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 “He fell asleep murmuring ‘Sanity is not statistical,’  
with the feeling that this remark contained in it a profound wisdom.” 

 

George Orwell – “1984” 

 

 
5 



A Framework for Unsupervised Learning of Dialogue Strategies       

   

 
6 



A Framework for Unsupervised Learning of Dialogue Strategies       

   

To those who still can disappoint me … 
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Abstract 

NNowadays Human-Computer Interfaces (HCI) are widely studied and 
become one of the major interests among the scientific community. Indeed, 
more and more electronic devices surround people in their day-to-day life. 
Yet this exponential incursion of electronics in homes and offices is not only 
due to its ability to ease the achievement of common and boring tasks or the 
continuously decreasing prices but also because more and more user-friendly 
interfaces make it easier to use.  

During the last decades, the fields of Automatic Speech Recognition (ASR), 
Text-To-Speech (TTS) synthesis and Natural Language Processing (NLP) 
knew lots of progresses. It is now allowed to think about building real Spoken 
Dialogue Systems (SDS) interacting with human users through voice 
interactions. Speech often appears as a natural way to interact for a human 
being and it provides potential benefits such as hand-free access to 
machines, ergonomics and greater efficiency of interaction. Yet, speech-
based interfaces design has been an expert job for a long time. It 
necessitates good skills in speech technologies and low-level programming. 
Moreover, rapid design and reusability of previously designed systems are 
almost impossible. For these reasons, but not only, people are less used to 
interact with speech-based interfaces which are therefore thought as less 
intuitive since they are less widespread. 

This dissertation proposes to apply Artificial Intelligence (AI) techniques to the 
problem of SDS prototype design. Although Machine Learning and Decision 
Making techniques have already been applied to SDS optimisation, no real 
attempt to use those techniques in order to design a new system from scratch 
has been made. In this dissertation are proposed some novel ideas in order 
to achieve the goal of easing the design of Spoken Dialogue Systems and 
allow novices to have access to voice technologies.  

To do so, a framework for simulating and evaluating dialogues and learning 
optimal dialogue strategies is proposed. The simulation process is based on 
a probabilistic description of a dialogue and on the stochastic modelling of 
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both artificial NLP modules composing a SDS and the user. This probabilistic 
model is based on a set of parameters that can be tuned thanks to prior 
knowledge (to allow design from scratch) or learned from data (to allow 
system enhancement). The evaluation is part of the simulation process and is 
based on objective measures provided by each module. Finally, the 
simulation environment is connected to a learning agent using the supplied 
evaluation metrics as an objective function in order to generate an optimal 
behaviour for the SDS. 
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AArticulated language is one of the main human characteristics. 
This is probably why the faculty of expressing sequences of ideas 
and concepts using articulated language is often presumptuously 
confused with intelligence. As well, the ability of understanding and 
producing more or less coherent answers to spoken utterances 
implicitly defines different degrees of intelligence. 

“… it is highly deserving of remark, that there are no men so 
dull and stupid, not even idiots, as to be incapable of joining 
together different words, and thereby constructing a 
declaration by which to make their thoughts understood …” 

René Descartes (1637) – “Discourse on the method” 

Our definition of intelligence also deals with the facility of learning. 
The faster a child learns, the more intelligent he is. The aptitude to 
understand and associate concepts, to generalise from experience 
to unseen situations and to act rationally by applying knowledge 
are all part of what we think to be intelligence but are closely 
related to the definition of learning.  

Because we like to think that intelligence is peculiar to mankind, 
philosophers stated that machines could never be as clever as to 
be able to speak coherently by their own and science fiction 
authors’ most fearsome creatures are machines which learning 
rate outperforms ours. But we are on the way … 

“HAL 9000: I honestly think you ought to calm down; take a 
stress pill and think things over.” 

Arthur C. Clarke (1968) – “2001: A space Odyssey” 
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Chapter 1: Why and How? 

1.1. Motivations 
Nowadays Human-Computer Interfaces (HCI) are widely studied and become 
one of the major interests among the scientific community. Indeed, more and 
more electronic devices are surrounding people in their day-to-day life. Yet 
this exponential incursion of electronics in homes and offices is not only due 
to its ability to ease the achievement of common and boring tasks or to the 
continuously decreasing prices but also because more and more user-friendly 
interfaces make it easier to use. Personal computers and mobile phones are 
some of the best examples of devices that have an increasing success 
because they are offering powerful capabilities to any user with a minimum of 
training. More and more devices like fridges, washing machines or microwave 
ovens are being equipped with LCD screens allowing access to additional 
functionalities with less effort, VCR and audio/video receivers provide ‘on-
screen’ menu display etc. All those new interfaces enable non-expert or non-
trained users to access new technologies or to make easier use of options 
provided by a given device.  

