-dimensional manifolds embedded
in the set of square matrices R® %% . Most of the time, one deals with “smooth”
manifolds (because it is implictely required in the definition or because it is often
required when dealing with other definitions); basically, they are manifolds with
functional structure (e.g. parametric equations [Lee, 2003]). The unit circle in
the xy-plane (defined by the constraint z? 4+ y? = 1) is the smooth manifold
with parametric equations (x = cosf, y = sinf) . The parametric equations
(when they exist) are friendly because they can be integrated and differentiated
termwise. Informally, this means that the notion of “differentiability” exists on
smooth manifolds (differential geometry is nothing else than the study of calculus
on smooth manifolds). As an illustration, let f(z,y) = zy? s.t. az? +by? =1 for
two scalar numbers a,b. How does this function change for a small variation of
(z,y)? This question seems difficult to answer because of the ambiguity about
the meaning of “a small variation of (x,y)”. The function is only defined on
the set az? + by? = 1 and not on IR?; consequently, the new pair of coordinates
(x,y) + (0z,0y) is required to fulfill the constraint. Using the parametrization
x = cosf/\/a, y = sinf/\/b, the constraint is implicitly fulfilled and it makes
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sense to compute the derivative of f(#) = cos@sin®/vab? with respect to 6.
For a small increment 6 of 6§ we have

sin 6
v ab?

The manifold associated to the definition domain of the above function can be
seen to be “smooth” because a differentiable parametrization is possible®. By
contrast, the set of points satisfying xy = 0 does not form a smooth manifold
because of the intersection.

An additional interesting property of a manifold is it connectedness. Intu-
itively, a manifold is connected if any pair of points can be joined by a piecewise
smooth curve belonging to the manifold.

f(0+60) = f(0) + (2cos? 0 — sin 0)56 .

Property 3 (Properties of O(K) and SO(K)) The smooth manifolds asso-
ciated to O(K) and SO(K) satisfy the following properties

e O(K) is a manifold composed of SO(K) and {B € O(K) : detB = —1};
o SO(K) is a connected manifold containing the identity matriz I ;

e the restriction of the neighborhood of a given point B € RE*E to the
manifold induced by O(K) is a subset of the neighborhood of B in the
whole REXK space (recall that O(K) C REXK ). This is also true for
B € SO(K), since SO(K) is a connected subgroup of O(K).

More details about manifolds can be found in [Absil et al.].

1.6 ADAPTIVE MAXIMIZATION OF CONTRAST FUNCTIONS

In Section 1.4.2 contrast functions have been defined in order to rewrite the BSS
problem as an optimization problem. However, the maximization methods have
not been discussed yet. A lot of optimization techniques exist. They can be
based on algebraic or adaptive methods.

Example 3 (Algebraic vs Adaptive solution) Let X = [Xy,...,Xx]T. The
matriz V.= A"Y2UT (see Eq. (1.47)) is an algebraic solution to the problem

argmax { — ‘[COV[MX]], : (1.62)
MeM(K) ; J

5The simple approach saying that M is a differentiable manifold is equivalent to the parametric
equations of M are differentiable has not been proved to exactly correspond to the formal
definition of “manifold differentiability” (that can be of class C'*, like for functions). However,
this intuitive explanation generally holds true (at least in the sense “differentiable parametric
equations” = “differentiable manifold”) and anyway, this intuitive way of seeing things suffice
for our purposes
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where [M];; = M;; is the (i,7)-th entry of M, because the mazimum value of
this expression is zero and Cov[MX] is diagonal if M is a whitening matriz of
X (i.e. if M =UV with U € O(K) and V given by Eq. (1.47)). As a matter
of fact, the solution is provided by an eigenvalue decomposition of Cov[X]. The
result can be expressed as a closed form expression. The problem of finding the
mazimum reduces to the problem of finding the eigenvalues and the associated
etgenvectors.

An adaptive solution to the problem would consist in choosing an initial point
in M(K), say M©) and then modifying M+ — M® 4 A(M®) where
AM®) is such that

- Z ‘ [COV[M(t)X]} N

— ij
i#]

(1.63)

< - Z‘ [COV[M(t—H)X]} ‘
i Y
The major difference between algebraic and adaptive optimization techniques is
not that the former is non-iterative while the latter is, because iterative schemes
can be required for computing (estimating) the parameters of the closed form
solution. As an illustration, the computation of the eigenvalues and eigenvectors
in Ex. 3 (p. 27) may require an iterative scheme (e.g. iteration of QR decom-
positions). The main difference is rather that algebraic techniques estimate the
parameters of the close form corresponding to the global maximum, while adap-
tive techniques try to reach a local (hoped to be global) maximum by modifying
the argument in a way that makes the objective increasing. In the BSS context,
some contrast functions can be optimized via algebraic techniques (this is the
case of criterion given in Eq. (1.36), whose optimization reduces to tensor diag-
onalization; the latter can be obtained via Jacobi techniques and, at each step,
the angles are available in closed form [Cardoso and Souloumiac, 1993]), see e.g.
[Cardoso and Comon, 1996] for a review. But for a wide class of contrasts, there
exists no algebraic methods that would make possible the global maximization
of the BSS criteria. Consequently, we need adaptive rules that will make B con-
verge to B* ~, A~!. The general form (gradient ascent) of these update rules,
depending of the method of separation that has been chosen, is given below.

e Simultaneous separation of the K sources
update, until convergence matrix B subject to the constrain that B(*) ¢
M(K) holds at each step:

B — BO 4, WABY) . (1.64)
e Sequential extraction of the K sources (deflation)

for i ranging from 1 to K, update until convergence the rows of B subject
to the constraint that B(*) € M(K) holds at each step:

bt — bl 4 uOADBY) . (1.65)
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e Partial separation of P < K sources
update until convergence matrix B such that B®) € MP*K holds at each
step:
B+ B 1 ,OABY) | (1.66)

In the above update rules u(*) is a learning rate parameter. Obviously, one
needs to find a suitable form for the pushforward term A(-). Clearly, A(+)
must depend on the evolution of C(+). If A(-) has the form of the gradient
of C(-) with respect to the elements of B, then the above rules are called
gradient ascent.

e geodesic optimization on the SO(K) manifold (global or deflation)

In order to limit the computational load, one may deal with orthogonal
BSS contrasts, and constrain B to be always kept on SO(K); then, only
K (K —1)/2 parameters have to be estimated. This is the so-called geodesic
search on the Stiefel manifold of special orthogonal matrices. For instance,
the above update rule for simultaneous separation must be modified such
that for each t, B(t) € SO(K).

According to the group structure of SO(K), the aforementioned constraint
always holds if, at each step t, the update rule is modified as

Bt+)  ROBO® | (1.67)

provided that R®*) € SO(K) and B(”) € SO(K).

Such a geodesic search can be done by using Jacobi rotations. Because of
the group structure of SO(K) [Plumbley, 2004], for any pair of matrices
B,G in SO(K) then GB € SO(K). Therefore a geodesic optimization
can be obtained by factorizing B as a product of rotation matrices, and
we can choose R(®) = G;)}(t) (i < j), where ij(t) is a Givens matrix. A
Givens matrix is a rotation matrix equal to the identity except entries
(Gglii =[Gl = cosa and [G§ij = —[G];i = sina. At each step, the
rotation angle «(t) is updated so that the criterion is increased.

1.7 BSS AND INFORMATION MEASURES

In the above subsection, various extraction schemes have been presented. As
explained in the introduction of the section, the independence measure is a con-
trast for the simultaneous approach only. In order to obtain deflation and par-
tial contrasts, we need another class of measures: the measure of information,
a quantity that will be defined and explained below, is a possible candidate to
derive contrast functions.
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1.7.1 Information measure

The ICA approach to BSS tells us that, in order to solve the BSS problem in a
simultaneous extraction scheme, one has to maximize an independence measure,
as stated by Corollary 3 p. 20. Another viewpoint is the following. Assume that
we can find a complexity measure of a signal, in the sense that the complexity
measure of a linear combination of signals is larger than the smallest complexity
measure of any of the individual signals, up to some normalization constraint
on the mixture weights. Intuitively, if such a measure can be found, it is rea-
sonable to think that minimizing the complexity measure of Zfil w;S;, up to a
normalization constraint of the form

(1.68)

with respect to w = [wn, ..., wx| would yield the source signal S; with the lowest
complexity measure. Yet another point of view is to consider the complexity
measure as a sparsity measure of w: the minimum complexity value is obtained
when w is the most sparse, i.e. has a single non-zero component, equal to the
above constraint value fixing the p-norm of w. Observe that throughout this
thesis, ||w|| is most often used instead of ||wl||2, for short.

The complexity measure of a signal, as informally described above, can be
thought of as a measure of the uncertainty of a process. It is a kind of information
measure in the sense that intuitively, the more complex the signal, the more
random the outcome; a large information is contained in the outcome since,
for an observer, the outcome was not easily predictable. Consequently, a low
information measure of a linear mixture of signals would thus mean that the
mixture contains few “basis signals” with low uncertainty.

An information measure of a random variable could be, for example, the
minimum number of bits needed to code the variable under constraint that the
outcomes are one-to-one (i.e. univocally) decodable. The higher is the minimum
number of bits required for the coding, the more complex is the underlying
signal; it seems reasonable that coding Y; = Zfil w;S; requires a larger number
of bits than coding the “simplest” variable S; if the S; are independent random
variables.

The information measure is the starting point of information theory, a field
concerning the mathematical aspects of preserving, transforming and transmit-
ting a message. Information measures are introduced in a very simple case in
the next subsection, to yield then the entropy concept.

1.7.1.1 Discrete introductory example and Hartley's formula

This section is inspired from the following books: [Rényi, 1966, Cover and
Thomas, 1991, MacKay, 2003].

Example 4 (Questions and Hartley’s entropy) As an introduction to the
information measure, assume that En is a discrete random variable with alphabet
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Agp(N)={0,1,...,N—1} and that Pr(Exy = j) = 1/N forallj € Ag(N), where
Pr(.) is a probability measure. We would like to know what is the information
of an observation of En. Let us suppose N = 8. The information measure of
En could be, for example, the minimum number of questions needed to find a
given number, say n, in Ag(8). Actually, the best strategy is to ask the following
questions [MacKay, 2003]:

e isn =47
e i5sn mod4>27?
e isn mod2=17

Then the minimum number of questions needed to find the seeked number is
equal to 3. This correspond to logy 8, which is Hartley’s formula of the infor-
mation amount of En; logy N is the minimum number of bits required to code a
number univocally in the set Ag(N) if the elements of Ag(N) are equiprobable.

According to Hartley, the information measure should satisfy ideally the follow-
ing axioms:

e Additivity: the information measure of Enj; must be equal to the sum
of the information measures of Ex and Ejp;. Indeed, the set Ag(NM)
can be decomposed in N disjoint subsets Ag(M)M), ... Ap(M)®N) each
containing M elements. Finding a number e € Ag(NM) can be man-
aged by first finding the subset Ag(M)U) including e (requiring log, N
questions, as given by Hartley’s formula) and then finding the number
in Ag(M)Y) (requiring log, M); the information measure of Exps equals
logo(NM) = logy N + log, M, and is thus additive.

e Increasing with complexity: The minimum number of bits required to code
bi-univocally Ex increases with N; the information measure of Exy is
larger than or equal to that of Ey.

e Normalization: the information measure of E5 is set to one, and this unit
is named “bit”, because it is the information measure contained in one bit.

It can be shown that log, N is the only functional satisfying the above axioms
(p. 498 of [Rényi, 1966]).

The above information measure log, N equals —log, 1/N, i.e. minus the log
of the probability that a uniform discrete random variable Exn with alphabet
composed of N elements takes a specific value. When the random variable is not
necessarily uniform and possibly continuous, the information measure is defined
as follows.

Definition 20 (Information measure) The information measure of a ran-
dom variable X with probability mass funciton px is defined by the quantity

log 1/px. (1.69)
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It satisfies all the above axioms. The information unit of the amount of informa-
tion is the “bit” (standing for Blnary digiT) if the base-2 is used; if the Natural
logarithm is used instead, the unit is the “nat” (for NAtural digiT).

1.7.1.2 Information and entropy

Assume that Xq,...,Xy are discrete i.i.d. random variables drawn from a
pdf px with alphabet Ax. We can define the average information measure
—-1/N Zf\il log px,. From the Asymptotic Equipartition Property (AEP) [Gray
and Davisson, 2004, Gray, 1991, Cover and Thomas, 1991], this converges in
probability to —Elogpx when N — oco. The quantity —Elogpx is called (dis-
crete) Shannon’s entropy [Shannon, 1948]:

Hpx] = - > Pr(X=z)logPr(X =) (1.70)
r€Ax

= - Z px(z) log px (z) (1.71)
reAx

= E[log1/px] . (1.72)

If X is a random variable with pdf px, we note H(X) = H[px].
Shannon’s entropy is thus the expected information measure of a random
variable. It is a remarkable quantity satisfying, among others, the following:

o H(-) >0,

e H(Xy,...,Xk) < Z H(X;) with equality if and only if X; are independent,
i=1

o H(X) < logf[Ax] with equality if and only if px is the uniform pdf.

The following statistical meaning of H shows the key role played by this quantity:

Theorem 4 (Source Coding Theorem) In average, if an experiment is re-
peated many times, we need more than H[px]| and only arbitrarily more than
Hlpx] + 1 bits to code the results of an outcome of a random variable with pdf

Px-

Shortly, the proof of this theorem relies on the fact that a one-to-one decodable
binary code needs necessarily more than H(X) bits (from Kraft inequality) and
that there exists such a code requiring less than H(X) + 1 bits; this code assigns
to each element e; € Ax a binary codeword of length [—log, p;] where p; =
Pr(X = e;). By doing so, the average length of a codeword is — ", p;[log, p;].
This is illustrated in a simple example from [Cover and Thomas, 1991].

Example 5 (Optimal coding) Suppose we have a horse race with eight horses
taking part (the alphabet is Ax = {1,...,8}), and assume that the probability of
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winning of these horses are given by the vector
px =[1/2,1/4,1/8,1/16,1/64,1/64,1/64,1/64] .

We would like to find the optimal code for X, the winner of the race. The en-
tropy of the race, which is also by the Source Coding Theorem the minimum
number of bits to obtain a one-to-one decodable code for coding the outcome of
X, is 2 bits. Clearly, logy i[Ax] = 3 bits, which is the same number of bits
as the one given by Hartley’s formula, is a suboptimal coding scheme; attribut-
ing the same number of bits to each of the horses does mot necessarily lead to
minimize the code length of the winner of the race. By contrast, attributing a
codeword length of [—logs p;] bits to each horse would result in an optimal code.
Such a code can be obtained by giving to each of the 8 horses, the codewords
0,01,001,0001,000000,000001,000010,000011 respectively. A shorter code is as-
signed to more probable outcomes. In average, the codeword lengths are equal to
the entropy as in this example, [logs p;| = logs p;.

1.7.1.3 Extension to continuous random variables

The above section deals with discrete (alphabet) variables. However, the
entropy concept also applies to continuous variables by replacing the sum symbols
by integrals (in the sense of Riemann). This gives the so-called differential
entropy:

h(X)=hjpx] = - /2 o DX logpx(@)da
= Ellog1/px] - (1.73)

The differential entropy is also called Shannon’s entropy or abusively entropy, for
short, when no confusion is possible. In spite of this apparent similarity between
h and H, the latter has a rather different behavior. The differential entropy h is
sensitive to the scale of the random variable; H was not since it only depends on
the probability of the values of the random variable, which are not sensitive to
the scale of the variable, and not on the possible values of the random variable
itself. Similarly, while H is always positive, h may be negative, depending of
the variance of the random variable. This directly results from the following
property of the differential entropy:

Proposition 3 Let X be a continuous random vector with finite differential en-
tropy and Y = BX + p where B is a matriz and p a vector. Then:

h(Y) = h(X) + log | det B| . (1.74)

The entropy h is thus shift-invariant but scale sensitive. Observe that

h (X/\/Var[X]) = h(X) — %logVar[X] (1.75)
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is invariant under scaling.

This comes from the expression giving the density of a linear transformation of
a random vector:

p(Y) = (B ) (1.76)

Hence, provided that | det B| is sufficiently close to zero (compared to the finite
quantity h(X)), then h(Y) < 0. Similarly, provided that | det B| is large enough,
h(Y) can be arbitrary large. However, under a power constraint on the random
variable, it is possible to find the density with maximum (differential) entropy
h[-].

Theorem 5 (Maximum entropy pdf) Let X € RY be a zero-mean random
vector with covariance matriz Xx = Cov[X]| and ¢y the multivariate Gaussian
density of any zero-mean Normal vector of same dimension and covariance ma-
triz as X. Then h(X) < h[py] with equality if and only if px = ¢x almost
everywhere.

Proof: Let us note that

Dy (X) = M{me_ﬁxlx (1.77)
Then:
0 < KL[px|/¢x] (1.78)
= —h(X)—/pxlogd)x (1.79)
9 onx) - [ éxlogex (1.80)
g —h(X) (1.81)

The equality (a) results from the fact that Ep [-XTE;'X] = Eg [-XTE5'X]
implying [ ¢x log ¢x = [ px log ¢x.

O
Simple algebraic manipulations show that h[gy] = 1 log((2me)™ det Xx).

1.7.1.4 Information gain and Mutual information

It could be reasonable to understand the mutual information (MI)

K
pvll Hpvi] (1.82)

=1

KL(Y) = KL

as the difference between the sum of information contained in each of the random
variables Yi,...,Yg and the information contained in the joint set of these
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random variables, that is, the information contained in the random vector Y =
Yi,...,Yg]T.
Then, for such an information measure, say Q(.), we could write

KL(Y) = Z Q(Y:) —Q(Y) . (1.83)

The functional @ can be found directly from the definition of the mutual infor-
mation:

K
KL pY||HpYL] = /le,.,YK(?/h~7yK)IngYl,.,YK(ylmyK)dyl~--d?JK
=1
K
f/pvl,.,vk(yl,~,yK)longvi(yi)dy1...dyK (1.84)
=1
(@) =
a
= Eyllogpy] - ) / Py, (yi)log pv, (yi)dy; (1.85)
i=1"Yi
K
= ) Ey,[log1/py,] — Ey[log1/py] . (1.86)
=1

Note that equality (a) comes from the marginalization on the joint density. From
the above equation and Eq. (1.83), it results that we can choose Q(.) = h(.)
where h is the differential entropy, defined as in Eq. (1.73).