Due to last decades’ progresses in the field of speech technologies, like 
Automatic Speech Recognition (ASR) and Text-To-Speech (TTS) synthesis 
and in the field of Natural Language Processing (NLP), voice-enabled 
interfaces and Spoken Dialogue Systems (SDS) are hopefully going to 
become growingly common. Since speech is the most natural way to interact 
for people, speech-based interfaces seem to be a better option to interact 
with common devices than learning to use visual or even mechanical 
interfaces. Nevertheless, until now, only few working systems were released 
to real users and didn’t really prove to outperform standard interfaces in 
terms of task completion and ergonomics. This causes users to a priori dislike 
speech-based interfaces after having used one once. For instance, voice 
dialling is a common selling point of recent mobile phones and is almost 
never used by their owner.  

This observation is of course partly due the statistical nature of speech 
technologies, making them error prone, but not only. Indeed, it is also due to 
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the management of error corrections, to the lack of immediate feedback of 
pure speech-based interface and above all to the lack of flexibility. Indeed, 
each user can have a different way to interact with a visual interface while a 
voice-enabled interface is commonly more rigid. This potential inflexibility is 
generally the cost to pay for a lower error rate and a better task completion 
rate because constraining possible speech entries enhances the speech 
processing results. Moreover, speech-based interaction is a linear sequential 
process, which is by nature less flexible than communication through a visual 
interface that offers lots of possibilities at a same time. Finally, since speech 
is a more natural way to interact, beginner users’ demands are generally 
more complex than what the SDS is designed for and even more complex 
than what they could obtain from a graphical interface. Users do not adapt 
themselves to the interface (like they do for graphical interfaces) and even if 
they do, they conclude that it is less powerful than a graphical interface while 
it is not always the case.  

Besides, over the last decade, the web-based technologies enabled non-
expert people to develop simple visual interfaces thanks to interpreted 
scripting languages such as HTML (HyperText Markup Language) and more 
generally XML (eXtensible Markup Language). Very powerful graphical design 
tools made even easier to build web sites and newcomers to computer 
science could contribute to the growth of the Internet. Thus, visual interfaces 
for information retrieval, form filling or database access became widely used. 
Those tools also contributed to the standardisation of interfaces. On another 
hand, speech-based interfaces design has been an expert job for a long time. 
It necessitates good skills in speech technologies and low-level programming. 
Moreover, rapid design and reusability of previously designed systems are 
almost impossible. For these reasons also, people are less used to interact 
with speech-based interfaces which are therefore thought as less intuitive 
since they are less widespread. 

The following text addresses both the usability and design issues, which are 
finally close to each other. Indeed, lack of flexibility is of course due to the 
nature of the speech-based communication but also because the design of 
SDS is more complex, more task-dependent and user-dependent and relies 
on lots of different factors (like the ASR performance, noise etc.). In the 
purpose of an easier design and a better usability of voice-enabled interfaces, 
this thesis describes methods for evaluation, simulation and optimal 
behaviour learning of SDS. 
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1.2. Practical Context 
This thesis has been initiated in the framework of a ‘First Europe’ project 
funded by the ‘Direction Générale des Technologies, de la Recherche et de 
l’Energie’ (DGTRE) of the Région Wallonne in Belgium before being funded by 
the SIMILAR European network of excellence. Practically, the ‘First Europe’ 
framework implies the collaboration of two European universities (the ‘Faculté 
Polytechnique de Mons’ (FPMs) in Belgium and the University of Sheffield in 
United Kingdom in this case) in which the researcher has to spend at least six 
months and a European company (Babel Technologies from Belgium in this 
case). Like the European networks of excellence, it aims at creating 
connections among European academic institutions but also between 
academic institutions and the industry. This desired connection between 
academics and industries, induces consequences in the approach of the 
funded researches and it is a general will of the ‘Région Wallone’ to fund 
applied research projects and not fundamental researches.  

This research was realised both in the ‘Théorie des Circuits et Traitement du 
Signal’ (TCTS) laboratory of the FPMs and the SPeech and Hearing 
(SPandH) group of the University of Sheffield. These labs have a strong 
background in fundamental signal processing and mainly speech processing. 
Particularly, the TCTS department, where most of the researches were 
realised, was mainly split into two teams focusing their researches on Digital 
Signal Processing (DSP) for speech recognition and speech synthesis and 
was not directly involved in dialogue management. On another hand, the 
associate company Babel Technologies was specialised in SDK development 
and selling more than end-user products. 

According to those practical constraints, the specifications of the project were 
drawn and can be summarised as follow: development of an application 
dedicated to build task-oriented spoken dialogue systems mainly for 
information retrieval, form filling and database access. The application should 
help a designer (expert or not) to create optimised prototypes of dialogue 
systems from scratch and therefore should not take advantage of data 
collections obtained by releasing prototypes to users. This text reports 
researches followed in the aim of achieving this task. The influence of each 
scientific team in which this research has been realised led not to consider 
dialogue design as only a very high level process but to take into account 
properties of all the modules concerned. 
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1.3. Contributions 
The behaviour of a dialogue system is determined by its strategy. The 
strategy is contained in a dialogue management (DM) module, which can be 
considered as the brain of the system while the remaining modules are 
essentially DSP and NLP modules. Designing a dialogue strategy, and so, 
defining the scheduling of voice interactions, is probably the most delicate 
task of the SDS design process (given the DSP and NLP modules, of course). 
Some researches in dialogue metrics and automatic strategy learning 
attempted to solve the problem of dialogue strategy design but results remain 
difficult to use in practice and it is still an expert job. They are usually used for 
evaluation and sometimes enhancement of already existing systems more 
than for designing new strategies from scratch. 

As said before, this text addresses the problem of designing task-oriented 
spoken dialogue system prototypes merely according to knowledge about the 
task. This supposes that the designer doesn’t dispose of data collected 
thanks to previous prototypes or so-called ‘Wizard of Oz’ simulations. These 
restrictions are made in order to possibly give access to SDS design to non-
expert designers.  

In the proposal made in this dissertation, a parametric model for generating 
optimal spoken dialogue strategies is described. That is the better sequence 
of interactions that will lead to the achievement of the task in terms of 
performance and user satisfaction. In this framework, the model relies on a 
limited set of parameters that can be estimated thanks to prior knowledge 
(that means, without data collection) but all the mechanisms for learning 
those parameters from collected data or even online learning are also 
available, making the application not restricted to the simple case of a priori 
knowledge. The application can then be used in the aim of improvement of 
already existing systems.  

Like in previous researches, it is proposed to simulate dialogues in order to 
evaluate them and also to provide artificial data points allowing optimal 
strategy learning. Yet, the simulation process described in this text is different 
from previous work in the domain and is based on a more realistic description 
of the SDS environment. A probabilistic description of a dialogue serves as a 
base for the simulation process. The proposed simulation environment 
models the DSP and NLP modules surrounding the dialogue manager (DM) 
and the system’s user in a stochastic way. Where previous works have a 
quite simple joined error model for Automatic Speech Recognition (ASR) and 
Natural Language Understanding (NLU) modules, this text proposes to adapt 
error models to dialogue state according to task knowledge. Indeed, SDS are 
often parameterised differently at each dialogue step in order to enhance the 
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performance (different language models and vocabulary sizes for the ASR 
system, for instance). On another hand, it is suggested to model system’s 
users thanks to Bayesian Networks (BN). This representation allows the 
inclusion of task knowledge, dialogue history and other parameters in the 
user’s decision-making process. Moreover, the BN framework is suitable for 
combining prior knowledge and parameter learning. BNs also allow goal 
inferring and user adaptation, which means that it can also be used as part of 
the dialogue system. Each module of the simulation environment also 
provides objective metrics allowing the evaluation of every interaction.  

The main contributions of this work are then the probabilistic description of 
the spoken dialogue process for simulation purposes, the use of the Bayesian 
network framework for user modelling and for natural language 
understanding simulation as well, and an automatically tuneable model of a 
speech recognition engine. Two speech recogniser models are proposed and 
the most complex is based on a measure of acoustic confusability between 
words computed thanks to similarities between articulatory features of 
phoneme sequences. The user model is used to simulate the behaviour of 
several types of users and is conditioned by the history of the dialogue and its 
goal. The same probabilistic model is used as a generative model to simulate 
natural language understanding. Each model also produces estimates of 
evaluation metrics (like confidence levels for ASR and NLU for example).  

The simulation environment containing all those models is then connected to 
a learning agent that can take a combination of the evaluation metrics as an 
objective function to produce an optimal strategy according to the properties 
of each module and to the task. In this dissertation, the Reinforcement 
Learning (RL) paradigm is described, since it is an unsupervised learning 
technique able to learn from interactions with an environment (real or 
simulated). Although RL has already been applied to dialogue management, 
in this text new reinforcement signals and state spaces are proposed in the 
framework of factored Markov Decision Processes (MDPs). This allowed to 
compare performance between different learned strategies and to point out 
the influence of the different models in the resulting learned optimal strategies. 
Nevertheless, other decision-making techniques can be used since the 
simulation process is sufficiently generic. 

1.4. Plan 
The first part of this text, including this chapter, is mainly introductory and will 
define techniques used in the field of dialogue systems and AI used later in 
the text. The area of Human-Machine Dialogues (HMD) is quite large and 
relies on lots of other research fields going from low level signal processing 
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like used in the ASR process to higher level based on the manipulation on 
concepts like in Natural Language Understanding (NLU) or Knowledge 
Representation (KR). The second chapter will describe those fields. In chapter 
3, the general Reinforcement Learning (RL) and Bayesian Network (BN) 
frameworks are described.  