Another viewpoint is to consider KL([X, Y]) as the gain of information of one
random variable resulting from the observation of the other. Let us define the
conditional entropy of Y = [Y1,...,Yk]T given Y;, 1 <k < K as

h(Y[Yy) = Ey[logpyjy,] - (1.87)

Then, by using the mathematical definition of the marginal, joint and conditional
entropies, the mutual information between X,Y is

KL([X,Y]) = h(X)+h(Y)-h(X,Y)
= h(X) - h(X]Y)
h(Y) — h(Y|X) , (1.88)

where h(X) (resp. h(Y)) represents the uncertainty on the outcome of X (resp.
Y) and h(X]Y) (resp. h(Y|X)) represents the uncertainty on the outcome of
X (resp. Y) knowing the outcome of Y (resp. X). If the variables are inde-
pendent, observing Y = y does not modify the uncertainty on X so that the
gain KL([X,Y]) is zero. The gain is positive otherwise. This generalizes to
more that two random variables (chain rule for the entropy, resulting from the



36 BSS AND ITS RELATIONSHIP TO ICA

h(X,Y)
h(X]Y)
/
h(Y)
Figure 1.1.  Venn diagram: relationships between entropies and mutual information.

definitions [Cover and Thomas, 1991]):
K
KL(Y) = > h(Y;)—h(Y)

(Yi) = (h(Y1) +h(Y2|Y1) + h(Y3]Y1,Y2) +---)

I
<ij

=1
K K

= > h(Y) = h(YilYr,..., Yi) (1.89)
=2 =2

This also shows the additivity nature of the entropy as an information mea-
sure: the information contained in the random vector Y is the sum of the infor-
mation contained in one of the K random variables, say Y1, plus the information
brought by another one (say Ys) given the first one, etc. In other words, the
information brought by a new variable in the random vector equals the infor-
mation of this variable knowing all the other ones already contained in Y; this
information equals the information of the random variable if and only if it is in-
dependent from all the other components of the random vector. More explicitly,
if Yy, is known, the remaining uncertainty on Y reduces to h(Y|Yy):

h(Y) —h(Yr) = —Ey[logpy]+ Ey[logpy,]
= Ey[long’“]
Py
—Ev [Py, Y Ve Y Yl YLy Uk 15 Ykt 1y - - -5 Vi |Yk)]
— h(Y[Ys) (1.90)

Figure 1.1. gives a Venn diagram showing the relation between marginal and
conditional entropies, joint entropy, and mutual information.

Remark 2 (Entropy, information and uncertainty) On the one hand
h(X) is the information measure of an outcome of X and, simultaneously, a
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measure of the uncertainty of X; how can that be possible? This is not, actually,
a contradiction. Assume X is a Bernoulli random variable, taking the value 1
with probability p and 0 with probability 1 — p, with 0 < p < 1. Clearly, if p=10
(resp. p = 1), H(X) = 0. The uncertainty contained in the variable is zero,
which seems natural, and simultaneously, the outcome X =0 (resp. 1) does not
contain any information since there is mo other possible value for the random
variable. If p is close but different from 0 (resp. from 1), the uncertainty of X is
low; we can predict, with a relatively high confidence, that X =0 (resp. X =1)
will be observed: the information given by an outcome is thus quite useless, since
one can guess it with a high confidence. If, on the contrary, p = 1/2, then it is
very difficult to know in advance which value will be observed for X; the informa-
tion provided by an outcome of X is thus really useful since it is very difficult to
predict. It is thus convenient to understand (intuitively) the “information mea-
sure” as the information needed to predict reliably the outcome of X, the higher
is the randomness of a system, the larger is, for an observer outside the studied
physical system, the “lack of information about the state of the system” and thus
the larger is the amount of information needed to guess the outcome of a given
event; the entropy is precisely the averaged information. For more details about
the meanings of entropy, we refer to [Brissaud, 2005, Arndt, 2004, Balatoni and
Rényi, 1976].

Remark 3 The KL divergence (also called relative entropy) is a divergence mea-
sure between densities, but can also be seen as a relative information measure.
From [Mourier, 1946], two densities differ more or less from each other accord-
ing to how difficult it is to discriminate between them with the best test. Let
H;, i € {1,2} be the hypothesis that x was drawn from the density p;, then
log % is the information in x for discrimination between Hy and Ho [Kullback
and Leibler, 1951]. Hence, the mean information for discriminating between the
H,;’s per observation from a subset € C Qy is

fwef p1(z)log g;gi; dx

1.91
Jce () 1oy
if fzee pi(x)dz > 0 and 0 otherwise. For & =y we recover the KL:
p1()
z)lo dr = KL . 1.92
[, pretos 2 e = Kifpa 2] (1.92)

1.7.2 Entropy as a “complexity measure”

Let us now show that the entropy information measure can be seen as a complex-
ity measure as defined in Section 1.7.1. The reasoning relies on the fundamental
entropy power inequality (EPI).

Theorem 6 (Entropy Power Inequality (EPI)) Let S1,Ss be independent
random variables with finite entropy h. Then

92h(S1+52) > 92h(S1) + 92h(S2) ; (1.93)
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with equality if and only if both S; follow the Normal law.

This theorem first appeared in [Shannon, 1948], but it seems that the first
formal proofs are due to [Stam, 1959] and [Blachman, 1965]. It is also interesting
to have a look at [Verdu and Guo, 2006] in which a very simple proof of this
theorem, exploiting the relationships between mutual information and minimum
mean-square error in Gaussian channels, has been recently proposed.

It comes immediately that the following corollary holds:

Corollary 4 LetSy,...,Sk be independent random variables with finite entropy
and K > 1. Then

K
92h(2(L,S)) > 222}1(51) , (1.94)
i=1

with equality if and only if all the S; follow the Normal law.

Proof: The proof of this corollary consists in first observing that 92h(5/,S:) >
92h(51) 4 22h(2i255) gince S, is independent from Zszz S; (by the converse form
of the Darmois-Skitovitch Theorem, Theorem 2 p. 12). The equality is at-
tained only if S; and ZfiQ S; are Normal random variables. But from the EPI,
92h(2i28:) > 92h(S2) 4 92h(Z{LsS) for the same reason as above with equality
if and only if both S, and ZZK:?) S; are Gaussian random variables, leading to
22h(Z%,5:) > 22h(51) 4 92h(S2) +22h(2:50) in which the equality holds true if and
only if S1,S5 and ZZK:?, S; are Gaussian. One concludes the proof by iterating
this result (by recurrence).

O

This theorem is the keystone for proving the intuitive nature of the complezity
measure of the entropy, stated in the following lemma.
Let us define S(K) to be the set of K-entries unit-norm vectors:

S(K)={weR":||w|=1} . (1.95)

Lemma 5 Consider the K-dimensional vector w € S(K) and S =

[Si,...,SKk]T, where at most one of the sources is Gaussian. Then, the global
minimum of h(wS) if reached when and only when w = tey, k € argmin h(S;).
ie{l,...,.K}

Proof: The proof consists of two parts. First, assume that ||w||. = ||[w]|, that
is, wS is equal to one source (up to its sign), say S;. Then, clearly, h(wS) = h(S;);
this quantity is minimum if j corresponds to the index of one of the sources with
minimum entropy.

Suppose now that at least two entries of w are non-zero, and that I(w) is the
set of the indexes of these non-zero elements:

I(w)={ic{l,...,K}:w; #0} , (1.96)
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with #{I(w)] > 2. Then, noting that at most one source is Gaussian, the strict
inequality holds true in Corollary 4 and we get

22h(WS) — 22}1(2,;61(“,)11}1513) > Z 22h(wisi)
iel(w)
@ 3 2250 Hos i)

iel(w)

— Z 2211(Si)210g w?
iel(w)

= ) w2 (1.97)

iel(w)

where (a) results from Property 1.74 (p. 33). Clearly, since the logarithm is a
strictly increasing function, the last expression reduces to

1
h(wS) > 3 log, Z w?2?hGS) | (1.98)
i€l(w)
But since ||w|| = 1, we have
wi=1- Y w} (1.99)
i€l (w)\{4}

for all j € I(w), and in particular for j = k' where

K e argll(ni? h(s;) . (1.100)
rel(w

Then, it comes by definition of &’

Z wi222h(5i) — 22h(Sk/)+ Z w?(22h(si) 722}1(5}9’))
i€l (w) i€l (w)\{k'}
>0
(1.101)
and finally
1
h(wS) > log, (22h<5w>)
> h(Sk) (1.102)

since I(w) C {1,...,K}.
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Clearly, Lemma 5 is the starting point for looking at BSS criteria based on
information measures. They could constitute a wide class of BSS contrasts. We
shall focus on information measures called r-th order information measure or
Rényi’s information measure. The definition of this class of information measures
is the purpose of the next subsection.

1.7.3 Generalized information measures

Rényi’s entropy is a generalization of Shannon’s in the sense that both share the
same key properties of information measures [Rényi, 1976a]. It is defined as

Hy[px] = 5 i ~ log ( > p%($)> : (1.103)

TEAx

where r > 0 (the non-negativity of Rényi’s exponent is always assumed through-
out this work even if not explicitly mentioned). As for Shannon’s entropy, we
note H,.(X) = H,[px] if X follows the density px. To see where does this extended
form of information measure come from, observe that in the general theory of
means [Aczel, 1948, Hardy et al., 1934], the mean of the real numbers z1,...,z,
with respective weights w1, ... w, (w; >0, and Y., w; = 1) is an expression of

the form
9! (Zwm(xi)> : (1.104)
=1

where the usual definition of mean of the z; is obtained for ¥ being any linear
function and w; = 1/N. Hence, the general average of information measure,
noting p; = Pr(X = x;) is

9! <§n: piv(log 1/pi)> . (1.105)

But in order to preserve the additivity property of the average information mea-
sure axiom, ¥ cannot be arbitrary. It can obviously be linear (it corresponds then
to Shannon’s entropy H defined in Eq. (1.72)), but it can also be an exponential
functional [Rényi, 1976a]. The quantity H, is obtained by taking 9(z) = 2(1=")*
or ¥(x) = e1=")7 depending on the log being the base-2 or natural logarithm
(i.e. if the entropy is expressed in bits or in nats).

Just as for Shannon, we can extend the discrete Rényi entropy to continuous

densities: .

1—r

h,[px] = log/ pk(x)dx | (1.106)
Q(X)

where r > 0 and Q(X) is the support (set) of the random variable X. As usual,

we note h,(X) = h,[px] if X has the density px. Rényi’s entropy satisfies the

following [Cover and Thomas, 1991]:
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e lim, 1 h,(X) = hy(X) = h(X);

e lim, o h,(X) = ho(X) = log u[2(X)] where u[.] denotes the Lebesgue mea-
sure;

e Rényi’s entropy is continuous and decreasing in r [Lutwak et al., 2005,
Ben-Bassat and Raviv, 1978];

e As for Shannon’s entropy, if «, 3 are two scalars and My, My two K x K
matrices:

By (X + ) = h,(X) +log la] ,
h, (M1 X 4+ My) = h,(X) + log | det My | .

Proof: Tt is easily checked that Rényi’s entropy is not sensitive to translation.
Regarding the scaling, we have from Eq. (1.76)

1
hr (M1X) = log / pyMlx(M1X)d(M1X)
1—r Q(M;X)

1 1
= 1 —————px(X) det M;dX
1—r 08 <~/Q(X) |detM1|TpX( ) ¢ ! >

o 1 . .
W log [ | det M, |1 / Pl (X)dX
1—r Q(X)
= log|det M;| +h,(X) . (1.107)

Note that equality (a) holds true even when det M[; < 0 since in this case, det M
is multiplied by —1 when the ad-hoc bounds of the integral have been suitably
swapped.

O
As a matter of fact, just as for Shannon’s entropy (see Eq. (1.75)):
1
h,(X/+/Var[X]) = h.(X) — A log Var[X] (1.108)

is a scale-invariant function of the random variable X.

In the sequel, Rényi’s entropy is either denoted h,(X) or h, o(X), € being
the support set of the random variable argument X (instead of Q(X) for short,
when no confusion is possible). It is possible to define an extended form of
Rényi’s entropy, called Extended Rényi’s Entropy (ERE), noted h, (X) , which
is defined as Rényi’s entropy except that the integration domain in Eq. (1.106)
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is the convex hull  of the support €2, that is the smallest convex set including

Q:
1
h, o(X) = log/ px(x)dz . (1.109)
’ L=r "Jax

However, the pdf is undefined out of Q(X). In order to deal with densities on
the whole real line, we set px (z) = 0 for all z € R\ Q(X). Clearly, the following
corollary holds true.

Corollary 5 The extended Rényi entropy satisfies the following:

h,6(X) = h.oX)=h(X)ifr>0
hyo(X) = hoa(X) =ho(X) with equality if and only if p[QX)] = p[QX)].

Proof The proof is straightforward. If » > 0, then, if the base-2 for the logarithm
is used:

1
boX) = plogd [ skt [ piads
1—r Q(X) QX)\Q(X)

1
= log ¢ 20— hr(X) 4 /_ 0" (x)dx
L—r QXN\QAX)

= h.o(X)=h.(X) . (1.110)

On the other hand, hg = log u[Q(X)] and

log {M[Q(X)] + /Q(X)\Q(X) dm}

= logul(X)] (L111)

ho,Q(X)

which is greater than ho(X) = hg o(X) with equality if and only if u[Q(X)] =
1[2(X)] as the log function is monotonic.

O

For more information on Rényi’s entropy, we refer to the monograph of [Aczel
and Daroczy, 1975].

1.8 ISSUES AND OBJECTIVES OF THE THESIS

In this chapter, the BSS task has been mathematically written and its solutions
were formulated in terms of non-mixing matrices. After having briefly recalled
the relationships between independence (and thus ICA) and BSS, it was ex-
plained that other contrast functions are needed, especially regarding the partial
and deflation procedures. Information measures derived from Rényi’s entropies
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seem to be interesting candidates, as shown for the specific Shannon entropy case.
The particular Shannon entropy has close relationships to mutual information
(as shown by Eq. (1.88)) and non-Gaussianity approaches, and have been al-
ready suggested for BSS. Sometimes however, only informal arguments are used
for justifying the use of entropy as a BSS contrast function for e.g. deflation (see
Section 2.2.2).

We are now able to introduce the original contributions of the thesis. Based
on Lemma 5, it has been explained that the opposite of Shannon’s information
measure is a good candidate for a contrast function (to be maximized); but what
about the more general class of Rényi’s entropies? This is a natural question
as it shares the same information measure properties than Shannon’s one. In
other words, we shall analyze if, generally speaking, the opposite of information
measures such as h,.(X) are contrast functions for simultaneous, deflation or
partial separation. Chapter 2 proposes a unifying investigation of the contrast
properties of h,(X), and formal proofs are provided when possible. Even if
some results exist regarding the contrast properties of Shannon’s entropy, the
particular cases ¥ = 1 and r = 0 of Rényi’s entropy will be considered before
trying to generalize the results to h,.. The reason for doing that is threefold:

e for being self-complete regarding entropic contrast functions,
e for giving alternative (and simpler) proofs of the contrast properties,

e for developing proof strategies that are extendable to the general case.

In summary, the next chapter will tell us if the global mazima of the criteria
based on h, i) if r = 1, ii) » = 0 or iii) in the general case r > 0 yield the
seeked sources, whatever the extraction scheme. An additional study is further
provided for the deflation and partial schemes: the analysis of the possible local
mazima of the criteria when the demixing matrix satisfies B ~, A~!, that is
when BA € WP*K: they are called non-mizing mazima. For instance, does the
contrast function has a local maximum point when any (subset of) the K sources
is extracted?

Chapter 3 will tackle another problem related to the BSS contrast functions.
It was explained in Section 1.6 that when maximizing some particular criteria
(such as the ones based on information-theoretic criteria), non-algebraic (i.e.
iterative) optimization techniques similar to those given in the last section have
to be used. The problem is that these rules converge to a local mazimum (if
it exists) of the function. But according to its definition, the global mazimum
of a BSS contrast must be reached in order to recover B ~ A~!. Therefore,
the maximization algorithm may be stuck in a so-called mizing mazimum, that
is a local maximum that does not correspond to an acceptable solution of the
BSS problem; the obtained matrix B is not in the set of P x K non-mixing
matrices WP>*K . Then, it is important to study the possible existence of the
local maxima to know if we can “blindly trust” the solution obtained by the
iterative maximization algorithm, that is if we have 100% confidence in the fact
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that the algorithm, that will converge surely to a local maximum, will converge
to a non-mizing point. The only way to be sure of the non-mixing specificity
of the attained maximum points is to use a criterion that has no mixing local
maximum. The BSS contrast functions that benefit from this nice behavior will
be called in the following “discriminant” BSS contrasts.

The last analysis will reveal a major advantage of hg o(Y;) regarding the ERE
with other values of r; the latter criterion reduces actually to the log-range of the
output Y;. Because of its theoretical and practical advantages, the use of this
criterion, as well as its estimation and extension to challenging BSS applications
will finally be addressed in Chapter 4.



CHAPTER 2

CONTRAST PROPERTY OF ENTROPIC
CRITERIA

ANALYSIS OF THE NON-MIXING MAXIMA

Abstract. In this chapter, we are interested in analyzing the contrast prop-
erty of generalized information measures that have been proposed in the litera-
ture for solving the BSS problem. More specifically, we focus on the (possibly
extended form) of Rényi’s entropies, noted h, (Section 1.7.3, Eq. (1.106)). The
analysis in this chapter focuses on the non-mixing maxima of these criteria as
a function of the demixing matrix elements. Two kinds of non-mixing maxima
are analyzed:

e First, the global maximum points of the criteria are analyzed. These points
are related to the contrast function property in the sense that they should
correspond to transfer matrices W = BA that are non-mixing (W ~,, Ix).

Some of them are already known but we remind them here, as well as some
tools for proving the contrast property easily, when possible. In some cases,
counter-examples are used to show that a given criterion is not a contrast
function.

e Second, we focus on the less known local non-mixing maximum points of
the criteria.

Yet another kind of maximum points exists: the mizing mazimum points (cor-
responding to transfer matrix W »,, Ix). They shall be investigated separately
in Chapter 3.

45
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Contribution. Author’s contribution is divided in two classes, for clarity.
First, the results about the contrast properties of entropic criteria are summa-
rized. Next, the mathematical tools that have been developed in order to perform
the above analysis are listed.

e Results about the local and global optima of entropic criteria

— Shannon’s entropy was proved to lead to a contrast function for
simultaneous separation (see [Comon, 1994]). It was then used in a
deflation scheme, but we were not able to find a pioneering reference.
We note that Hyvarinen proved in 1998 that this method sounds
for specific approximations of Shannon’s entropy [Hyvérinen, 1997].
This is proved here for the exact Shannon entropy based on the EPI.
Similarly, Shannon’s entropy is proved to have a local minimum point
under a fixed variance constraint when this output is proportional to
a non-Gaussian source, based on a Taylor expansion. Pham showed
that the partial separation criterion reaches a stationary point when
a subset of sources is extracted [Pham, 2006a].

— The range-based criterion was proposed to be a contrast for si-
multaneous separation in [Pham, 2000], and then for deflation un-
der prewhitening (orthogonal deflation contrast) [Cruces and Duran,
2004]. Tt is shown here that the range yields contrast functions for
the three deflation schemes, even without prewhitening. Furthermore,
under a fixed variance constraint on the outputs, it has a local min-
imum point when the output is proportional to a source. In partial
separation scheme too, the related contrast reaches a local maximum
point when the rectangular demixing matrix is subPD-equivalent to
the inverse of the mixing matrix.

— In a more general way and in a mimetic manner compared to Shan-
non’s entropy, Rényi’s entropies were conjectured to be contrast
functions [Erdogmus et al., 2002a]. It is proved here that they are
not, generally speaking, contrast function if Rényi’s exponent is not
set to zero or one, neither for deflation separation, nor for simulta-
neous separation. By contrast, we show that Rényi’s entropy admits,
under a fixed variance constraint, a stationary point when the out-
put is proportional to a source; but the kind of this stationary point
(minimum/maximum) depends on the value of the Rényi’s exponent
and on the source densities as well.

e Tools and other results

— A Taylor expansion of Rényi’s entropy is proposed;

— Rényi’s entropy is proved to not be a superadditive functional: some
counter-examples of source density exist for every value of Rényi’s
exponent (other than 0 and 1) within the exponential family, even in
the simple case involving two sources sharing a same density;
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— An extended form of the Brunn-Minkowski inequality was given (not
in the sense of the dimensionality, but in the sense of the “iff” state-
ment for non-convex sets).

In this chapter, all the proofs are original. Some of them result from joint
work with D.-T. Pham.

Part of the material presented in this chapter was or will be published in the
following papers (see Appendix B, p. 279): JP1, JA1 (results about Shannon’s
entropy) JA2, JA3, ICB6, ICP10(results about the support and the range) JS1,
ICTBS1 (results about Rényi entropies).

Organization of the chapter. The chapter is organized as follows. After
having reminded useful results for building BSS contrast functions, we study two
specific cases of extended Rényi’s entropy (ERE): Shannon’s entropy (r = 1) and
the Lebesgue log-measure of the support convex hull, also known as the “range”
(r = 0); they are addressed in Section 2.2 and Section 2.3 respectively. Then,
in Section 2.4, the extended Rényi entropy (ERE) is analyzed in its generalized
form, without a priori fixing the value of » > 0, r £ 1. The proofs are relegated
to an appendix at the end of the Chapter for clarity (Section 2.6).

2.1 SOME TOOLS FOR BUILDING CONTRAST FUNCTIONS

The first method that comes in mind for showing that a criterion is a BSS
contrast function for simultaneous, deflation or partial separation is to look at
the contrast function definition, and to prove that the global maximum of the
criterion corresponds to non-mixing transfer matrices. From Figure 2.1., this is
equivalent to check if a given functional f is in the set F¢ defined as the set
of functions matching the contrast function property. However, this might be
quite heavy in some cases. An alternative approach consists in verifying other
conditions implying the contrast property. For instance, a given functional is a
contrast if sufficient conditions that guarantee that the contrast property holds
are met. This is equivalent to checking if f is in a set Fe satisfying Fe C Fe. The
advantage of the second approach compared to the first one is that the latter
condition might be easier to check even if, in counter part, the conditions are
unnecessarily strong. This is illustrated in Figure 2.1.

The next subsection gives two results ensuring that specific functionals are
BSS contrast functions without analyzing the global maximum point of the func-
tionals.

2.1.1 From orthogonal deflation to orthogonal partial separation

Under some conditions, one can guarantee that a sum of deflation (D-BSS) con-
trasts yields partial (P-BSS) and/or simultaneous (S-BSS) contrasts. This was
stated and proved in [Cruces et al., 2004].
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Fe

Figure 2.1. If f € Fe then f € Fe and the functional is a contrast function as
sufficient conditions are met.

Theorem 7 (Cruces, Cichocki and Amari) Let us give K constants oy >
as = ... 2 ag and a deflation contrast C(-) (in the sense of Def. 13, p. 21)
satisfying the following properties:

e C(b) = 0 with equality if and only if bX is Gaussian;

e C(-) satisfies a weak form of strict convexity: if Y1 = Zfil W1;S; and
Zfil W2, =1, then

K
C(by) <Y WEC(e;A™) (2.1)

where, for C(by) > 0, the equality holds true if and only if by < e; AL,
Assume further than the sources are ordered with respect to this contrast as

C(elA_l) > .2 C(epA_l) > C(ep+1A_1) > .2 C(eKA_l) (22)

Then, if C(epA™") > 0, the objective function
P
C(B) = Z a;C(b;) subject to Cov[Y] =1Ip (2.3)
i=1

is a P-BSS contrast function whose global mazima correspond to the extraction of
the first P sources from the mixture. If, additionally, C(e; A1) > ClesA™1) >
...>ClepA™Y) and a; > ag > ... > ap then the global mazimum is unique
and corresponds to the ordered extraction of the first P sources of the mizture,
i.e. the global maximum yields Y = [S1,...,Sp|T if A7 (i.e. Cov[S] =1p) holds.

Several comments can be formulated about this theorem.

Remark 4 Note that it is further assumed in this theorem that the mizing matriz
A is orthogonal; this is equivalent to suppose that the miztures have been whitened
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by a whitening matriz V. and that A has been replaced by VA. In other words,
the obtained partial contrast is actually an orthogonal partial contrast since:

CovlY] = 1Ip (2.4)
= E[BAS(ABS)"] (2.5)
= BCov[X|B" (2.6)
Ix
= BB". (2.7)

Clearly, the obtained criterion is an orthogonal S-BSS contrast if P = K.

Remark 5 Note that if the «; take different values, the obtained “contrast”
becomes sensitive to permutation. Observe further that the permutation problem
is not solved, it is only constrained to be no more arbitrary: the sources S; are
ordered with respect to their deflation contrast value, not necessarily up to their
initial order in S (if this notion makes sense, which is not clear at all as it is a
simple mathematical notation). Finally, regarding the scale indeterminacy, we
remind that it is only avoided because the sources are supposed to be known (by

Az).

Remark 6 We should probably point out the fact that the equality “Y =
[S1,...,Sp]T7 is too restrictive. If the contrast is sign-invariant, if a global
mazimum exists at Y* = [S1,...,Sp]T, then a local maximum should also ex-
ist at e.g. —Y*, provided that such an output can be obtained in spite of the
BBT = Ip constraint. Clearly, this is the case. An identity matriz of order
P in which a number of rows have been sign-inverted, noted M, would satisfies
MB(MB)T = Ip since M € O(P). Clearly, each component of BX equals a
component of MBX, but possibly only up to its sign.

Remark 7 It results from a quick look at the proof of the above theorem that
ClepA~1) > C(epy1A™1Y), a condition which indicates that P cannot be arbi-
trary chosen in {1,..., K}, is not necessary for the obtained global criterion to
be a contrast. If this inequality is not strict, the global maximum is attained if
the P sources with the larger value of the criterion are extracted. The estimated
sources are ordered with respect to their deflation contrast value; any pair of
sources sharing a same value of the deflation contrast can be permuted without
affecting the value of the global contrast.

2.1.2 Huber’s superadditivity concept: a simple tool for building
simultaneous and partial contrast functions

An additional interesting result, due to Pham in 2001, exists regarding the con-
trast function property of a criterion:
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Theorem 8 (Pham [2001a, 2006a]) Suppose that Q is a class II superaddi-
tive functional in the sense of Huber [Huber, 1985], i.e. that for any pair of
independent random variables X, Y and two scalar number o, 3:

Q(eX + ) = [|Q(X) , (Huber 1)
Q*(X+Y) = Q*(X) + Q*(Y) (Huber 2)

and the strict equality holds in the last expression if and only if X and Y are
Gaussian. Then, any criterion of the form

K

f7(B) =log|det B| = ) "log Q(b:X) , (2.8)
i=1

b; being the i-th row of B, is a contrast function over the set M(K) of full-row
rank K x K matrices for simultaneous separation. In other words, it reaches its
global mazimum point if and only if BA € W(K) or, equivalently, if and only if
B ~ A~L. Similarly , under the same condition on Q(.), any functional f(B)
of the form

P
1
/(B) = 7 log|det(BEXB™) — } log Q(b;X) (2.9)
i=1
where P < K, Xx = Cov[X] is the covariance matriz of X = AS, is a partial
contrast function over the set ME*E of full-row rank P x K matrices; it reaches
a global mazimum point only if BA € WFP*K or equivalently, only if B ~, A™1.

Remark 8 Note that in the above theorem, it is implicitly required that Q(-)
must be strictly positive in order that log Q(-) exists, and max(Q(X), Q(Y)) < occ.

Remark 9 Observe that in Eq. (2.9), one may freely replace | det(BEZxBT)| by
det(WW™T) with W = BA since

BSxBT = BAXs(BA)T ¥ wwT | (2.10)

and because WW'T is positive definite and the determinant of a positive definite
matriz is always positive.

It is easy to further characterize the set of the global maximum points of f(B)
(the first “if” in the “if and only if” expression is missing in the second claim of
the theorem): from A7 (i.e. ¥s =1I) and if the sources are ordered according to
Q) as

Q(S1) <Q(S2) < ... <Q(Sk) (2.11)

for the sake of simplicity, one gets the following corollary (the proof is given in
the Appendix of the Chapter, Section 2.6.1, p. 84).



SHANNON'S ENTROPY-BASED CONTRAST 51

Corollary 6 (Characterization of global maximizer set of f) Let us de-
fine P™ = min{i € {1,...,P} : Q(S;) = Q(Sp)} — 1, and PM = max{i €
{P,...,K} : Q(S;) = Q(Sp)}. The global mazimum points of f over the set
MPEXE gre the matrices B such that BA € W;XK, where WgXK c WPxK
is the set of matrices with exactly one non-zero element per row, at most one
non-zero element per column and with P™ rows having a single non-zero element
with column index in {1,...,P™}. The remaining rows have a single non-zero
element with column index in {P™ +1,..., PM}.

Example 6 Assume K =5, P =2 and Q(S1) < Q(S2) = Q(S3) < Q(S4) <
Q(Ss). Then, P, =1, Py = 3 and if we define

0 0 O 1 0 0 0 O
01000}’M2_{00100
we have W3*® = {TIAM;UTIAM, : TI € P(2), A € D(2)}. As another example

if K =5, P =3 and Q(S1) < Q(S2) = Q(Ss) = Q(S1) < Q(Ss), then P,
Py =4, and with

1 0000 10000
M;=|0100O0| My=|010UO0 0],
00100 00010
10000
M;=|0 010 0
00010

we have W3*® = {TIAM; UTIAM, UTIAM; : II € P(3), A € D(3)}.

As it will be shown further, Theorem 8 is very useful for showing the contrast
property of a given criterion of the form given in the theorem; it suffices to prove
Huber’s superadditivity of the functional () used in the criterion.

2.2 SHANNON’S ENTROPY CONTRAST

Shannon’s entropy is a criterion from which it is known that contrast functions
can be built. We briefly recall them here, and mention the theoretical arguments
used to prove the contrast properties.

2.2.1 Simultaneous approach

The contrast property of

K
Ch(B) = log|det B = > "h(Y,) , (2.12)

i=1
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B € RE*XK can be proved by two simple ways. First, it is known that the
opposite of KL(Y) = Zfil h(Y;) — h(Y) is a contrast function [Comon, 1994]
(this is easily checked from Proposition 2 p. 16 and Corollary 3 p. 20). Hence,
since h(Y) = h(X) + log|det B| from Eq. (1.74), —KL(Y) equals log | det B| —
Zfil h(Y;) up to a term not depending on B, and C;(B) benefits from the
same contrast properties as —KL(Y). A second simple way to prove the contrast
properties of Cj,(B) is to use Huber’s superadditivity of 2"() resulting from the
EPI theorem, Theorem 6 p. 38 (if Shannon’s entropy is expressed in bits, or eh()
if the nat unit is chosen instead) ; indeed,

K
Ch(B) = log|det B| — ) "log(2"")) . (2.13)

i=1

Obviously, all the non-mixing maximizers of the simultaneous contrast Cp, (B) are
global ones because the K x K non-mixing matrices are all PD-equivalent and
because a S-BSS contrast is invariant under PD-equivalence preserving trans-
forms. In the specific case where B is constrained to be in O(K), the orthogonal
version Cj-(B) of Cp,(B) simply reduces to — Efil h(Y;).

Remark 10 (From information theory to estimation theory) Mazimum
likelihood is a technique in estimation theory for finding the optimal value of a
model parameter O, in the sense that with this value of ©, the obtained model
makes the observations the most likely; with this value of the parameter, the prob-
ability that the outcome of the model yields the observed output is mazimized. If
B = A1, the probability of X can be rewritten as (see Eq. (1.76)):

K
px(X(t)) = [det B| ] s, (b:iX(1)) (2.14)

i=1

where S;(t) = b;X(t): b; is the i-th row of B. The likelihood of B is given by

N K

L®) =] (|detB| T vs. <bix<t>>> . (2.15)
t=1 i=1

Since argmaxg L(B) is equal to argmaxg 1/N log L(B), mazimizing the likeli-

hood is equivalent to mazrimizing

N K
log |det B] + 1/N > ) “logps, (Yi(t)) - (2.16)

t=1 i=1
This result is very close to the empirical counterpart Cp,(B) of Ch(B) as defined
in Eq. (2.12) but where the theoretical expectation is replaced by the sample mean

N K
Ch(B) =log|det B+ 1/N > > "logpy,(Yi(t)) , (2.17)

t=1 i=1
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except that the argument of the logarithm is the marginal density of S; evaluated
at the given outcomes b;X. Because the source densities are unknown, they have
to be, in practice, either a priori assumed or guessed from the samples. If the
criterion (2.16) is mazimized by guessing al each step ps, < Dy,, mazimizing
the likelihood is equivalent to minimizing the mutual information between the
outputs. Hence, if the log-likelihood reaches its mazimum value when B = A~1
as it should, then

K
1/NlogL(B) ~ —log|detA|—) h(S;) . (2.18)

i=1

In practice, when using the maximum likelihood estimation principle, the
source densities have to be guessed. Consequently, a natural question is the
following : “how rough can be the model of the source densities ¢”. Actually,
there exists a theoretical result which says that the maximum likelihood method is
very robust to a departure of the source densities model (called target densities)
from the true source densities. FExcept in some rare cases, it suffices to guess
the sign of a non-polynomial moment of the source (i.e. if its density is sub- or
super-Gaussian). More precisely, one can restrict the set of the target densities
to only two well-chosen densities for the estimator to be locally consistent when
one of them is used as the assumed source density. This is because whatever is
the true density, these functions yield opposite sign for the non-polynomial mo-
ment [Hyvarinen, Karhunen, and Oja, 2001]. The choice between these functions
can be done on-line, during the likelihood maximization.

To be complete, we point out without giving details that the maximum-
likelihood method is equivalent to the Infomax approach [Bell and Sejnowski,
1995]; this was shown in [Cardoso, 1997].

2.2.2 Deflation approach

2.2.2.1 The contrast property

The deflation contrast property of Shannon’s entropy is often badly under-
stood using the Central Limit Theorem (CLT).

Basically, the CLT states that the distribution (i.e. the cumulative distribu-
tion function, cdf) of the sum of a collection of random variables converges to
that of a Gaussian variable. Its simplest form deals with a sequence of i.i.d.
random variables (see e.g. [Gray and Davisson, 2004]).

Theorem 9 (Central Limit Theorem (CLT)) Let Xi,...,Xx be a se-
quence of i.i.d. random variables with finite mean p and variance o2 and common
distribution Px(x). Then,

K
Z(Xz — W)

i=1

Sk =

-



54 CONTRAST PROPERTY OF ENTROPIC CRITERIA

converges in distribution® to a zero-mean Gaussian random variables with vari-

ance o2.

In the above theorem, the convergence in distribution has to be well understood.

Definition 21 (convergence in distribution of Sk) Let Pg (resp. Ps, ) de-
note the cdf of S (resp. Sk ). Then the random variable Sk “converges in distri-
bution” to S if limk . Ps, () = Pg(x) for all x where Pg(x) is continuous.

Clearly, Sk in the above theorem resembles an arbitrary output Y; as Y; =
ZJK:l Wi;S;, where the S; are independent rv. However, we are facing a weighted
sum, i.e. a sum of rv W;;S; having possibly different variances. Moreover, a
major limitation of the theorem is that the summed variables may not have
different densities, but must necessarily share the same cdf. This requirement is
not really necessary as an extended form of the CLT (due to Lindeberg in 1922,
see [Feller, 1966, Rényi, 1966, Cramér, 1946]) allows one to deal with summed
variables having arbitrary densities (as well as arbitrary variances, i.e. arbitrary
mixture weights). Hence, the CLT matches our mixture model.

In our BSS context, it is thought that the CLT tells us that minimizing Shan-
non’s entropy (i.e. make the output “different” from a Gaussian, where entropy
is used as a ‘the non-Gaussianity index) gives the original, unmixed source sig-
nals (still under a fixed-variance constraint). However, this intuitive reasoning
does not constitute an absolute proof because the CLT is a limit theorem. To
our knowledge, there is no formal proof that, whatever the non-Gaussianity in-
dex (which is a concept that is not clearly defined), the finite number of samples
and the finite number K of sources (most often relatively few), the index will
decrease until a satisfactory solution is found.