In the second part, the dialogue simulation process is explained. Chapter 4 
reports on a general probabilistic framework for describing HMDs. This 
approach permits to define what are the probabilities to evaluate for dialogue 
simulation purpose. Chapter 5 exposes two different goal directed user 
models developed in the framework of this project. They are both probabilistic 
but the second is based on the BN framework and produces more realistic 
and powerful results. Eventually, chapter 6 describes an attempt to simulate 
the speech and natural language processing modules behaviour and their 
possible errors. 

Strategy learning techniques will be discussed in the third part of this 
dissertation. Chapter 7 describes the definition of the dialogue problem in the 
framework of factored MDPs in the purpose of automatic learning of dialogue 
strategies. Illustrating examples are depicted in Chapter 8. These examples 
demonstrate the ability of the learning algorithm to adapt to different 
situations simulated by the probabilistic simulation environment defined in 
previous chapters. 

Conclusion and further works, including possible uses of the techniques 
described in this text, are exposed in the fourth part. 
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Chapter 2: Human - Machine Spoken 
Dialogue: State of the Art 

2.1. A Bit of History 
Machines able to produce speech are not a recent idea. With the ancient 
oracles, the thought that inanimate objects could speak was born. Although 
they did not always agree on the fact of that being possible, the 
‘mathematicians-philosophers’ of the 17th and 18th centuries, contemporaries 
of first computational machines, also thought about it. For example, 
Descartes declared that even if machines could speak, their discourse could 
not be coherent.  

“… if there were machines bearing the image of our bodies, 
and capable of imitating our actions as far as it is morally 
possible […] they could never use spoken words or other 
signs arranged in such a manner as is competent to us in 
order to declare our thoughts to others: for we may easily 
conceive a machine to be so constructed that it emits 
vocables, and even that it emits some correspondent to 
the action upon it of external objects which cause a 
change in its organs […] but not that it should arrange 
them variously so as appositely to reply to what is said in its presence 
…”  

René Descartes (1637) – “Discourse on the method” 

More than a hundred years later, Leonhard Euler was more optimistic than 
his peer and said:  

“It would be a considerable invention indeed, that of a machine able to 
mimic speech, with its sounds and articulations. I think it is not 
impossible." 

Leonhard Euler (1761) 
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Nevertheless, one of his contemporaries, Wolfgang von 
Kempelen (shown on the left drawing), built the first ‘talking 
machine’ and described it precisely in a book published in 1791 
[von Kempelen, 1791]. His machine was not only able to produce 
speech sounds but also words and even short sentences in Latin, 
French and Italian languages. It was inspired by the model of the 
human vocal tract built in 1779 by Christian Kratzenstein, which 
was only able to produce vowel sounds. Different versions of the 
‘von Kempelen’s Machine’ were built during the 19th and even 20th century.  

At the end of the 19th century, Alexander Graham Bell (left 

In 1939, Homer Dudley, 

mean time, the Elmwood Button Company 
e 

 the vowel in 

ved 

researches were needed. 

picture) decided to invent a machine that could transcribe 
spoken words into text in order to help deaf people. 
Although Bell was unsuccessful in the invention of this 
machine (the ‘phonoautograph’), it was while working on it 

that he had the inspiration for what would become the 
telephone in 1878. This important invention and the 
progresses in electrical engineering made in the 
first half of the 20th century opened the way of 
functional (and not physical) speech sound 
production by electrical means.  

a research physicist at Bell 
Labs, demonstrated his VODER at the World’s Fair in 
New York [Science News Letter, 1939]. The VODER 
was still a manually controlled speech synthesizer as 
was the ‘von Kempelen’s Machine’ and highly trained 
technicians that operated analogue and continuous 
controls were necessary to manipulated it [Dudley et al, 
1939].  

In the 
produced in 1922 a toy dog (the ‘Radio Rex’) that mad
history as the first successful entry into the field of speech 
recognition. It used an electromagnet sensitive to sound 
patterns containing acoustic energy around 500 Hz, such as
‘Rex’, and gave the illusion that the celluloid dog responded to its name.  

Since the second half of the 20th century, the parallel and interlea
development of several research fields contributed to make the old dream of 
talking machines come true. It started with von Kempelen’s physical speech 
synthesis attempts and Bell’s thought of Automatic Speech Recognition (ASR) 
but half a century of scientific, linguistic, psychological and even philosophical 
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In the late 1940’s, the U.S. Department of Defense (DOD), in an attempt to 
speed up the processing of intercepted Russian messages, sponsored the 

ies about linguistics and computational grammars 

is linked with two landmark 

 test, introduced by 
ving a conversation 

ined HAL9000, a computer that could hold a 

alled the Speech Understanding 
Research (SUR) program. It aimed at developing a computer system that 

first researches in speech recognition. In 1952, the Bell Laboratories 
developed a system that could successfully recognise spoken digits 
transmitted by phone with an accuracy of 98% with speaker adaptation [Davis 
et al, 52]. In 1959, at the Lincoln Lab of the Massachusset Institute of 
Technology (MIT), Forgie and Forgie developed a speaker-independent 
system able to recognise vowels with an accuracy of 93% [Forgie & Forgie, 
1959]. Ben Gold, from the same lab, demonstrated in 1966 a system able to 
match a spoken utterance to a list of 50 words and to associate a score with 
the recognition result. The system performed isolated word recognition with 
an accuracy of 83%.  