Nevertheless, the suitable use of Shannon’s entropy for BSS can be proved
using the EPI which is definitely and fortunately not a limit theorem, under
fixed variance that is, under fixed norm for ||w|| because

K
Var[ws] = Y w?Var[s;] & [[w]? . (2.19)
=1

Indeed, remind that the following result can be proved in Lemma 5 (p. 38):
if h(wS) reaches its minimum value, then wX  S; for j € {argminh(S;)}.
k

Let us define the following criterion

1
Cn(b;) = 3 log Var[b;X] — h(b;X)

Y
— _h <Var[vi]> , (2.20)

LObserve that we can say that the distribution (resp. the characteristic function) of the
normalized sum converges to the distribution (resp. characteristic function) of a Gaussian rv,
but this may not be true for the pdf, as the summed rv might be discrete.
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whose maximization, with w; = b; A and thus Y; = w;S is equivalent to that of

Ch(Wi) = Ch(bi)

w;S
= —h|——| . 2.21
(«/Var[wﬁ]) (2.21)

Observe in passing that, from Eq. (2.19), Cy(w;) = —h (”“:‘V’—’HS) and does not
depend on the magnitude of the transfer vector w;.

Then, in order to prove that Cy(b;) is a D-BSS contrast, it is sufficient to
prove the associated contrast property of Cp(w;). This is clearly the case as

stated by Lemma 5 and the following corollary, which results from Eq. (2.19).

Corollary 7 Minimizing h(wS) subject to w € S(K) is equivalent to minimiz-
ing the unconstrained entropy h (WS/ \/V&Y[WS]) since both approaches consist
in minimizing the entropy of a unit-variance output with respect to the mizture
weights.

More concretely, we have proven the following theorem (see the related paper
of [Vrins et al., 2007b]).

Theorem 10 (Global maximum of Cj, deflation approach) Suppose that

Then,

argmasx Ch(w)={EX e, ..., T e} . (2.22)
w s.t. [[w] = A

Note that the minimization of h (Yi / \/Var[YiD is equivalent to the maxi-

mization of the negentropy index h[¢v,] — h(Y;); denoting by ¢x the density of
a centered rv with Gaussian density with same variance o2 of X, i.e.

1 —a?

ox) = s (2.23)
then
higy,] —h(Y;) = %log(Zﬂe) + %log Varl[Y;]

- <h (W) + 3 logVar[Yi])

Yl .
~h (W) + st . (2.24)

Let us now turn to the non-mixing local maxima of Cp,(w), under the w € S(K)
constraint.
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Remark 11 A natural question is the following: “what are the commections
between Shannon’s entropy (and more specifically, the EPI Theorem) and the
CLT?”. Answering this question is not an easy task, actually. Shannon’s en-
tropy is known to be a mon-Gaussianity index in the sense that the entropy of
a random variable is upper bounded by the entropy of a Gaussian variable with
the same variance, see Theorem & p. 34 (just like the absolute or square kurtosis
reach their minimum value for Gaussian functions under a fized-variance con-
straint). Sometimes, it is said that the “essence of the EPI is to express that the
sum of independent variables tends to be more Gaussian than each of the individ-
ual components” (see e.g. [Verdu and Guo, 2006]); if this reveals to be true, here
1s the seeked connection: the EPI would be a non-asymptotic form of the CLT, in
the sense that it holds for a finite number of variables. Unfortunately, we believe
that this viewpoint should be explained in more detail: the entropy is sensitive to
the variance and for independent random variables, the variance of a sum is the
sum of the variances of the random variables involved in the sum; the “increase
of entropy” corresponding to the difference 22h(5(5,8:) Zfil 220G5:) could thus
either result from a “‘Gaussianization” of the density shape of Zfil S; compared
to those of the individual sources (which correspond to the essence of the CLT),
but also from the variance increase, or both. Letting S = XX,S,, is the entropy
of S larger than each of the individual entropies because the entropy of the unit-
variance random variable S/+/Var[S] increases, because for all i Var[S] > Var[S;]
or because of a joint effect? Only the occurrence of the first situation would ex-
press a connection between EPI and CLT: entropy is a non-Gaussianity index
under a same-variance constraint. For instance comparing the entropy of two
variables with different variances does mot tell anything about how close their
distribution functions are from the Gaussian cdf, it is simply a non-sense !

We know from the CLT that (with a slight abuse of notation that has the
advantage to be illustrative)

1
lim  h(wS) = = log2me . 2.25
qim B(wS) = 5 log (2.25)
This result is not so strong as it is again a limit result in terms of (here) the num-
ber of sources. The hot question is the following: is this convergence monotonic
in §[I(w)]? This would solve a long-standing conjecture ! In the simplest case,
the answer has recently been proved to be positive: the entropy of 1/K Zfil S;

(where the S; are i.i.d.) is a non-decreasing sequence for every K [Madiman and
Barron, 2006, Artstein et al., 2004]. More specifically:

S1+...+SKk Si1+...+Sk_1
h{——|>h| ————— . 2.26
( VK ) ( K-1 ) (2.26)

This key result would clearly make sense to the naive CLT-based justification
to Shannon’s entropy contrast for deflation provided that it extends to non
i.i.d. wvariables (there exists a mon-i.i.d. wversion of the above result, but it
is more complicated to interpret). Note that a less general result (but more
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general than the CLT except about the i.i.d. assumption) showed that if the
S; are i.i.d. with pdf ps (and assume unit-variance to simplify the notations)
KL(wS,wS) < KL[pg||¢] where S is a vector with independent Gaussian stan-
dardized components. The inequality is strict unless ps = ¢ almost everywhere or
${I(w)] = 1. This means indeed that mizing Gaussianizes: if all the sources share
the same pdf, a given output is more Gaussian than a source in the KL-sense,
and even for finite K (this is the improvement compared to the CLT) [Zamir and
Feder, 1993].

For more details about the connections between the EPI and the CLT, we refer
the reader to the papers [Zamir and Feder, 1993, Madiman and Barron, 2006,
Barron, 1984, 1986, Artstein et al., 2004]

2.2.2.2 Non-mixing local maxima

In subsection 2.2.2.1, it was shown that the Shannon entropy-based criteria
for BSS is i) not sensitive to scaling and ii) reaches its global maximum point
if and only if the lowest entropic source has been recovered. But at this step,
nothing is known about the possible existence of non-mixing maximum points.

In order to check if a unit-norm vector w = e; is a local maximum point of the
entropy, we shall analyze a second order development of Shannon’s entropy. We
set |[w|| = 1 for convenience. The starting point is an expansion up to second
order of the entropy of a random variable Y slightly contaminated with another
variable dY, possibly dependent from Y, which has been established in [Pham,
2005]:

E [Var[6Y [Y]¢4 (Y) — (E[6Y[Y])'2]

h(Y40Y) =~ h(Y)+E[Yy(Y)dY]+ 5 . (2.27)
In this equation, ¥ is the score function of Y, defined as?
/ Y)
Y) = —(logpy(Y)) = ¥ 2.28

and py is the pdf of Y, ’ denotes the derivative (here, with respect to Y),
and E[-|Y] and Var[-|Y] = E[-?|Y] — E?[|Y] denote the conditional expectation
and conditional variance given Y, respectively. The score function satisfies the
following.

Property 4 For well behaved densities, the score is a zero-mean function,
satisfying E[Xvyx] = 1 and E[y] = E[%]. Furthermore, the inequality
E[y%]Var[X] > 1 holds with equality if and only if X is Gaussian.

This proposition is proved in Section 2.6.2, p. 84.

2In this work, we use the score function definition presented in [Pham, 2002]. However, several
authors define this function with the opposite sign. The reader should keep this difference in
mind.
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Theorem 10 (p. 55) tells us that Cp,(b) is a D-BSS contrast. Based on the next
theorem, Corollary 9 states the complete extraction property of the contrast.

Theorem 11 (Subset of local maximum point of Cj,(w)) The constrained
entropy h(wS) s.t. w € S(K) reaches a local minimum at w = *ej, i €
{1,..., K}, the j-th row of the K x K identity matriz, if S; is non-Gaussian,
or a global maximum otherwise. In other words, the criterion éh(w) subject to
the ||w|| = A constraint is stationary when w € {£Xe1,... = ek }. Further, if
argmax(-) (resp. a?gr;gn()) denotes the set of local mazimum (resp. minimum)
points of - and I denotes the set of indexes of the Gaussian sources,

argmax  Cp(w) 2 {#+Xe;j:ie{l,...,K}\Ig} , (2.29)
w st ||lw] =X

and

argmin Ch(w) ={£Xe; :i €I} . (2.30)
w st ||w| =X\

The proof of this Theorem is given in the Appendix of the Chapter, in Sec-
tion 2.6.3 (p. 86). Note that, by Theorem 10, the global maximum of Cj(b) s.t.
[lw]| = A is reached at +Ae;, where k € argmin; h(S;).

2.2.3 Partial approach

Proving the partial contrast property of

P
Ch(B) = log|det(BExB™)| = > h(Y;) , Be R"*K (2.31)

i=1

is immediate. This results from the superadditivity of @ = 2"), which is a
consequence of the EPI given in Section 2.2.1. The notation of the entropic
partial contrast is the same as the simultaneous one because they are identi-
cal when P = K in this case, maximizing log|det B| — Zfil h(Y;) is equiv-
alent to maximizing logdet(BXxBT) — Efil h(Y;) with respect to B since
1log|det(BExBT)| = log | det B| + cst. A recent result [Pham, 2006b], recalled
in the next theorem, states the stationarity of

P
Ch(W) = logdet(WWT) =3 "h(Y;) , W =BA € RPK (2.32)

i=1
at non-mixing points.

Theorem 12 (Subset of stationary points of C,(W)) The non-mizing ma-
trices W € WEP*E qre stationary points of (fh(W) More precisely, these ma-
trices W are local mazimum points of the criterion if none of the w;S (that are
proportional to distinct sources) is Gaussian.
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To see how this result extends to the non-mixing points of Cj,(B), observe that
both criteria are equal up to a possible constant term:

log|det(BEXxBT)| = log|det(BAXs(BA)T)|
= log(det(WWT)det )
K
= logdet(WWT) + ZlogVar[Si] . (2.33)
i=1
The last equality results from the diagonal form of matrix s (equal to the

identity matrix if the independent sources have unit variances). Note that the
absolute values vanish as both WWT > 0 and ¥g > 0. In particular, we have

argmax C,(B) = argmax Cn(BA) (2.34)
BeMPxK B:BAcMPXK

Hence, we have the following corollary.

Corollary 8 (Subset of stationary points of C,(B)) The demizing matri-
ces B ~, A~ are stationary points of Cr,(B). More precisely, these matrices B
are local maximum points of the criterion if none of the b;X (that are propor-
tional to distinct sources since B ~,, A=1) is Gaussian.

Remark 12 The first result suggesting the use of the opposite of the sum of the
marginal entropies of P < K outputs for the extraction of P < K signals can
be found in [Cruces et al., 2001]. However, in this specific case, the contrast
is orthogonal as the mixing matriz is supposed to be orthogonal, and hence the
demizing matriz B is forced to be semi-orthogonal, that is BBY = Ip implying
that so is W (see Remark 4 p. 48). This is also proved by the same authors in
[Cruces et al., 2004] by using the negentropy instead of the entropy. Negentropy
always satisfies the positivity requirement with equality if and only if the output
is Gaussian and the weak form of convexity results from the EPI. The result
obtained through Pham’s approach is more general in the sense that the constraint
1s included in the criterion.

2.3 MINIMUM RANGE CONTRAST

Shannon’s entropy was seen to be the extended Rényi’s entropy (ERE) with
r = 1. Another remarkable case of the ERE is hy q (see Eq. (1.109)). This
section aims at analyzing the contrast properties of this criterion.
2.3.1 Support and Brunn-Minkowski Inequality
Clearly, if Q(X) = p[Q2(X)], then

Q(aX) = alu[(X)] , (2.35)
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which shows that the first requirement of Huber’s superadditivity given in The-
orem 8 p. 50 is fulfilled. To prove the second requirement, we consider the
so-called Brunn-Minkowski Inequality (BMI) [Gardner, 2002].

Theorem 13 (Brunn-Minkowski Inequality (BMI)) If X and Y are two
compact convex sets with nonempty interiors (i.e. mesurable) in R, then for
any o, B > 0:

Vol/ K [aX + 8Y] > aVol /X [x] + aVol /K [y)] . (2.36)

The operator Vol[.] stands for volume. The operator “+” is defined on sets as
X+Y={z+y:z€ X,y Y} The equality holds when X and Y are equal up
to translation and dilatation (i.e. when they are homothetic).

In 1990, Dembo gave a simultaneous proof of the EPI and BMI theorems [Dembo,
1990].

We use here one-dimensional sets (the support of one-dimensional signals)
and the Lebesgue measure p].] as the volume Vol[.] operator.

Inequality (2.36) has been extended in [Costa and Cover, 1984, Cover and
Thomas, 1991] to non-convex bodies; in this case however, to the author’s knowl-
edge, the strict equality and strict inequality cases were not discussed in the
literature. Therefore, the following lemma, which is an extension of the BMI
theorem in the specific K = 1 case, states the conditions for the strict equality
to hold. A restricted form of this lemma appeared in [Vrins et al., 2006].

Lemma 6 (Extended BMI) Consider two independent bounded random vari-
ables X and Y. Suppose that p[QX)] > 0, p[Q(Y)] > 0, with Q(X) C R,
Q(Y) C R. Then:

UIQX + V)] > plQX)] + ul0Y)] |

with equality if and only if p[Q(X) \ QX)] = u[Q(Y) \ Q(Y)] = 0, where Q)
denotes the convex hull of Q(-), that is, the smallest interval including the one-
dimensional support Q(-).

The proof is given at the end of the Chapter, in Section 2.6.4 (p. 87). Clearly,
since the support measure is a positive quantity and since the second power is a
monotonously increasing mapping, the above lemma states the second require-
ment of Huber’s superadditivity given in Theorem 8 (p. 50).

2.3.2 Properties of the range

The range is a specific case of the support measure. The range R(X) of a random
variable X is the measure of the convex hull of Q(X):

R(X) = plQX)] (2.37)

implying R(aX) = |a|R(X).
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Then, considering the range criterion instead of the support is exactly the
same as working with the support if the source supports are convex sets. Ac-
tually, the range possesses a stronger property. Assume that X and Y are two
independent random variables, then, from the Extended BMI lemma:

R(X+Y) = R(X) + R(Y) . (2.38)

The last result can also be seen as a consequence of the fact that pxyy is the
convolution of px and py [Hirschman and Widder, 1955, Feller, 1966].

O

Because both R(X) > 0 and R(Y) > 0, Eq. (2.38) implies the strict superaddi-
tivity
R*(X+Y) > R*(X) + R*(Y) (2.39)
for any pair of independent bounded random variables X and Y. This results
from the strict equality in the Extended BMI lemma (Lemma 6).
Hence, one has:

K
R(b;X) = R(b;AS) = > [W;;|R(S;) (2.40)
j=1

The above properties will be useful for proving the contrast properties of
range-based criteria in the three extraction schemes (simultaneous, deflation and
partial separation).

2.3.3 Simultaneous approach

The minimum range approach for the simultaneous extraction of bounded sources
has been first introduced in [Pham, 2000]. The following criterion Cr(B) was

proposed:
K

Cr(B) = log|det B — ) log R(b;X), (2.41)
i=1
which has the same form as the one given in Theorem 8 (p. 50) with Q(-) = R().

As usual, this criterion has to be maximized with respect to the demixing
matrix B.

It has been shown in [Pham, 2000] that Cr(B) is a S-BSS contrast. Note
that the proof is trivial using the superadditivity of the range combined with
Theorem 8.

Similarly to the Shannon entropy-based criterion with W = BA, maximiz-
ing Cr(B) over the set M(K) of K x K non-singular matrices is equivalent to
maximizing

) K K
Cr(W) = log|det W| = 3 log | 3 Wi R(S;)] (2.42)

i=1 j=1
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also over M(K) because of Eq. (2.40) and log | det B| = log | det W|—log | det A|.
In particular,

argmax Cr(B) = argmax Cr(BA) . (2.43)
BeM(K) B:BAcM(K)

A point B maximizing Cp is related to a given point W maximizing Cr by the
relation W = BA.

2.3.4 Deflation approach

We present here our results showing that —R(Y;) can be used as a deflation
contrast if Var[Y;] is kept constant (these results can be found in [Vrins et al.,
2007a]). However, we would like to point out that another proof, based on infor-
mation theory, has been provided simultaneously and independently in [Cruces
and Duran, 2004] (see the related comment in Section 2.3.6).

Let us first observe that R(b;X) = R(w;S). Then, the range of the fixed

variance 7-th output equals w; ar|Y;| | = R(w; ar|Y;|, which does
i h Is R S/+/VarlY R(w;S VarlY hich d

not depend on the magnitude of Y;. Based on the above contrast forms, we define
the following criterion:

Cr(b;) = —R (biX/\/Var[biX}) . (2.44)

Clearly, maximizing Cr(b;) with respect to b; is equivalent to maximizing

Cr(wi) = —R (wiS/\/m) : (2.45)

where w; = b;A.

Note that the above denominators, that are equal to y/Var[Y;], can be omitted
if w; is constrained to have a fixed norm because of Eq. (2.19). In the following,
we omit the index of w as it does not matter if we focus on an arbitrary output
Y = bX = wS. Further, since R(Y) is not sensitive to the sign of the elements
of b, we can freely assume w € Vy where

Vi ={weRE st. [|[w||=X\ w() >0V 1<j< K} (2.46)

is nothing but the intersection of Rf with the centered K-dimensional sphere of
radius A. Consider now the following theorem.

Theorem 14 (Global maximum of Cgr, deflation approach) Suppose that
Then, for any vector w in VI)‘(, one gets

argmax Cr(w) = {\.e1,...,\.ex} .
wevy
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Proof: The proof is very similar to that of the Shannon entropy case by setting
2" — R and using the BMI instead of the EPI (see pp. 38 and 39). Recall that
I(w) is the vector containing the position indexes of the non-zero entries of w
(Eq. (1.96)); assume that wS is not proportional to a source, i.e. §{I(w)] > 2.
By the extended BMI, we have

R*(wS) > > wiR*(S:)
i€l(w)

YRS+ S wl(RAS) - R (SK))
iel(w)\{k'}

>0
> R*(S,) (2.48)

where k' € argmin, ¢ () R(S;) and p € {1,...,k}.

In the above chain of inequalities, (a) results from the |w|| = 1 constraint
(which is equivalent to assume Var[S;] = Var[wS] = 1). On the other hand, it is
obvious that in the §{I(w)] = 1 case, the strict inequality holds except if I(w) €
{1,...,k}. Hence, the strict equality case occurs if and only if I(w) € {1,...,k}
(implying #[I(w] = 1), i.e. when wS « S;, i € {1,...,k}.

O

Another proof is given in the Appendix at the end of the Chapter, in Section
2.6.5 (p. 89).

The above theorem guarantees that Cr(w) and Cr(b) reach their global max-
imum point when and only when one of the sources with the lowest range has
been extracted. Because of the scale invariance, one can set A = 1 in the analysis
of Cr(wS) even though the mathematical developments can easily be extended
to other values of \.

Theorem 15 (Subset of local maxima of Cr, deflation approach) The func-
tion Cr(w), subject to w € V3., admits a local maximum for w =e;, 1 <i < K.
In other words,

argmaxCr(w) D {e; i€ {1,--- ,K}} . (2.49)
WGV}(

Sketch of proof: Consider two vectors p € Vi, q € V), and let us introduce the
associate contrast difference ACgr(p,q) defined as:

ACr(p.q) = Cr(p) — Cr(q) - (2.50)

The proof shows that for any &; € Vj sufficiently close to (but different from)
e;, we have ACg(e;, é;) > 0. The detailed proof is given in the Appendix at the
end of the Chapter, in Section 2.6.6 (p. 90).
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Corollary 9 (Complete extraction) Assuming that the first p — 1 sources
have already been extracted; then, the global mazimum of CR(wp) subject to w), €
Vi and wyw? =0 for all1 < 7 < p is obtained for w, € {e; : Cr(e;) = Cr(ep)}.

By Theorem 15, we know that CR(W) s.t. w € V% reaches a local maximum
if w e {eq,...,ex}. Then, assuming that the first p — 1 sources have already
been extracted, a p-th source can be found by updating w, where w,(1) =... =
w,(p—1) = 0. Next, discarding the first p—1 sources and setting K «+ K —p+1,
Theorem 14 is used to prove that the global maximum of Cr(w), w € Vi equals
now Cr(e,) and is reached for w € {e; : Cr(e;) = Cr(e,)}, p <i < K.

2.3.5 Partial approach

This case is exactly similar to that of the simultaneous contrast, and from the
second claim of Theorem 8 (p. 50) with Q(.) = R(.), we define the following
contrast over MP*K (the set of P x K matrices with row-rank equal to P < K)

P
Cr(B) =logdet(BExB)" — ) "log R(b;X) , (2.51)
i=1

whose maximization is equivalent to the maximization of
Cr(W) = log det(WWT) — Z log [Z Wil R(S;)] (2.52)

over the same subset of RP*X (see Section 2.2.3 and Eq. (2.40)). In particular,

argmax Cr(B) = argmax Cr(BA) . (2.53)
BeMPxK B:BAcMPxK

Clearly, the contrast property combined to Corollary 6 (p. 50) with Q(-) = R(-)
tells us that the two above criteria reach their global maximum points if and only
if W=BA ¢ W}; *E where the last set is defined as in Corollary 6. However,
there is no information regarding the possible non-mixing local maxima of the
criterion, i.e. the local maximum points corresponding to W = BA € WF*K
(and not only in WH*K ¢ WPxK),

Even though it was true for Q(-) = 2", we do not claim that, generally
speaking, f(B), as given in Theorem 8 (p. 50), is locally maximized once BA €
WPXK "~ even under the class II superadditivity assumption on functional Q.
Nevertheless, this result holds true for the Q(-) = R(-) case, just as for Shannon’s
entropy power. This is indicated by the following theorem [Vrins and Pham,
2007], proved in the Appendix of the Chapter, in Section 2.6.7 (p. 91).

Theorem 16 (Non-mixing matrices are local maximum points of Cg)
The criterion Cr(B) admits a local mazimum at any point B for which BA €
WEPXK (ie. B ~, A1)
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Consequently, Cr(B) reaches a global maximum if and only if BA € WE*®
(Theorem 8 p. 50 and Corollary 6 p. 50) and a local maximum point if BA €
WEXK (Theorem 16).

Remind that the local maximum points W € WF*X are called non-mizing
because they correspond to non-mixing transfer matrices from S to Y and thus
to the recovering of P distinct sources. By contrast, the non-existence of mizing
maxima (i.e. the maximum points satisfying W € MP*E\ WFPXE) remains to
be proved. Such a property, addressed in Chapter 3, ensures the equivalence
between the local maximization of Cr(B) and partial source separation.

2.3.6 Support versus Range

As indicated in the beginning of Section 2.3.4, some results similar to those pre-
sented in the above subsection have been derived independently in [Cruces and
Duran, 2004]. In their paper, the authors use an information theoretic approach
to prove that under the ||w|| = 1 constraint, u[Q2(Y;)] reaches its minimum value
when Y; o S;. From this, one can conclude that —u[Q(Y;)] is a deflation con-
trast. Clearly, this extends to Cg(b;) since it is equivalent to apply —u[2(Y;)] on
sources with convex support. From this viewpoint, Cruces’ approach seems to
be more interesting, because more general. However, there is no a priori reason
to prefer using the support than the range. On the contrary, i) estimating the
support is generally speaking more difficult than estimating the range because
support estimation requires the computation of the extreme values of the rv (as
for the range) as well as the location of the possible holes inside the support (not
needed for the range computation), and ii) the range-based contrast benefits
from an interesting property (namely, the discriminacy property) not shared by
the support, as it will be shown in Chapter 3. This discriminacy property of the
range-based criterion (in the sense used in this work), which was not mentioned
in [Cruces and Duran, 2004] but first appeared in [Vrins et al., 2005a], shall be
proved by using a kind of proof similar to those used in the above subsection.

2.3.7 A tool for building a D-BSS contrast based on Huber

In Section 2.1, Theorem 7 (p. 48) gives a result for building an orthogonal par-
tial BSS contrast from deflation BSS contrasts and Theorem 8 (p. 50) gives
two results for building simultaneous and partial BSS contrast functions from
superadditive functionals. However, it is possible to extend the last results to

deflation contrasts. For proving that —h (Y/ \/Var[Y]) is a contrast function

for deflation, two properties of the entropy power 2"() have been used: the
EPI (Theorem 6 p. 38) and the fact that 2P(Y) = |a|2"Y). Therefore, since
—h(Y/+/Var[Y]) is a contrast, we have that for any strictly decreasing function

v, v [h (Y/ \/Var[Y]” is a contrast and we conclude the following:
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Corollary 10 Let Q(-) be a positive-valued class II superadditive functional in
the sense of Huber as stated in Theorem 8 (p. 50). Then, for any strictly de-
creasing real-valued function W,

7(b) = w [Q (bX/y/Var[bX] )| (2.54)

is a deflation contrast. In particular, taking V[-] = — log[-],
f(b) =1/2log Var[bX] — log Q(bX) . (2.55)
The global maximum is attained when w x ey, where k = argmin Q(S;), that

ie{l,...,.K}
is if bX o< Si. Note that the w € S(K) constraint implies Var[bX| = 1 under
the unit-variance assumption on the sources Ax.

The proof of the corollary is similar to the proof of Lemma 5 (p. 38).

Setting Q(-) = 2"(:) and ¥[z] = — log[x], we find the deflation contrast Cp,(b)
given in Eq. (2.20) (remind that (Huber 1) results from Eq. (1.74) and (Huber
2) results from the EPI theorem, Theorem 6 p. 38). Taking Q(-) = R(-) and
U[z] = —x, this proves the deflation contrast property of the range functional
given in Eq. (2.44), which was previously proved in Theorem 14 p. 62 (remind
that (Huber 1) results from Eq. (2.35) and (Huber 2) results from the BMI
theorem, Theorem 13 p. 60). By setting ¥[z] = — log[x], we recover the deflation
version of the simultaneous and partial range-based criteria given in Eq. (2.41)
and Eq. (2.51), respectively.

2.4 RENYI'S ENTROPY CONTRAST

The use of a generalized form of Shannon’s entropy, called Rényi’s entropy, has
been proposed in Information Theoretic Learning because of its computational
advantage on Shannon’s entropy for specific values of r # 1 [Haykin, 2000],
especially in speech [Flandrin et al., 1994] and image processing [Sahoo et al.,
1997] as well as clustering [Jenssen et al., 2003], feature extraction [Hild et al.,
2006a]. In particular, it has been proposed to solve the BSS problem [Erdogmus
et al., 2002a, Hild et al., 2001, 2006b]. The motivation for doing so comes from
the fact that support measure and Shannon’s entropy are two specific cases of
Rényi’s entropy (with r = 0 and r = 1, respectively), and that setting r = 2 may
help to simplify some calculations when Parzen windowing is used for density
estimation [Parzen, 1962]. Indeed, if the pdf p(z) is approximated by a sum of
N Gaussian kernels

—_
|
8
&
~
[ V)

H(z) = ——e : (2.56)

and

p(z) = ZN: W : (2.57)
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then
hy[p] = —log / p?(x)dx

—log/f)z(x)dx
a 8 ZZ 003 ¢ ag; ¢ 0 v

i=1 j=1

N N
1 i —
= 2logN —1 ¢ ;o (2:58)
e ;;%%a; Jor+a?

the integration vanishes because of the properties of Gaussian functions (see
Section 2.6.8, p. 92). The main problem of this approach is that theoretical
proofs ensuring that the sources will be recovered through the maximization of
a criterion related to h,., r ¢ {0, 1}, are lacking; the justification of considering
the general Rényi entropy as a BSS criterion is only based on simulation results.
By using this general Rényi’s entropy in BSS, several authors have implicitly
conjectured that this quantity (with any r > 0) is a contrast function.

However, the use of the functionals —hy and —h; yields to contrast functions,
because of the class II superadditive property of these functions (proved using
the BMI and EPI, respectively). Therefore, it was first our hope to find a
generalized form of these inequalities that would ensure that eP~(-) and /or ehral)
with arbitrary r > 0 would be a class II superadditive functional; if it was the
case, one could take Q(.) = e") or Q(.) = eM~2(). Unfortunately, we were not
able to find such a unifying theorem. Then, a more neutral point of view had to
be adopted: it is not a priori hoped that Rényi’s entropy based criteria, generally
speaking, can benefit from the contrast property. Instead of trying to prove that
Rényi’s entropy is a contrast, we shall check if some necessary conditions can
be violated, preventing Rényi’s entropy criteria to be contrast functions. In
the deflation case, the criterion evaluated at a point b* corresponding to the
extraction of the source with the lowest index value Q(.) (i.e. b*X o< S; where
J = argmin;eq; gy Q(Si)) must have a local maximum. Equivalently, for the
simultaneous approach, the related criteria must face a global (i.e. at least a
local) maximum at any point W € W(K). This study is handled in the next
section via a Taylor development of the criteria and analyzing the two first-order
terms. Note that as the r = 0 case has been studied separately, we can focus on
e Rg_, implying h, = h, o =h, q.

Q

2.4.1 Taylor development of Rényi’s entropy

In this section, we adopt a similar approach as in [Pham, 2005] to extend the
expansion of Shannon’s entropy to the expansion of Rényi’s entropy, which is
obviously supposed to be finite.
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Let Z be a random variable, possibly depending on Y, and € be a small scalar.
From the definition of Rényi’s entropy given in Eq. (1.106), it comes that Rényi’s
entropy of Y + €Z is

1
b (Y + €2) = = 1og [ By nl€)de (2:59)
where the density pyiez reduces to, up to first order in € [Pham, 2005]:
py+ez(C) = py(C) — €(E[ZIY = ylpy () ly=¢ + ole) (2.60)

In the above equation, we have used the “small o(.)” Landau notation, where
the argument is implicitly supposed to tend to zero: we say that a(x) = o(z) if
lim,_,o a(z)/x — 0 (i.e. a(x) tends faster to zero than z). Similarly, the “big O”
Laudau notation will be used in this work: a(xz) = O(z) means |lim,_,g a(z)/z| <
oo (as an example, 322 = o(x) and 2z = O(z)).

In Eq. (2.60), (E[Z]Y = ylpy(¥))'|y=¢ stands for the derivative of E[Z]Y =
ylpy (y) with respect to y evaluated at y = . Hence, noting that:

log(l+¢) =e+ole) ,

Praez(C) = DY (C) —repy  (Q(BIZIY = ylpy (1)) |y=¢ + o(e)
equations (2.59) and (2.60) yield

ho(Y +eZ) = m{/ L)

—_

- [ rent LY = v ()| —eds } + o0
= o [ pk(©e

1

_ e [ oy HOERZY = y]py( Wly=ed€ | |

+1_Tlog{1 [p%(€) }+ )
r—1 — !

- I OEEY = yle<y>> v=¢® | o) (261)

L—r J P4 (€)dE
where we have used log(1 + ae + o(¢€)) = log(1 + ae) + log(1 + o(€)) = ae + o(e)
when ¢ — 0. Note that this chain of equality requires that one can exchange
limit and integration, see Rem. 13.

By integration by parts, one gets for well-behaved densities

B = oy ) el =~ [ B GEZIY = Clpi(C)dy

r—1
(2.62)
yielding
o py ZIY]py( N'(©dE _ [py (OE[ZY = ﬂ L (€)dg
L—r pr fPY

(2.63)
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From the general iterated expectation lemma (p. 208 of [Gray and Davisson,
2004]), the right-hand side of the above equality equals

LBy (V)7

Iy Elv.- ()2, (2:64)
if we define the r-score function ¢y ,.(Y) of Y.
Lo ek ) 1 (0Y)' ()
N AT py(y) [y (W)dy (2.65)

Using the last equality, we observe that the r-score shares two major properties
(see Property 4 p. 57) of the 1-score defined in Eq. (2.28); namely:

Elgy.(Y)] =0,

Elpv.(Y)Y] =1.

We have thus a first-order expansion of Rényi’s entropy, expressed as a function
of the r-score:

h (Y +€Z) = h(Y)+ By (Y)Z] + ofe) . (2.66)

We now perform a second-order expansion of h,.. To this end, consider the
second-order expansion of pyiez provided in [Pham, 2005] (Z is temporarily
assumed to be zero-mean, but definitely supposed to be independent from Y in
order to make the development easier):

1

Py+ez(C) = Py (C) + §€2E[Z2]P/\//(C) +o(e?) (2.67)
and
T T 1 r—1 2 21,1 2
PY4ez(C) = PY(C) + 5Py (O E[Z7]py (¢) + o(€7) (2.68)
Therefore, since Rényi’s entropy is not sensitive to translation we have, for r > 0:
1
he (Y +€Z) = -, {log/pgg(y)dy

1/2re? [ py ! (y)E[Z2]p4 (y)dy 2
I % (y)dy H o)
e r [pV (wpy(y)dy

= O T T Ty

=J.(Y)

—|—log{1—|—

Var[Z] + o(¢?) ,  (2.69)

where J,.(Y) is called the r-th order information of Y (see Rem. 13). By inte-
gration by parts, we have that

() = AP W) 0 () dy 2.70)
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which is a positive quantity whatever is 7 > 0. Observe that the first order in-
formation reduces to J1(Y) = E[t)y(Y)?], which is precisely Fisher’s information
[Cover and Thomas, 1991].

Remark 13 (On approximating integral of functions) Equation (2.61)
says that there exists a function ¢(e, ) such that

Py ez(¢) =Py () — repy (O(EIZ]Y = ylpy (1)) ly=¢ + 8(€,C)

where lim._,0 ¢(€,()/e = 0 (because ¢(e,() = o(e) ). By integrating both sides of
the above equation, we find that [y ,(¢)d¢ equals

/ pY(Q)dC — re / PN (OEIZIY = ylpy (8))ly—cdC + / oe, O)dC .

Therefore, we have implicitly conjectured in Eq. (2.61) that [ ¢(e,{)d¢ = o(e).
However, this is not true whatever ¢(e,() is. The possible problem is that we
have no guarantee that ¢(e,()/e converges uniformly to zero; the convergence
could be only pointwise. Formally, in order to prove that lim._.o [ ¢(e,{)d(/e =
0 knowing ¢(e,¢) = ol(e), it suffices, by the Lebesque Dominated Convergence
Theorem, that there exist € > 0 and an integrable function 6(¢) > 0, such that
for all ¢ € R and all |e] < €*, |p(e, () /€] < §(C).

In Eq. (2.61), this additional requirement is actually implicitly assumed to be
fulfilled, but this might require conditions on the pdf of the random variables Y
and Z, that are not detailed here (same applies to second-order considerations).
However, when the expanded function is a “well-behaved density”, we conjec-
ture that this should be true in most of cases; in particular, observe that the
results found via theoretical considerations are confirmed by specific numerical
experiments.

Note that the permutation between the integral and limit signs corresponds to
the condition under which, practically, approxrimating the integral of a function
can be done via integration of an approzimated form of the function. Actually,
this is what people do when they compute entropies via density estimation; gen-
erally, one guesses h,(Y) ~ 2=log [ [ D% (y)dy], i.e. that h,[Py] can be rend as
close as possible to h,[py] provided that P, (y)dy is sufficiently close to p% (y)dy.

2.4.2 Deflation approach

In this subsection, we consider the scale invariant criterion
bX
Cp.(b)=—-h, | ——— | - 2.71
(b) " ( Var[bX]) @7)
Clearly, maximizing the above quantity with respect to b is equivalent to maxi-

mizing
~ . wS
Ch, (W) = —h, (Var[w S}> (2.72)
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if w=DbA.
Note that in both criteria, the denominator can be omitted under the w €
S(K) constraint since Cp,, (b) = CNh,\ (bA) = —h <L5>

T Iw]]
Based on the Taylor expansion of Rényi’s entropy, which is proved to have a
null first-order term when Y and Z are independent (see Eq. (2.64)), we find the

following result, proved in the Appendix of the chapter (Section 2.6.9, p. 93).

Lemma 7 (Basis vectors are stationary points of Cp,,) The criterion C~hr
admits a stationary point when w € {+ey,...,+ex}.

A sufficient argument for proving that Cp, is not a deflation contrast function
is to prove that one of the stationary points of Lemma 7 is a local minimum.
Indeed, if this occurs, the associated source will never be extracted through its
maximization.