It is also during the 1950’s and 1960’s at the MIT that Noam Chomsky 
developed his theor
[Chomsky, 1956], [Chomsky, 1965] and built the foundation of Natural 
Language Processing (NLP).  

The concept of Artificial Intelligence (AI) was born at Bell 
Labs in the early 1950’s. It 
papers on chess playing by machine written by the father 
of information theory, Claude E. Shannon [Shannon, 
1950 a]. Nevertheless, it is in 1966 that Joseph 
Weizenbaum (from MIT, shown on the right-hand 
picture) released ELIZA (so named after the Eliza 
Doolittle character in the play "Pygmalion"), the first 
artificial intelligence program simulating human 
conversation that successfully (but informally) passed 
the Turing test [Weizenbaum, 1966]. According to this
Alan Turing in 1950 [Turing, 1950], if an interrogator is ha
with both a computer and another person through a terminal and cannot find 
out which is the machine by asking questions, then the machine is intelligent. 
ELIZA mimicked the behaviour of a psychologist and was tested on the non-
technical staff of the MIT AI Lab. Weizenbaum was shocked by the results of 
his experiment as lots of the users spent hours revealing their personal 
problems to the program.  

In 1968, in their sci-fi masterpiece ‘2001: A Space Odyssey’, Arthur C. Clarke 
and Stanley Kubrick imag
conversation, think and adapt its behaviour.  

During the 1970’s, the Defense Advanced Research Projects Agency (DARPA), 
a unit of the DOD, funded a five-year project c
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could understand continuous speech and major research groups were 
established at MIT’s Lincoln Lab, Carnegie Mellon University (CMU), Stanford 
Research Institute (SRI), System Development Corporation (SDC) and Bolt, 
Beranek, and Newman (BBN). It led to the HARPY and DRAGON speech 
recognition systems but none of them met the project’s objectives as their 
vocabularies were too small and their error rates too high. Anyway, it is 
during those years that James and Janet Baker (from CMU) and Frederick 
Jelinek (from IBM) began applying the statistical pattern-matching framework 
named Hidden Markov Models (HMM) to speech recognition [Jelinek, 1976]. 
HMMs were a real breakthrough in the area of pattern matching and were 
widely studied in the early 1970’s by Leonard Baum and colleagues from the 
Institute for Defense Analyses (IDA), Princeton [Baum, 1972].  

With HMMs and, more generally speaking, statistical pattern matching, 
cognitive science entered in the very important era of data-driven or corpus-
based techniques. They are still now commonly used in all fields of NLP 

ribed in their highly 

s training and testing began. 

1994]. In 1994, Nuance Communications, a 

including ASR, Natural Language Understanding (NLU), Natural Language 
Generation (NLG) and Text-to-Speech (TTS) synthesis.  

Thanks to the increase of the processing power, the 1970’s were a decade of 
great progresses in the field of Digital Signal Processing (DSP) and especially 
for speech processing like Rabiner and Shafer desc
influential book [Rabiner & Shafer, 1978]. It is also in the course of this 
decade that the structure of human discourse began to be the object of 
formal investigations in the purpose of making Human-Computer Interfaces 
(HCI) more ‘user-friendly’. In 1974, Barbara Grosz from SRI started studying 
the structure of dialogues in collaborative tasks [Grosz, 1974], which was a 
step further than Chomsky’s syntactic studies.  

The 1980’s saw the creation of the first companies incorporating research 
results into products (Dragon Systems in 1982). The collection of large 
standard corpora for speech recognition system
Lots of NLU researches were conducted during the 1980’s. For example, 
Barbara Grosz and Candace Sidner developed the theory of ‘centering’ 
[Grosz & Sidner, 1986] that aimed to formalise the way a human follows the 
focus of a conversation. James Allen applied statistical pattern-matching 
techniques usually applied in speech recognition to semantic parsing of 
natural language [Allen, 1987]. 

In the first half of the 1990’s, hybrid methods combining Artificial Neural 
Networks (ANN) and HMMs were successfully used in large speech recognition 
systems [Bourlard & Morgan, 
spin off of the SRI, is founded and is still now one of the leaders in the domain. 
And it is only in the second half of this decade that development of complete 
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Spoken Dialogue Systems (SDS) including speech recognition, speech 
synthesis, NLU and dialogue management started to emerge. In 1996, 
Charles Schwab is the first company to propose a fully automatic telephone 
service. It allows for up to 360 simultaneous customers to call in and get 
quotes on stock and options. 

2.2. Generalities about Human-Machine Dialogue 
Nowadays, thanks to half a century of intensive researches, interacting with 

 
 

escribe 

n, a dialogue will be referred to as an interaction 
sed on sequential turn taking. In most of the cases, 
rected and both agents cooperate in order to achieve 

led interfaces are now surrounding us and are more or less 
sophisticated. Indeed, it is for example possible to activate voice dialling on 
your mobile phone, dictate documents to a text editing tool, open and control 

machines becomes amazingly common. People born during the two last
decades are used to communicate with computers, answering machines,
video games, etc. However, a real Human-Machine Dialogue (HMD) takes 
place in particular applications that will be described in the following.  

Before entering into details about Spoken Dialogue Systems (SDS), it is 
important to have some fundamental notions about dialogue in general and 
HMD in particular. This section will give some simple definitions, d
some types of dialogue applications, define different levels of communication 
coming up during spoken interactions, and then the general architecture of 
generic dialogue systems. 

2.2.1. Definitions 
In the rest of this dissertatio
between two agents ba
this interaction is goal-di
an aim. In the case of a HMD one of the agents is a human user while the 
other is a computer. In the particular case in which the interaction uses 
speech as the main communication mean, the computer implements a 
Spoken Dialogue System (SDS) while a system using several means of 
communication is referred to as a Multimodal Dialogue System (MMDS). When 
the HMD is dedicated to the realisation of a particular task (or set of tasks) it is 
called a task-oriented dialogue system. When one of the agents is an SDS, the 
dialogue consists of a sequence of utterances exchanged at each turn. A 
spoken utterance is the acoustic realisation of the intentions or concepts one 
of the agents wants to communicate to the other and is expressed as a word 
sequence. 

2.2.2. Applications 
Voice-enab
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applications on the deskt
system to ear a summary 

op of a computer, call an information providing 
of your e-mails or to know about the weather in a 

is probably the simplest 
application category and was one of the first to be investigated [Bobrow et al, 

ions implies that the user has to provide values for 
e purpose of the  system is to collect 

 knowledge base and to provide it to the human user. Such a 
system should, for instance, retrieve a particular record in a database 

rain ticket booking engines, automatic 
xamples [den Os et al, 1999]. 

perly) and for which 
collaborative dialogue will take place [Smith et al, 1992]. In this case, the 

 order to collect information about what is 
 ensure that the user will perform proper 

particular area, your call can also be automatically routed and monitored… In 
general, HMD systems can be classified according to the application type they 
are dedicated to and to the complexity of the task. 

2.2.2.1. Form Filling 
The form filling applications are also referred to as frame-based, frame-driven 
or slot-filling applications in the literature. It 

1977]. This type of applicat
a set of specific fields of a form. Th HMD
all the values. 

2.2.2.2. Information Retrieval 
In this case, the purpose of the system is to retrieve some specific 
information in a

according to its user’s will. Flight or t
book or computer retailing systems are some e
Such an application could also allow using mobile devices for accessing an 
information management system in a warehouse [Bagein et al, 2003]. The 
system could also retrieve pertinent documents about specific topics among 
websites [Lau et al, 1997] or provide weather forecast for a specific region 
[Zue et al, 2000]. Automatic call steering can also be classified in this 
category, as the system’s purpose is to route calls to operators able to 
provide the desired information [Durston et al, 2001]. All those tasks imply to 
collect a certain amount of relevant pieces of information about what has to 
be retrieved by querying the user [Bennacef et al, 1994]. 

2.2.2.3. Problem Solving 
Troubleshooting is typically the kind of task for which the user needs his 
problem to be solved (getting his/her device working pro

system has to guide the user in
going wrong but its role is also to
actions in order to fix the device. Consequently, the particularity of this kind of 
systems is that it involves not only questions and answers but also the user to 
perform actions and report the results. In other words, the user is a person 
with the ability to carry out all the required sensory and mechanical 
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operations to solve the problem but without sufficient knowledge while the 
system has adequate knowledge to solve the problem but cannot perform the 
required sensory and mechanical operations in order to physically solve it. 
Collaboration between the user and the machine is therefore necessary. 

2.2.2.4. Tutoring 
Nowadays, interactive teaching and tutoring systems are becoming very 
attractive especially with the emergence of the e-Learning techniques [Rose 
et al, 1999]. In a general manner, teaching or tutoring is not only providing 

en if exhaustive) about a topic. A good interactive 
ld detect lacks in user’s knowledge and provide 

before, the re is such a system. Several 
ts or chat bots, were created since the 
oebner Price that goes to AI systems 

g to keep his hands and eyes 
 a machine by voice or gestures. Wearable interfaces are 
r everyday life rather quickly enabling control of distant 

static information (ev
tutoring system shou
information consequently [Graesser et al, 2001]. Some systems go a step 
further by introducing tutoring agents providing online information about the 
HMD system itself [Hakulinen et al, 2003]. 