Actually, a necessary condition for the function Cj, (w) over the set S(K) to
admit a local maximum at +e; is that J,(S;) > 1 and a sufficient condition is
that this inequality is strict. More generally, one can write these conditions as
Jr(Sj)Var[S;] > 1 and J,-(S;)Var[S,] > 1, which are then independent from the
source variances. To see that J,.(S)Var[S] is invariant to the scale of S, it suffices
to note S = 0sS* where 02 = Var[S] and S* is the unit-variance copy of S. Then,
using the density of a transformation given in Eq. (1.76) and from the definition
of J, in Eq. (2.69), we find

11(8) = S J.(S%) . (2.73)
93
Observe that in the specific r = 1 case, the sufficient condition J(S;)Var[S;] > 1
is always satisfied for non-Gaussian sources (see Property 4, p. 57).

From the second order development of Rényi’s entropy, one gets the following

lemma (see the proof in Section 2.6.10, p. 94).

Lemma 8 (Contrast condition for C,, deflation approach) The criterion
Ch, (b) under the constraint Var[b;X] = 1 is not a contrast if J.(S;)Var[S;] < 1
where

i € argmax —h, Sk . (2.74)
ke{l,...,K} Var[Sg]

2.4.3 Simultaneous approach

The simultaneous criterion associated to h,(.) is

K
Ch, (B) =log|det B| = > h,(b;X) . (2.75)

i=1

The criterion is subject to the normalization constraint that biEXbiT =1 (this
is only to enforce the recovering of unit-variance outputs, the above criterion is
not sensitive to the scale of b;).
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We have the following result (see Section 2.6.11, p. 95 in the Appendix of the
chapter):

Lemma 9 (Stationary points of Cj_, simultaneous approach) The crite-
rion Cp, admits a stationary point when BA € W(K) or, equivalently, when
B~A"L

We now derive in the next lemma (proved in Section 2.6.12, p. 95) a necessary
and sufficient condition for the criterion Cj, (B) to attain a local maximum at the
point B ~ A~! (and consequently, a sufficient condition ensuring that Cj,_(B) is
not a contrast function).

Lemma 10 (Contrast condition for C;, , simultaneous approach) The
criterion Cp,. (B) is not a contrast if the sources share a same density ps and
Jr(S)Var[S] < 1 where S is a random variable with density ps.

2.4.4 Partial approach

As the simultaneous and deflation approaches are particular cases of the partial
separation, the results presented in the above subsections show that, generally
speaking, ERE is not a contrast function for BSS.

2.4.5 Numerical simulation and detailed calculation on specific examples

Lemma 8 p. 71 and Lemma 10 p. 72 give sufficient conditions ensuring that the
above deflation and simultaneous criteria are not contrast functions: maximizing
them will not lead to recover the sources if these conditions are met. It is shown
in this section that these conditions can easily be encountered for densities close
to (but different from) Gaussian functions and for specific values of Rényi’s
exponent 7.

Consider the case where the common density of the source admits a density
of the form

ps(s) = Ce(=|s/A"/a) (2.76)

where a is a positive parameter, A is a positive scale parameter and C is the
normalizing constant. Then, S denoting a random variable with density ps and
denoting the r-score function of S evaluated at the point y by g, (y), simple
manipulations yield

_ r sign(y)[y[*~'A™
Cel[=(1 = r)ly/Al*/a] [ e(=r[u/A|*/a)du’

¥s,(y) (r > 0). (2.77)
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In particular, 15 1(y) = sign(y)|y|*~* A~ Further

sy - LA e e (279)

B r [ |ul?*=2e(—rlu|*/a)du
N A2 [e(—rlul®/a)du (2:79)

2/a—1 20-24( {419 /g)d 2/a—1
— r f |Z| e( |Z| /a) u — r E|Z|2a72 (280)
A2 [ e(—|z]*/a)dz A2

where Z = S/) is a random variable with density e(—|z|*/a)/ [ e(—|u|*/a)du
Since Var[S] = A\2E[Z?], one has

J.(S)Var[S] = r¥/* L E[|Z|>*~4E[Z3], (r > 0), (2.81)
N———
=g(a)

which is independent from the scale parameter A as it should be. In particular,
for a = 2, which corresponds to S and Z being Gaussian with E[Z?] = 1, one has
Jr(S)Var[S] = 1,Vr > 0.

Put g(a) = E[|Z]|**2]E[Z?], which from the above result equals J(S)Var|[S]
where J(S) = J1(S) is no other than Fisher’s information of S. But we know
that J(S)Var[S] > 1 with equality if and only if S is Gaussian, that is @ = 2. Thus
g admits a global minimum equal to 1 at a = 2. Explicitly from the definition
of the gamma function: I'(a) = [~ t*~te~'dt, one has

17 e(=2"/a)zPdz
fo (—z%/a)dz

5 e(=t)(at)®+ /ey
I~ e(—t)(at)V/o1dt

RSN

E[|z|?] =

2.82
r(1/a) 252
Therefore, defining
_ I'2-1/a)T'(3/a)

= E[|Z]**?E[Z%] = 2.83
o(a) = E[|Z>* B2 S (28)

one can check that g admits indeed a global minimum at a = 2.

Finally J,(S)Var[S] < 1 if and only if

ro< g(a)/0"¥a) <1 in the case a < 2 (2.84)
ro> g(a)/07%0) 5 in the case a > 2 . (2.85)

One concludes that for source densities of the form pg(s) = Ce(—|s/A|*/a), if
a < 2 then the criteria are not contrasts for r < g(a)“/(“_2) and if @ > 2, they
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(a) Densities given by Eq. (2.76) witha =4  (b) Functions g(a) (solid) and g(a)/(1—2/@)
(solid) and a = 1 (dashed); the parameter  (dashed); the specific values at a = 4, a = 2
A has been chosen such that the pdf corre- and a = 1 are pointed out via vertical dotted
spond to unit-variance rv. lines

Figure 2.2. Discussion example (see text).

are not contrasts for r > g(a)*/(*=2). In particular, for bilateral exponential
sources, which correspond to a = 1, one has g(a) = 2 and thus the criteria
are not contrasts for r < 1/2. For a = 4, g(a)'/(!=2/4) = 1.8792 and thus the
criteria are not contrasts for r > 1.8792, in particular for » = 2. The densities
(2.76) with @ = 1 and a = 4 as well as the functions g(a) and g(a)'/(1=2/%) are
illustrated in figures 2.2.(a) and 2.2.(b)

The approximated Rényi entropy h,(Yy) (see Rem. 14 below) where Yy = wyS
as a function of the transfer angle 6 for the two above examples is illustrated in
figures 2.3.(a) and 2.3.(b) The two unit-variance sources share the same density
: Ps, = DPs, = ps where pg is given by Eq. (2.76). Figure 2.4. shows the case
where the source shape parameters are different: as, = 4 and as, = 1.

Remark 14 (Some details regarding the simulation method) The esti-
mation h,(Yg) of h,.(Yy) is defined as

1ir 1Og ZA [pSinQS * pCOSOS]r Zfo ¢ {kﬂ'/?, ke Z}

—Llog> A Pg- otherwise (i* depends on 0),

h.(Yg) =

where the )\ symbol denotes the Riemannian approzimation of the exact in-
tegral (the step A is taken equal to 1073 and the grid size is chosen large
enough to ensure that the integration error is limited, max(]1 — )" A Psinos|; |1 —
Y APeosos|) < 7, 7 = 1E~* and similarly, the variance deviation error is also
controlled max(|1— (D" A $?Psinos(5))], |1 =" A $°Peosos(8))| < 7). The exact the-
oretical expressions of Psinos and Peosgs have been dealt with and the convolution
operation is performed via the Matlab conv command. When computing (2.86),
the summation inside the log is only computed on discrete points so satisfying
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(a) @ = 1: the criterion —h,(Yy) is not a
contrast for r < 1/2; the curves are shown
for r € {0.1,0.25,0.5,1.9,10}
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(b) a = 4: the criterion —h,(Yy) is not

a contrast for r > 1.8792; the curves are

shown for r € {0.1,0.25,1,1.7,4, 10}

Figure 2.3.  Evolution of h,.(Yy) where ps, = ps, = ps is given by Eq. (2.76) with
A = 1; (remind that h, is decreasing in r).

T

2.2F 1
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1.6F 77 T // 4

0.8 1

Figure 2.4.  Evolution of h,(Yy) where ps, by Eq. (2.76) with a = 4 and ps, by Eq.
(2.76) with a = 1. The kind of non-mixing optimum of the criterion —h,(Yy) depends
on the source that is extracted; the curves are shown for r € {0.1,0.5,1,1.9,10} (remind
that h, is decreasing in r).

Py, (s0) > T in order to avoid to face numerical problems resulting from a value
close to log(0).

Remark 15 Consider the function a +— r*/*"'g(a) = J,.(S)Var[S]. It takes the
value 1 at 2 and its logarithmic derivative is —2a=2logr + ¢'(a)/g(a), which



76 CONTRAST PROPERTY OF ENTROPIC CRITERIA

takes the value —% logr at a = 2 (since g is minimum at 2). Thus, for r <1,
this function is increasing in a neighborhood of 2, hence there exists an a < 2 for
which J.(S)Var[S] < 1. Similarly, for r > 1, this function is decreasing in the
neighborhood of 2, hence there exists an a > 2 for which J,.(S)Var[S] < 1. Thus
for any v # 1,r > 0, there exists a sources density of the form Ce(—|s/\*/a)
for some a for which the criterion is not a contrast. As Rényi’s entropy power
is a class II functional and because this condition combined with its possible
strict superadditivity necessarily implies that Cp, is a contrast function (from
Theorem 8, p. 50), we conclude the following:

Corollary 11 For any r >0, r # 1, there always exists a pair of i.i.d. random
variables with common density belonging to the gemeralized exponential family
(but differing from the Gaussian function) such that the r-Rényi entropy power
cannot be a superadditive functional for these variables.

Remark 16 Figures 2.3. and 2.4. seem to indicate that even if the kind of the
extremum points changes with r (mazimum or minimum), their location is con-
stant with respect to Rényi’s exponent. This is not the case, generally speak-
ing. Let us focus on the deflation criterion with K = 2 and restrict ourselves
to 0 € [0,7/2]. It has been shown that a stationary point always exists when
0 = /2, whatever r. Simple calculations yield:

Yoi50 = Yg + [0 cos b, —0sin 0]S + 0o(50) . (2.86)
From Eq. (2.132), this leads to
b, (Yois0) = h,(Yg) — 56(cos QE[@/JYG’T(Yg)Sl] — sin GE[’(/JYQ’T(YQ)SQ]) +0(d6) .

(2.87)
Consequently, h,.(Yq) admits a stationary point at 0* if

tanf* = —————=—= +0(d0) (2.88)

= § +0(60) . (2.89)

The value of 0*, generally speaking, depends on r. But if Ps,|v,. = Ps,|Yys>
the above conditional expectations are identical and the ratio in the right-hand
part of the above equation is always equal to one. This indicates that a stationary
point exists at 0* = w/4 if ps, = ps,, whatever is r > 0.

As a last example, consider the case where the common density of the sources
has the triangular density pr(s) = 1 — |s| if |s|] < 1,= 0 otherwise. Then,
denoting by S a random variable with the triangular density pr, we have

Var[s] :2/02(1—3)3%13:; , (2.90)
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Figure 2.5. Evolution of estimated Rényi’s criterion —h,(Ye) — h, (Y, 2_¢) as a
function of the transfer angle 6 where the two sources share the same triangular density
pr. The criterion with » = 2.5 and » = 5 is not a contrast function.

and

Jr(S)

= . 2.91
fol(l — s)"ds fol u"du 00 ifr<1 (2.91)
Thus J,-(S)Var[S] < 1 if and only if » > 1 and r(r 4+ 1)/[6(r — 1)] < 1. But for
r > 1, the last inequality is equivalent to 0 > r(r+1) —6(r —1) = (r—2)(r — 3).
Therefore J,.(S)Var[S] < 1 if and only if 2 < r < 3. We conclude that for
triangular source, the criteria are not contrast functions if 2 < r < 3.
Regarding the simultaneous criterion, the last two plots of Figure 2.5. clearly
indicate that the problem could be emphasized too. On top of the figure (r = 1),
the criterion Cp,. (B) = Cp,(B) is a contrast function, as expected. On the middle
plot (r = 2.5), Cp,, (B) admits a local minimum point when 6 € {kr/2: k € Z}
(this results from J,.(S)Var[S] < 1), and thus violates a necessary requirement
for a contrast function. Finally, on the last plot (r = 5), the criterion is not a
contrast even though J,.(S)Var[S] > 1 since the set of global maximum points of

the criterion does not correspond to the set W(K).

_ (s sy urdu { r(r+1)/(r—1) ifr>1

Remark 17 (On the nature of Hartley’s and Shannon’s entropies)

Some arguments have been given in the literature to emphasize the specific prop-
erties of Shannon and/or Hartley’s entropies in the class of the generalized en-
tropies. Some are based on “question-assertion” considerations [Knuth, 2005],
others on average information gain/loss [Rényi, 1976b] or yet on related inequal-
ities [Costa and Cover, 1984]. Without entering the details, it is explained in
[Aczel et al., 1974] that, only linear combinations of Shannon and Hartley’s en-
tropies correspond to a “natural behavior”. Unfortunately, all those explanations
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rely on discrete processes only. Moreover, their connections with the aforemen-
tioned “complexity measure meaning” remains unclear. Up to now, there is no
really convincing “philosophical” results explaining why Shannon and Hartley’s
entropies differ from other ones in the BSS context.

2.5 CONCLUSION OF THE CHAPTER

2.5.1 Summary of results

It was suggested in Chapter 1 that just as “independence measures” can yield
contrast functions, the generalized form of Rényi’s information measures can
also be the genesis of new contrast functions. This was motivated by the suitable
“complexity measure” behavior of Shannon’s entropy; it was proposed by several
authors in the past, even if a detailed theoretical study was missing. Therefore,
Chapter 2 aims at filling this lack and thus at analyzing the entropic criteria,
and more explicitly, their global maximum points. Indeed, the main property of
contrast functions concerns the location of these global maximum points. For
the deflation and partial separation schemes, a more general study of the local
maximum points corresponding to transfer vectors proportional to basis vectors
or to transfer matrices subPD-equivalent to the identity matrix was managed.

Instead of showing that the global maximum of a criterion corresponds to
a non-mixing point, some specific tools can be used, such as Pham’s theorem
(Theorem 8 p. 50): it suffices that the criterion has a specific form and satisfies a
superadditivity condition to ensure that the criterion is a contrast. The criteria
based on Shannon’s entropy, on the support or on the range are shown to fulfill
this criterion. Further, the superadditivity conditions directly result from well-
known inequalities: the entropy power inequality (Shannon’s entropy) and the
Brunn-Minkowski inequality (range and support). In a more general way how-
ever, we were not able to find an extension of the EPI and BMI suggesting the
superadditivity of Rényi’s entropy powers whatever the value of Rényi’s exponent
r. Afterwards, this is logical. Based on a Taylor expansion of Rényi’s entropy,
a sufficient condition for Rényi’s entropy-based criteria not being contrast func-
tions was found, and some counter-examples illustrate that this condition is met
in simple situations. Whatever is r ¢ {0,1}, there always exist a non-Gaussian
density (a # 2) of the generalized exponential family such that the r-Rényi
entropy-based criterion is not a contrast function if the sources follow this den-
sity; this was stated in Rem. 15 (p. 76). Surprisingly, this gives a partial answer
to the question about the possible superadditivity of Rényi’s entropy, that re-
mained an open question up to now. These results are summarized in Table 2.1.
The “KO” results are proved via theoretical counterexamples showing that the
corresponding property might be violated in some cases (even under the usual
non-Gaussianity assumption). The “~” superscript indicates that these results
are unexpected (but not contradictory) compared to the literature.
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‘ ‘ Deflation ‘ Simultaneous ‘ Partial ‘

Shannon (r = 1) OK OK
Hartley (r = 0) OK OK
Rényi (r > 0, r ;é 1) K KO~ KO~

‘ Range (ext. Hartley) ‘ OK OK ‘ OK ‘

Table 2.1.  Summary of the results of Chapter 2: analysis of the contrast
property of entropy-based criteria for the deflation, simultaneous and partial BSS.
It is rigorously proved that Shannon, Hartley and extended Hartley entropies all
yield to contrast function for the three separation schemes. By contrast, it always
exist counter-examples showing that Rényi’s entropy might be not a contrast
function whatever is r > 0, r # 1. Original results are boldfaced, alternative proofs
have been used to prove the known results.

2.5.2 Use of Rényi entropies in blind separation/deconvolution

How do our conclusions match with existing results ? The general form of Rényi’s
entropies have been proposed for blind source separation in [Erdogmus et al.,
2002a, Hild et al., 2001, 2006b, Principe et al., 2000]. Computational convenience
and close relationship with Shannon’s entropy were the principal motivations and
justifications for their use. Our conclusions seem to be in complete contradiction
with these results. Indeed, even if Rényi’s exponent is set to its more convenient
value r = 2 (corresponding to the so-called quadratic entropy, avoiding thus the
integration of a Gaussian product if Parzen density estimation using Gaussian
kernels is used), some counter-examples show that the associated criterion is not
always a contrast function, depending on some specificities of the source densities.
The apparent contradiction is very simple to explain: whereas the authors of the
above-referenced papers based their conclusions on simulation results (involving
thus specific source densities and Rényi’s exponents), our approach deals with a
more general theoretical development. Therefore, even if in practice specific 7-
Rényi’s entropies can be used for BSS (depending on the case), it is not generally
speaking, a good BSS criterion.

Based on arguments that technically sound better, Rényi’s entropies were also
proposed for blind deconvolution [Erdogmus et al., 2002b, 2004, Bercher and
Vignat, 2002]. We sketch below one of the approaches justifying their use, due
to Bercher and Vignat in 2002. The starting point is the strengthened Young’s
inequality [Barthe, 1998, Gardner, 2002]:

Theorem 17 (Strengthened Young’s inequality) Let min(p,q,7) > 0 and
1/p+1/q=1+1/r, and let f € LP(RY), g € LY(IRY) be non-negative functions.

Finally, define Cy = % where t' is the Holdér complement of t, that is
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1/t+1/t' =1. Then:

. CpCa\ ™
Fmingoar)>1 ¢ (Frale < (90) Inllal, . 202)
, C,C\ N
o) <1 Il = (0) Wbloly - @93)

In this theorem, || f||, = {/ffp(m)dx and “#” denotes the convolution prod-

uct. According to [Gardner, 2002], the first inequality was independently proven
in [Beckner, 1975] as well as in [Brascamp and Lieb, 1976], and the second one
appeared in [Brascamp and Lieb, 1976].