2.2.2.5. Social Conversation 
Some HMD systems do not have another purpose than to converse with users. 
They are not considered anymore as task-oriented. As already mentioned 

ELIZA [Weizenbaum, 1966] softwa
‘ELIZA-like’ systems, called chat robo
sixties (in the aim of winning the L
passing the Turing Test) and can be easily found on the Internet. Other works 
have also been conducted in order to create robots able to take part to group 
conversations [Matsusaka et al, 2001]. 

2.2.2.6. Others 
Many other applications can be found to HMD systems. ‘Command and 
control’, for example, is one of the tasks that will probably become more 
popular in the next decade. An operator needin
free could command
likely to enter in ou
devices [Sawhney & Schmandt, 1998]. Anyone will probably want to control 
TV sets, VCR or DVD players in a more natural, unified and interactive way in 
the close future. 
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2.2.3. Levels of communication in a speech-based 

interaction 
During their whole life, human beings learn to produce speech coherently in 
the purpose of expressing their thoughts. Unconsciously everything around 
them influences this learning process and it finally becomes totally instinctive. 

Acoustic

Phonetic

Phonologic lexical

Syntactic

Semantic

Pragmatic

Low 
Level

High 
Level

 
Fig. 1: Levels in a speech-based communication 

Formalising speech-based communication needs the precise description of 
intuitive mechanisms including both speech production and speech analysis 
or understanding. It is a complex introspective process that began to be 
formally investigated in the mid-fifties while mankind learned to speak for 
thousand years. 

Information conveyed by speech can be analysed at several levels. In the 
field of NLP, seven levels are commonly admitted in order to describe speech-
based communication as depicted on Fig. 1 [Boite et al, 2000]. The figure 
also shows that levels can be classified into high and low levels of description: 
the lower the level, the closer it is from the physical sound signal. This 
distinction between high and low levels is applicable to all types of 
communications as there is always a possibility to distinguish physical stimuli 
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and their interpretation. Nevertheless, the granularity described in the 
following is not kept when describing other means of communication.  

2.2.3.1. The Acoustic Level 
Speech is firstly a sequence of sounds and so, it is a variation of the air 
pressure produced by the vocal tract. The acoustic level is the lowest as it 
concerns exclusively the signal. The study of the acoustic signal includes the 
study of any of its representation as the electrical output of a microphone 
(analog or digital), wave forms, frequency analysis (Fourier transforms, 
spectrograms) etc. Useful information can be obtained from the analysis of 
the acoustic signal such as the pitch (fundamental frequency), the energy and 
the spectrum. In general, it is the only level considered by speech coding 
techniques.  

As the human vocal tract is a physical instrument, it is subject to a certain 
inertia and thus, it cannot assume sudden state modifications. This results in 
an important property of the acoustic speech signal: it can be considered as a 
pseudo-stationary signal. Actually, it has been practically demonstrated that it 
can even be regarded as stationary along short length time windows of about 
30ms except for very short speech events like stops.  

2.2.3.2. The Phonetic Level 
At this stage, the signal properties are still in focus (low level description) but 
a step further. Indeed, the phoneticians’ focus of interest is the production of 
particular sounds by the ariculatory system. The physical process of speech 
production can shortly be described as follows.  

The breathing is the primary source of energy. Air is propelled through the 
vocal tract and different obstacles modulate the air pressure at the output of 
the mouth and nose. The phonetics studies how humans voluntary contracts 
muscles in order to dispose obstacles like tongue, lips, teeth and other 
organs in the aim of pronouncing a specific sound.  

2.2.3.3. The Phonologic Level 
The phonologic level is the first step toward meanings. Indeed, if the study of 
phonetics deals with the natural production of different sounds, phonology 
implies the analysis of a limited number of distinct sounds allowed in a 
particular language (phonemes), the rhythm with which they are produced in 
a sequence, the musicality applied to this sequence, the fundamental 
frequency of each phoneme (prosody) and accentuated part within the 
sequence. In some languages such as Chinese, changes in the intonation 
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can even completely change the meaning of a word. This level can be 
considered as transitory between low and high levels as it concerns 
physically observable features of the signal but those specific traits are 
voluntary produced by the speaker in the aim of including meaning clues into 
the speech signal. Fundamental frequency of phonemes is sometimes used 
to detect emotions in the speech signal; it is also useful in tutoring 
applications [Litman & Forbes, 2003].  

2.2.3.4. The Lexical Level 
As said before, there is a finite number of different sounds in a specified 
language: the phonemes. Nevertheless, one cannot utter any sequence of 
those sounds and produce a valid word according to the particular language. 
At the lexical level, the focus is on all the valid phoneme sequences that 
produce words included in the word collection (the lexicon) of a particular 
language. For linguists, this level is sometimes called the morphological level 
and constitutes also the study of word elementary sub-units that convey 
sense. This level is the first to be completely associated with the higher levels 
of communication as it deals with words and thus, can be studied on written 
language as well without referring to the physical signal.  