Assume that f and g are the densities of w1S; and wsSs, respectively, where
the S; are independent non-Gaussian random variables. Then, obviously, h,[f *
g] = h,.(Y). Setting p = r, ¢ = 1 and noting that ||g||; = 1 because g is a density,
we find log || f|l» = =1/r'h.(w1Sq1), log||f * g|l- = —1/7'h,.(Y), where ' is the
Holdér complement of r [Dembo et al., 1991]. As this must remain true when
f and g are exchanged, we find by using the monotonicity of the logarithm and
the class II property of Rényi entropy power that, if the sources are i.i.d. with
common Rényi’s entropy noted h,.(S):

h,(Y) > h,(S) + log max |w;]| . (2.94)

This is the essence of the inequality (7) in [Bercher and Vignat, 2002]. This
condition is very weak actually. For instance, this inequality is not strong enough
to prove that Rényi’s entropy leads to contrast functions under a fixed variance
constraint on the output. Let us see that. Under a fixed variance constraint, we
can note w = wy, Yy = wyS and the above inequality becomes

h,(Ys) > max (h.(S) + log | sin(8)|, h,-(S) + log | cos(0)]) . (2.95)

Now, have a look at Figure 2.6.(a), in which the curves h,(sin(6)S;) = h,(S) +
log | sin(6)| and h,(cos(#)Sz2) = h,(S)+log | cos(#)| have been plotted as a function
of the transfer angle 6. Inequality (2.94) states that these curves lower-bound
h,(Yp). This inequality does not imply, unfortunately, that the minimum value
of h,(Y) is reached when 6 € {kn/2|k € Z}, i.e. minimizing h,(Yy) according to
f might not lead to source recovering. A simple counter example is provided on
the figure; the shape of the h,.(Yy) curve shown on the figure does not violate
neither the above inequality nor the strict equality condition at the boundaries
of the quadrant. However, the global minimum of this curve does not lead to
Yy € {£S;1,£S2} ! More precisely, provided that the source entropies are finite,
we have max(h,(sin(0)S1), h,(cos(0)Sz2)) < h,(S) for all 6 €]0, 7/2].

In summary, on the one hand [Erdogmus et al., 2002b, 2004] and [Bercher
and Vignat, 2002] claimed that (2.94) justifies the use of Rényi entropies for the
deconvolution of stationary sources (and indirectly for the separation of i.i.d.
sources from linear instantaneous mixtures) and, on the other hand, we prove
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here that this inequality is not strong enough to validate the method, even
under the i.i.d. assumption on the sources. So, who is wrong 7 Actually, the
apparent contradiction between these results comes from a confusion about the
normalization constraint.

To show that inequality (2.94) is of no use, we have rather considered the
inequality (2.95), which is nothing but (2.94) in which the ||w| = 1 constraint
has been plugged. Throughout this chapter, the same constraint was used so
that our conclusion is “Rényi’s entropy under a ||w| = 1 constraint, or similarly,
under a unit-variance constraint on the output should not be used for BSS, even
if the sources are i.i.d.”. In that sense, we disagree with the suggestion made
in [Erdogmus et al., 2002b, 2004], where the authors justify the use of Rényi’s
entropy based on inequality (2.94) combined to the fixed variance constraint
(i.e. based on (2.95) if K = 2). Rigorously speaking however, our results are
not in contradiction with the results of Bercher and Vignat, who proposed to
use Rényi’s entropy but with a different normalization constraint.

Geometrically, our conclusion means that contrarily to the Shannon and (ex-
tended) Hartley cases, minimizing Rényi’s entropy with » > 0, r # 1 over the
unit circle (in the space of 1 x K transfer vectors) is not a good idea. But
how does this conclusion extend to other search spaces ? For example, what
if the constraint becomes ||w||, = cst with p # 2 (remind that by definition,

lw| = |lw|l2)? In [Bercher and Vignat, 2002], the authors proposed to set
p = oo. Let us illustrate graphically why this is a prior: a good idea. To
that aim, define w® € {w : |w| = 1} and w” € {w : |[W||w = 1} where

the superscript symbols refer to the geometry of the set of vectors with the
associated p-norm (see Fig. 2.6.(b)). For comparison purpose, we assume that
w° = wt/|wD||. Tt is clear that ||[w"|| > 1, and the equality case corresponds to
vectors w° = wH = +e;. Similarly, we define Y° = Yy = w°S and YU = wls.
Hence:

h,.(Y?)

h,.(w°S)
h,.(w"'S) — log [|w"|
< h (YD) (2.96)

because |[w™|| > 1. Actually, it is easily seen that h,(wS) s.t. |wl|, = cst is
always higher than h,.(wS) s.t. ||w|, = cst if p > ¢ (the strict equality is attained
if and only if w® = +ey,). Hence, the entropy of h,(wS) s.t. ||w||, = cst increases
with p for a given direction w. Setting p = oo yields the ||w||, = cst search space
on which h,(wS) is maximum in a given direction. However, this function does
not depend on the value of p at w = +e;. Therefore, there is some chance that if
some local maximum of h,.(wS) occurred on the unit circle at the basis vectors,
they become local minimum points on search spaces of the form |w]||,, p > 2,
and the most favorable situation is obviously p = co.

By the EPI, we know that h;(Y®) > min; hy(S;) with equality if and only
if w® = +ej, with k£ = argmin, hy(S;). A similar conclusion can be drawn for
r = 0 based on the BMI. The transitivity of the inequality and inequality (2.96)
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A
{w : [[wlloo = est}

\ .
h-(Yg) / WO W
hr(S2) hr(S1)

v

w1
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Figure 2.6. Rényi’s entropies and fixed p-norms search space.

yield hy (YD) > min; hi(S;), ho(YP) > min; ho(S;), with equality if and only if
w = tej. How does that extend to the general Rényi case ? By (2.94), we
know that h,.(YY) > h,.(S) but, on the contrary, this is no more true when Y°
is considered instead of YU in the inequality, as shown in Section 2.4.5.

Figures 2.3.(a) and 2.3.(b) have been redrawn in a 3D space under the
[W]leo = 1 and ||w| = 1 constraints (Fig. 2.7.(a) and Fig. 2.7.(b)) for com-
parison purposes. One can see that the non-mixing local minima (located
by ‘o’ markers) of h,(YD) are strengthened compared to those of h,(Y°) and
that the non-mixing local maxima (located by ‘*’ markers) of h,(Y®) vanish
when YU is considered instead of Y°. Even if this cannot be proved by using
the above inequality (2.94), this extends to the example of Figure 2.4. (where
h,.(S1) # h,(S2)), as shown in Fig. 2.7.(c)

The question then becomes: how do our results extend from ||w| = cst to
|[Wlleo = cst 7 The existing results provided in [Bercher and Vignat, 2002]
partially answer this question when the sources are i.i.d, but what if they have
very different Rényi entropies 7 A preliminary question is the following: is it
possible to perform the optimization over the |w||, = cst constraint ? This is
clearly possible for p = 2 by constraining the output variance to be constant; but
is it possible do that for p = oo based on the elements of the demixing matrices
only? The answer is negative. The theoretical results of Bercher & Vignat are
correct, but there is no way to fulfill the ||w|, = cst in practice (i.e. knowing
the demixing matrix and the mixtures only) if p # 2, making their developments
useless. Therefore, our negative conclusions about the use of Rényi’s entropy in
BSS still hold.

The aim of the next chapter is to deal with the more difficult problem of spuri-
ous local maxima, i.e. local maxima at transfer vectors that are not proportional
to any of the basis vectors.
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(c) Example of Fig. 2.4.: h, (YD) and h,(Y°)

Figure 2.7. Rényi’s entropy behaves differently depending on the constraint: the
inequality (2.94) is satisfied under ||w|oc = 1 constrain (here, even if the sources have
different densities), but not under the |[w|l2 = 1. The values of Rényi’s exponent are
r =0.2,7 = 1,7 = 5 (remind that h, is decreasing in 7). The non-mixing local minima
and maxima of h,(Y) s.t. ||w||2 = 1 are located by ‘o’ and ‘*’ markers, respectively.
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2.6 APPENDIX: PROOFS OF RESULTS OF THE CHAPTER

2.6.1 Proof of Corollary 6 (wording p. 50)

From Rem. 9, we are led to evaluate

P K
f(B):%log|det(WWT)|—ZlogQ > owisi| (2.97)

i=1 j=1

We know from Theorem 8 that the global maximum point of the above cri-
terion is such that W = BA is in the subset WP*K of P x K non-mixing
matrices. For such matrices W, there exists j(i) € {1,..., K} such that for all
ie{l,...,P}, W;; #0if and only if j = j(i). Then, Q(Zle |[Wi;|S;) reduces
to [Wiji)|Q(S;@)) from (Huber 1) and thus:

P P P
1
fB) = 35 log [TW2a) =D log [Wijm| — Y 1og Q(S;i()
=1 1=1 =1
P
= = 10gQ(Sj) - (2.98)
=1

Clearly, this quantity is maximized when Zil log Q(S;(;y) is minimized that is,
when the P sources with lowest value of @) have been recovered. Formally, if
we define the set Jw of the column indexes of W containing a non-zero entry,
Jw = {] : i s.t. Wi =+ 0}, then:

argmax f(B) = {B: BA e WK #[{j € Jga : j < P™}] = P™,
B

max Jga < PM} ,  (2.99)

where f is the cardinal operator. Note that [Jw] = P for any W € WF*K,

2.6.2 Proof of Property 4 (wording p. 57)

Remark first that the usual convention for one-dimensional finite-support densi-
ties is to define them on the whole real line, and to set their values outside their
support to zero: px(z) = 0 for all x € R\ Q(X). Let us now turn to the proof
of the score function properties.
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The score function is zero-mean:

Elx(X)] = / () (log px (2))'da

= [ k(s

—[px(2)] %% (2.100)

where we have used lim;_, o px(z) = lim,;_ . px(z) = 0 because px is a den-
sity, and thus integrable. This chain of equalities is equivalent to impose a
weak regularity condition (used e.g. for proving Cramér -Rao bound [Cover
and Thomas, 1991]) on px ensuring that one can interchange integration and
differentiation, since:

By (X)] = —/p’X(a:)dx - —d/dx/px(a:)dx ~0. (2.101)

On the other hand, by integration by parts,

BXux(X)] = - [apk(e)ds

~[px(@)2] % + / px(2)dz
- 1 (2.102)

because for well-behaved functions (satisfying the regularity conditions), px(x)
goes faster to zero than 1/x as z — 0.

Finally, again by integration by parts, E[ng (S;)] can be rewritten as
E[ng (S;)], which is precisely Fisher’s information [Cover and Thomas, 1991]:
for any random variable X, we have

[reo () = - [stonn e (53
= [Pk@)* + BRI (2.103)

where the first term is zero for well behaved densities.
To check that the inequality

E[% (X)]Var[X] > 1 (2.104)
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always holds and that the strict equality case holds true if and only if X is
Gaussian, observe that

B[y} (X)]Var[X]

(BDXx (X)] - Efyx ()]BIX])
Var[yx (X)]Var[X]
Cov?[X, ¥x(X)]
1
Corr?[X, 1x (X)]
> 1

E[y% (X)]Var[X] =

note that the equality can be reached if and only if Corr[X, ¢x (X)] = 1, i.e. when
1x is proportional to X — E[X], which can only occur when px is Gaussian.

O

2.6.3 Proof of Theorem 11 (wording p. 58)
Assume that w is close from e; so that its i-th component w(¢) is close to 0
for i # j. Under the w € S(K) constraint, w(j) = /1 -3, ., w(i)? and since
VI—2=1- 12+ o(z), one can write
) 1 2 2
w(j)=1- §Zw(z) +O(Zw(z) )
i#] i#]
Thus, wS =S; 4 0S; with
. 1 2 2
0S; = ZW(Z)SZ' . i(ZwJSJ +0(Zw(z) )
i#] i#] i#]

Therefore, applying (2.27) and dropping higher order terms, one gets that h(wS)
equals

n(S;) + (30 wii) B, (5,)5 — 1 (3 wii)? Bl (5,)5,)

i#j i#]
+ %{E{Var[Zw(i)ZSi sj]ng (sj)} - (Zw(i)E[Si|5j]>/2}

i i#j

Since the sources are mutually independent, any non-linear mapping of them is
uncorrelated so that Efys; (S;)S;] = 0, for i # j. Furthermore E[S;|S;] = E[S;] =
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0 for i # . Blys,(5))5,] = 1, and Varl¥ ., wi)Sil$;] = VarlY,,, wii)Si] =

>, 2 W w?)o? where 0% denotes the common variance of the sources. Therefore

h(wS) = h( (Zw ){aSEws( —1}+o(2w(i)2).

i#] i#]

One concludes from Property 4 that for any non-Gaussian source
U%E[Q/)/Sj (S;)] > 1, that is, h(wS) > h(S;) for all w sufficiently close to e; if
S, is non-Gaussian. Thus h(wS) reaches local non-mixing minima at w = +e;
(since h(—wS) = h(wS)), as long as S; is non-Gaussian. If S; is Gaussian then
h(S;) is a global maximum since Gaussian random variables have the highest

entropy for a given variance. Equality (2.105) is of no use in this case, since the
second term in this equality vanishes.

O

2.6.4 Proof of Lemma 6 (wording p. 60)
Suppose p[Q(X)] = p[Q(X)] > 0 and p[Q(Y)] = p[Q(Y)] > 0. This means that

/lj[ﬁ(X) \Q(d )] = p[Q(Y)\ Q(Y)] = 0. Therefore, the sets Q(X) and Q(Y) can
e expressed as

{ QX)) = [infX,supX] \Uf/:1{xz} (2.105)

QY) = [infY,sup Y]\ U/l {y;}
where x;, y; are isolated points. Then,

QX +Y)] = X+ Y)
(supX +supY) — (inf X +infY)
= pQ] + pQ(V)]

which yields the first result of the lemma.

To prove the second claim, suppose that Q(X) = UL ,Q;(X) and Q(Y) =
szlgj(Y)' Furtherv X* = Uzlz_ll[X:anfw] \ Uf’/:l{xi'h Y* = U.j]:_ll [Y;n’Yjw] \

=1 {yy} and X=X OXP, XPN\UL o b, Y = YR OIY T YR\ UL o {y;0 )
Where XXM <X, Y <YM <Y, and X7 = XM 4¢, € > 0. We first
assume that the right-most intervals constituting Q(X) and Q(Y) are not isolated
points, that is have strictly positive measure: Ax = X¥ — X7 = 4[Q;(X)] > 0
and Ay = Y3 — Y™ = ;[Q;(X)] > 0. Hence, we have:

ulQX + V)] > plQX + )]+ { (V) + X) = max(X}, + I, Y7+ X7}

where the term into brackets is a lower bound of the sub-volume of Q(X +7Y)
due to the interval X7, XM]; it can be rewritten as min{Ax + ¢, Ax + Ay}.
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Finally, having the Brunn-Minkowski inequality in mind, one gets:

pQX+Y)] = pX*+Y)] +min{Ax + €, Ax + Ay}

uQX)] + p[(Y)] -

V

Suppose now that the right-most intervals might reduce to a single point, i.e.
Xm=XMforI-I, <i<L,Y" =YMfor J-J, <j < Jwithmin(I,, J,) > 1.
Because of the non-zero measure condition on the support sets, I, < I, J, < J.
We rewrite the support set of the random variable as a union of a set having a
strictly positive measure and of isolated points

Q(X) = QX) UL {&6), ) = (Y) Ul {G)

such that there exists ¢, > 0, €, > 0 [sup Q(X*) — €;,supQ(X*)) C QX*),
[sup Q(Y*) — €y, sup Q(Y*)) € Q(Y*). In other words, each of the isolated points
located on the right of the most right interval of Q(X) (resp. Q(Y)) with strictly
positive measure are relegated in the union UL, {¢} (resp. U2 {¢;}). If such
isolated points exist, one can always proceed to this trick because of the existence
of the above “positive-measure” intervals: by hypothesis p[Q(X)] > 0, p[2(Y)] >
0. As isolated points have zero-measure and do not affect the support measure
of X and Y:
H[Q(X)] = pl(X)] , ulAY)] = ulQ*(Y)]

By contrast, they influence the support measure of X + Y. Indeed, Q(X +Y)
can be expressed as a union of subsets:

{r+y:oeQ(X),ye MU {y+&y e Q) U/ {z+ (e X))
() ®) ©

But the measure of the left-most set (a) is larger than or equal to the sum
p[Q*(X)] + p[*(Y)] (by the BMI) which precisely equals u[Q(X)] + u[Q(Y)].
On the other hand, at least one of the other sets cannot be totally included
in (a). For instance, assuming that sup Q(X) = &g, the term (b) is not totally
contained in (a), and it can be shown that the remaining part “(b)\(a)” has a
strictly positive measure. Indeed, because £g is an isolated point, there exists
e > 0 such that £ = sup 2*(X) + € and by definition of Q*(Y), [£s+sup Q*(Y) —
A, &g +sup Q*(Y)) is included in Q(X +Y) for all A satisfying 0 < A < ¢,. But
this interval has a strictly positive measure equal to A and is disjoint from (a)
if &5 +sup Q*(Y) — A > sup Q*(X) +sup Q*(Y) that is if A <e.

Hence, since for sufficiently small A > 0 we have {g > supQ*(Y) + A, it
comes that

UIQX + V)] > plQX)] + plR(Y)] + A

for some A > 0.
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2.6.5 Proof of Theorem 14 (wording p. 62)

The proof of this theorem will be based on the two next propositions, and assumes

R(S1) = R(S2) = ... = R(S},) < R(Sps1)-

Proposition 4 Let us define a p € V}‘( vector respecting p(r) > 0 for any
k <r < K. Consider vector q defined by:

qr) =0
alk) = VpEVZ+prZ withl <k <k (2.106)
a(j) = p) forall1 <j<K, j¢ {K,r}

Then, q € V3 and Cr(q) > Cr(p), i.e. p¢ {w:w = argmax{wev?(}(fR(W)} .

Proof: 1t is trivial to show that q € V7. On the other hand, we have
p(r)*R*(Sy) < p(r)*R*(S,)
and:
p(K')?R*(Skr) + p(r)*R*(Swr) < p(K)*R*(Sw) +p(r)*R(S,)
+2p(K)p(r) R(Sk ) R(S,)

>0
R(Sp)vp(k)? +p(r)? < p()R(Sk)+p(r)R(S,) (2.107)

Hence, it results from the definition of q that —Cr(q) < —Cgr(p) and thus
Cr(q) > Cr(p)-

O

Proposition 5 For any p € Vi wector satisfying p(j) = 0 for allk < j < K,
then Cr(p) < Cr(Aej), 1 < j < k with equality if and only if p € {Xe1,..., Aex}

Proof: 1f p(j) = 0 for all j > k, then, because p € V3, there must exist r < k
such that p(r) > 0. On the other hand, for any 1 < r # ' < k, we know that
p(r’) = 0. Hence, by definition of k:

p(r)R(S;) + p(r')R(Sw) = (p(r) + p(r')) R(S) - (2.108)

Let us define q by q(j) = p(j) for j & {r,r'}, a(r) = /p(r)* +p(r’)* and
q(r’) = 0. Then, it is straightforward to show that q € Vj, and that Cr(q) >
Cr(p) with equality if and only if p(r’) = 0. To prove the last claim, remark

that:
VP(r)? +p(r')? <p(r) +p(r') . (2.109)

with equality only when p(r') = 0. Hence, by iterating this result setting p « q,
if such a p vector has at least two strictly positive elements, then Cgr(p) <
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éR(Aej), with 1 < 5 < k. On the other hand, it is easy to see that if a p
vector satisfying p(k+ 1) = ... = p(K) = 0 and p € Vy has a single non-zero
entry, then p € {\.e1,..., A.ex}. This concludes the proof of the proposition. By
iterating Proposition 4, for any vector p € Vf‘( such that there exists k <r < K
with p(r) > 0 there exists another vector q € Vy, respecting q(j) = 0 for all
k < j < K satisfying C~R(q) > éR(p). On the other hand, Proposition 5 shows
that among all those q vectors, only q € {X.e1,...,\.ex} can maximize globally
function C subjected to q € V.

O

2.6.6 Proof of Theorem 15 (wording p. 63)

Suppose that &; € V}< is a vector close to e;, in the sense that &; = e; + de;
where de; is a “small” vector. Obviously, de;(¢) < 0 and de;(j) > 0, for j # i.

We note de;(i) = —e where € > 0. By the ||&;|| = 1 constraint, it comes that:
Y&’ = 1-&()’
J#i
= 1-(1—¢?*. (2.110)

On the other hand, by Eq. (2.50):
ACr(ei, &) = (1—eR(S)+ > &()R(S;)— R(S:) . (2111)

i ——
J# ener)
—Cr(8&:)
Hence, Theorem 15 will be proven if
D &(HR(S;) > €R(S)) . (2.112)

J#i

Let us denote the norm of &; s.t. j # i vector by:

N= > e(i)? (2.113)
J#i

By Eq. (2.110), N = 4/1—(1—¢)2. Hence, by using Theorem 14 with
w=[&(1),...,&(i —1),&(i+1),...,&(K)] and w € V¥ _,, we find Cr(w) <
Cr(Ne,), where 7 = arg min;; { R(S;)}. In other words, the following inequality

holds:
E &(j)R(S;) = V1 —-(1—€)2R(S,) . (2.114)
J#i _)\’,_/

Then, having Eq. (2.112) in mind, a sufficient condition to prove Theorem 2 is
to check that the following inequality holds for any sufficiently small € > 0:

NR(S;) > €R(S;) with r # 4 . (2.115)



APPENDIX: PROOFS OF RESULTS OF THE CHAPTER 91

By transitivity, the previous inequality holds when:

V2e—€eR(S,) > €R(S;)
(2¢ — €2)R%*(S,) > €*R%(S;) .
(2.116)
Hence, if €[2R?(S,) — e(R*(S,) + R?(S:))] > 0 holds for any sufficiently small
e > 0, then Eq. (2.112) is fulfilled.
The last inequality is satisfied for all 0 < € < %. This result
concludes the proof: ACg(e;,&;) > 0 for all sufficiently small € > 0.

O

2.6.7 Proof of Theorem 16 (wording p. 64)

The proof of this theorem results from an adaptation to P < K of the proof of
Proposition 3 presented in [Pham, 2000]. As in this proof, in order to show that
any matrix in WP*X is a local maximum point of Cp it is sufficient to prove
that for a small increment JW of W € WP*X  the quantity

> { log [ZKj Wi + 5Wij|R(sj)] ~ log [ZK: |Wij|R(sj)} } , (2.117)

i=1 j=1 j=1

W;; and 0W;; denoting the general element of W and of dW, is larger or equal
than 1 {logdet[(W + §W)(W + §W)T] — log det(WWT)}, up to first order in
SW. But since W € WP*E | there exists distinct indexes j(1),...,;(P) such
that for i =1,..., P, W;; # 0 if and only if j = j(¢). Thus (2.117) reduces to

PO \5%\3(5].)}
Wiy |[R(Sjay) 17

P
Zlog Hl + Wisto
Pt Wija)

which, for [6W;;)| < |[Wij)|, equals

P K
Z {5Wij(i) N > izic) [OWis | R(S;)

Wija) (Wi [ R(Sjiy)

| +oasw?) .

=1

On the other hand, the first order Taylor expansion of a multivariate function
fiRPXKE L Ris

FOW +6W) = f(W) + (Vf,0W) + ... (2.118)

where V[ is the gradient of f and (-,-) denotes the dot product. But, as it will
be shown in Lemma 21 (see Chapter 3, Section 3.4.4), we have

dlog | det(WW™)|
oW

= 2((WHT; =2[WT]; (2.119)



92 CONTRAST PROPERTY OF ENTROPIC CRITERIA

implying
(VF,6W) =2 [(WH)T];;0W;; = 2Tr [WHsW] . (2.120)

4,3

Note that due to the special form of W, WW7 is diagonal with i-th diagonal

equal to ij(i). Thus, W+ = WT(WW7)~1 has its ji element equal to 0 if

J # j(i) and to 1/W;j;) otherwise. Therefore

1 )

5 {log det[(W+6W)(W-+IW) "] —log det(WWT)} =~ W7]+O(||§WH2) .
i1 Vi)

It follows that (2.117) is greater than the above left hand side, up to a term of

order O(||[dW||?).

O

2.6.8 Convolution of Gaussian kernels (wording p. 67)

In this section, the last equality of Eq. (2.58) is proved. This is a well-known
result but we were not able to find the proof. Therefore, we propose here a
personal development, without guarantee that the approach is original. Let us
first prove that the convolution of two centered Gaussian kernels ¢, (z) and
¢o, () is equal to a Gaussian kernel with standard deviation equal to o;; =

/ 2 2.
oi—i—aj.

+oo
b0, (7) * &g, (z) = / 0. (T)¢o, (@ —T)AT = ¢ frce(@) . (2121)
—0o0
Observe that
1 g -
P 2
d)oi(x)*qsaj(x) = 271_0‘0‘/6 207 ¢ 277 dr
i0j
1 +oo .2 _(@=m? 42 z?
= / e ¥le 207 ¢ 2CitoD 261D gr
TOi0j5 J oo
=1
1 _ 22 +oo L2 (z—7)2 =2
_ e 2(ag+aj2)/ eiﬂe 202 e2(0%+aj2-)d7-
2mwoi0; oo
3

oo _(T(U%JFU?)fmf)?
_ f/ ETE (G S
— 00

2 2
(02 +o?) oige
4@61 o

+oo % 957
= 5/ e D dr (2.122)
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T(of+03)

gi0j

0,0
2 2
o; +0'j

Let us set { =

chain of equalities:

—xZt, , then dr = d¢ and we get from the above
J

0i0; [ —setnm
bo, () * bo, (x) = 502+02 e it d¢ (2.123)
1 1 — 00
= ¢ 79 /o Jo? + o2 92.124
— 50.2—1—0-2 T/ o; + 05 (2.124)

¢ ferroz(@) (2.125)
which shows that convoluting two centered Gaussian kernels with standard de-
viation of, respectively, o; and o; yields another centered Gaussian kernel of
standard deviation /a7 + o7

Let us now prove that the integral of the product of two Gaussian functions

of means p; and p; and variances o; and o; equals Qf’\/m(ﬂj — )
+oo
/_Oo bo; (T — pi)bo; (v — py)dz = ¢\/W(Mi — ) - (2.126)
By setting 7 = x — u;, we have :
T—p = x— it (i — 1) (2.127)
— - (2.128)
——

=—5

Then, by substitution, we find that

+oo
/ bo, (T — pi)Po; (x — pj)dr = /(ﬁgi (7)o, (s — T)dT  (2.129)

_ b0, (5) * bo, (5) (2.130)
¢ Jorroz(iy — i) (2.131)

and this concludes the proof of Eq. (2.126).

2.6.9 Proof of Lemma 7 (wording p. 71)

Let us write w; = b;A, as usual. Then, h,.(b;X) = h,.(w;S), and for a small
increment [01,- - ,dk] of wy:

K
(WS [F1, - Ok]S) = b (wiS) + > BB w50 (WiS)Si]
k=1
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K 1/2
+o0 (Z 5,%) . (2.132)
k=1

Further, using Eq. (2.19), the output unit-variance constraint gives ||w;| =
w;wi = 1, which yields [01, -+ ,dx]w} = O[Zi,(:l 62], ie. [61,--- 0w} is
o[(XF, 62)1/2). Thus if w; = +e;, then §; = o[(Yr_, 62)/2] and

K 1/2
— hp(£S; + 61, ,0K]S) = —h,(£S,) + 0 (Z 5,3) (2.133)
k=1

meaning that the scale-invariant functional C~hr (w) admits a stationary point at
+e; or, equivalently, that Cp, (b) is stationary when bA € {£e,...,+ex} (ie.
when the unit norm vector bA satisfies |bA|/. = 1).

O

2.6.10 Proof of Lemma 8 (wording p. 71)

Let us develop Rényi’s entropy up to second order around w; = e; (observe that
Rényi’s entropy is not sensitive to the sign of the random variable). We find

(S, 4 [B1, - 0x]S) = —y[(5, £1)S,] — = S GR(ES))

k, 1<k#j<K

+o > 6r] (21349

k, 1<k#£j <K

But J,.(S;) = J-(—S;) and h,[(6; £1)S,] = h,(£S;) +1og |1 £ ;| and further the
constraint [|w;|| = 1 yields |1 £6[* =1~ 37, ;< x 05 Therefore
1
=By (£S; + 01+, 0k]S) = —hn(£5;) — 5 P APACH Y

k, 1<k#j<K

+o > 6p]-(2135)

k, 1<k <K

The above result shows that a necessary condition for the function —h,.(wS)
over the set S(K) to admit a local maximum at +e; is that J,(S;) > 1 and a
sufficient condition is that this inequality is strict. Since the sources have been
assumed to have unit variance, one can write these conditions as J,.(S;)Var(S;] >
1 and J,(S;)Var[S;] > 1, which are then independent of the source variance.

O
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2.6.11 Proof of Lemma 9 (wording p. 72)

Let us evaluate the Rényi entropy-based simultaneous BSS criterion around B,
i.e. at B+ EB where £ is a “small” matrix:

Ch, (B +EB) =log|det(B+EB)[ - Y h,[(B+EB)X] . (2.136)

Further, it will be shown that log|det(B + £EB)| = log|detB| + Tr(&) —
1/2Tr(E%) + o(||€]|?) (see Eq. (3.14) and the associated proof in Section 3.8.1,
p. 167). If &; denotes the general element of £ and if we express the small
vector [01,...,0k] in Eq. (2.132) in the basis spanned by the columns of the
regular matrix W = BA with coefficients given by a i-th row of £ (i.e. with

;= 1, ExWi;), one gets
Ch,.(B+EB) =Ch, ( ZZ&JE Uy, (Y)Y, +o(E]) - (2.137)
i#J

Since, for any pair of functions f, g E[f(S:)g9(S;)] = 0 if ¢ # j, it is seen that
the criterion Cp, (B) is stationary when the Yy coincide with the sources, up to
a scale factor.

]

2.6.12 Proof of Lemma 10 (wording p. 72)

From the above result, if the components Y of Y = BX are proportional to
distinct sources, hence independent, the expansion of Cp, (B + £B) takes the
form

Ch.(B+EB) = - ZZ Yi)Var[Y;] + E;E] - (2.138)

1<z75]<K

The last sum is a quadratic form associated with the symmetric block diagonal
matrix, with 2 x 2 blocks:

i | Je(Ye)Var[Yy] 1
i J
It = { 1 Jr(Yj)Var[Y;] | (2.139)
that is
SO ESTY)Var[Y;] + €€l = D> [ EilIiT €5 €T . (2.140)
1<i#j<K 1<i<j<K

Thus, in order that the criterion Cj,.(B) attain a local maximum at the point
B ~ A~!, which is the same as the Y; be proportional to distinct sources, it is
necessary that the J%7 matrices in Eq. (2.139) be positive semi-definite and it is
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sufficient that they are positive definite. But a necessary condition for the J&7 to
be positive definite is to have a positive determinant, and a necessary condition
becomes J,.(Y;)Var[Y;]J.(Y;)Var[Y,;] > 1,Vi # j. The sufficient condition is that
the above inequality is strict.

Note that the product J,.(Y;)Var[Y,] is scale invariant: it is unchanged when
Y, is multiplied by a constant factor. Thus, in the case where the sources have the
same density, the above necessary condition reduces to J,.(S)Var[S] > 1 where S
is a random variable with density equal to the common density of the sources.
The sufficient condition is J,.(S)Var[S] > 1.

O



CHAPTER 3

DISCRIMINACY OF ENTROPIC
CONTRASTS

ANALYSIS OF THE MIXING MAXIMA

Abstract. Chapter 2 addressed the possible existence of local non-mixing
maximum points of criteria based on the (extended form of) Rényi’s entropy.
Furthermore, as discussed in Section 1.8, adaptive optimization techniques sim-
ilar to those given in Section 1.6 may lead to any local maximum point, mixing
or not. Therefore, if mixing local maximum points exist, the algorithm may be
stuck in such a solution, which is actually a spurious solution. Some methods
exist to look for global maximum points like e.g. simulated annealing (which
basically consists in maximizing powers of contrast functions to attenuate the
local maxima compared to the global maximum); by the contrast function defi-
nition, these global maximum points are necessarily non-mixing. However, local
maximum points can also be non-mixing (in both deflation and partial separa-
tion schemes), and these points will not be recovered by using such optimization
techniques. Actually, what we would like to do is “simply” to converge to any
non-mixing point (i.e. to any local maximum point corresponding to the extrac-
tion of — a subset of — the sources).

To that aim, one needs to know in advance if mixing maximum points exist.
If such points do not exist, we know that the solution provided by the iterative
optimization technique will give a (possibly local) maximum point, but this
point shall correspond to an acceptable solution of the BSS problem. On the
contrary, this is no more true if mixing maxima exist: we have no guarantee that
the solution found is acceptable. The goal of this chapter is to deal with this
question for the contrast functions provided in Chapter 2.

97



98 DISCRIMINACY PROPERTY OF ENTROPIC CONTRASTS

Contribution. As in Chapter 2, the original results about the mixing max-
ima of the entropic contrasts (namely: the Shannon entropy-based, the support-
based and the range-based contrasts) are summarized. Next, the mathematical
tools that have been developed in order to perform the above analysis are listed.
Finally, intuitive justifications of some phenomena are given.

e Results about the local and global optima of entropic criteria

— Shannon’s entropy-based BSS contrast functions was proved to
suffer from mixing optima based on experimental results when the
source densities are multimodal; but those simulations always involved
entropy approximation, so that it was unclear wheter such mixing
maxima exist in the exact Shannon’s entropy-based contrast. This
is rigorously proved here when the source densities are multimodal
enough. Mutual information is also proved to have such spurious
optima. Hence, Shannon’s entropy-based contrasts are not discrimi-
nant contrasts in deflation and simultaneous separation schemes (and
consequently for partial separation scheme, t0o0)

— Hartley’s entropy-based BSS contrast functions are proved to suffer
from the same drawback when (shortly) the source supports are non-
convex; this can be seen to be related to the “multimodality” concept
when only the support is considered.

— Extended Hartley’s entropy-based (i.e. range-based) BSS con-
trast functions are proved to be, on the contrary, discriminant con-
trast functions in the three extraction schemes, and thus even if a
prewhitening step is not performed. To our knowledge, this is the
single BSS criterion that is proved to benefit from the discriminacy
property in the three extraction schemes (and in addition when no
prewhitening is used), so far.

e Tools and other results

— The Taylor expansion of Shannon’s entropy was useful to give counter-
examples showing that the related deflation and simultaneous contrast
functions are not discriminant. However, this could be shown for a
limited class of source densities (two i.i.d. and symmetric sources).
Therefore, another technique is presented, based on entropy approxi-
mation, exploiting the multimodal nature of the source pdfs. It allows
us to extend the results to pairs of sources that have different and
asymmetric multimodal densities. Error bounds are also provided.

— The output range is proved to be a g-convex functional under a fixed-
variance constraint. This useful (but unrecognized) result implies the
discriminacy of the deflation range-based contrast.
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e Intuitive developments

— We propose an intuitive (informal) justification explaining the exis-
tence of mixing maxima that emphasizes the specific nature of the
multimodal source densities and, point out the relationship between
the modality of a random variable and its entropy in our BSS frame-
work.

— It is intuitively explained why cumulant-based criteria (like absolute
kurtosis) do not suffer from this drawback.

In this chapter, all the proofs are original. Some of them result from joint
work with D.-T. Pham. Part of the work presented in this chapter was or will be
published in the following papers (see Appendix B): JA1, JP1, JP2, JP3, JA1,
ICB1, ICP7, ICP8 (results about Shannon’s entropy) JA2, JA3, JTBS1, ICB6,
ICP6, ICP10(results about the support and the range) JS1, ICTBS1 (results
about Rényi entropies).

Organization of the chapter. In Section 3.2, the possible existence of
mixing minima of Shannon’s entropy is analyzed. An informal justification and
two rigorous approaches are used to show that this may not be the case when
the sources have multimodal densities. As it is known that there is no mixing
optimum in some cumulant-based criteria, we try to sketch an intuitive reasoning
explaining the origin of this difference. The mixing extrema of the general form of
Rényi’s entropies are not investigated as they do not lead to contrast functions.
Then the range criterion is analyzed in Section 3.4, from various viewpoints
and for the three extraction schemes. Section 3.5 shows that the discriminacy
property is shared by the range but not by the support, which behaves similarly
to the Shannon entropy.

3.1 CONCEPT DEFINITION AND TERMINOLOGY JUSTIFICATION

C