The Fig. 1, shows that phonology is related to the lexical level like the 
phonetics. Indeed, in certain languages (like Chinese), different prosodic 
patterns applied to similar sequences of phonemes produce different words 
and so, different meanings.  

2.2.3.5. The Syntactic Level 
In the same way that all the phoneme sequences are not valid in a given 
language, legal word chains are constrained by a syntax described in a set of 
rules: the grammar. For one language and its corresponding syntax, there 
might be several grammars as there are different rule sets suitable to 
describe the syntax. The grammar also assigns a function to each word in a 
sentence and so, describes the syntactic structure of the sentence.  

In general, grammars written by pure linguists like those taught at school in 
order to learn languages are not appropriate for computational use. This is 
why computational grammars have been developed in the early ages of NLU 
[Chomsky, 1965]. 

2.2.3.6. The Semantic Level 
Even if an utterance is syntactically correct, there is no assurance that it 
provides coherent information. Thus, the next step in the description of 
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communication is to ensure that the sentence have sense and to be able to 
extract that sense from utterances. At the semantic level starts the study of 
context-independent meaning, analysing what words mean but also how 
those meanings combine in sentences. 

2.2.3.7. The Pragmatic Level 
Pragmatics groups all the context-dependent information in communication. 
Indeed, sometimes utterances implicitly refer to underlying information 
supposed to be known by other participants of a conversation. The underlying 
information can be the context but also something more general called 
‘ground knowledge’ that includes all what people from a same culture are 
supposed to know, their background and their common knowledge. 
Sometimes, the pragmatic level is divided into three sub-levels [Allen, 1987]:  

• Pure pragmatic level: the study of the different meanings that can 
convey a single sentence uttered in different contexts.  

• Discourse Level: concerns how the directly preceding sentence 
affects the interpretation of the next sentence. It can be helpful for 
resolving anaphora and other language ambiguities. 

• World knowledge level: it is sometimes referred to as ‘ground 
knowledge’ as said before and includes all what people know about 
the world (milk is white for example) but also what a conversation 
participant knows about other participants beliefs and goals. 

2.2.4. General Architecture of a Dialogue System 
Human-human dialogues are generally multimodal in that sense that when a 
person engage a conversation with another, he/she integrates information 
coming from all his/her senses combined to his/her background knowledge to 
understand his/her interlocutor. Multiple means are also used to 
communicate thoughts like gesture, drawings, etc. Sometimes pieces of 
information coming from different sources are complementary, sometimes 
they are redundant.  

Naturally, researches in the field of multimodal systems are currently 
conducted in the purpose of building systems interacting with human users 
through several means of communication such as gestures [Quek et al, 2002], 
lip reading [Dupont & Luettin, 2000], humming [Ghias et al, 1995], etc. 
Multimodality is used either for ergonomics allowing users to introduce 
complementary information by different means (gesture, humming) or for 
robustness, using redundant information to improve performances (lip 
reading).  
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The general architecture of a multimodal dialogue system is depicted at Fig. 2. 
It shows the typical flow of information going from the user to the system, 
using any kind of modalities such as gesture, speech, keyboard entry, mouse 
movements etc. The information is processed and then passed to a 
subsystem that aims at managing the interaction and has to take decisions 
about what to do next. According to this decision, new information is 
transmitted back to the user. Inputs and outputs are processed by a set of 
subsystems that will be described more precisely in the following. 
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Fig. 2: Typical architecture of a multimodal dialogue system 

Inputs and outputs of such a system are generally perturbed by 
environmental noise. Noise can be of several natures in function of the type 
of information it affects and the way this information is conveyed from the 
user to the acquisition subsystem or from the system back to the user. Of 
course it can be additive background sounds in the case of audio inputs or 
convolutive noise in the case of signal transmission over a poor quality 
channel. Other types of noise can be imagined. For example, in the case of 
gesture inputs via a video stream captured by a distant camera, any event 
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happening around the user can be mixed up with useful information and is 
also considered as noise.   

2.2.4.1. Input Acquisition & Processing 
As human beings collect information from the outside world using their 
senses, input signals have to be first captured and transformed by sensors in 
order to be processed by artificial systems. Sensors can be of different kind 
such as sets of cameras, microphone arrays, touch pads, joysticks, 
keyboards, haptic data gloves, etc. These devices usually first convert 
analogue into digital signals that can be processed by computers or any DSP 
unit. The subsystem in charge of the acquisition of input signals is generally 
responsible for their pre-processing as well. Denoising and feature extraction 
are some steps of the signal pre-processing.  

The feature extraction operation aims to reduce the amount of data to be 
processed by the subsequent subsystems. Indeed, a full video stream, for 
example, is not only a too large amount of data to be processed for a 
dialogue system but in general totally inadequate by itself if it must be used 
for gesture recognition. Actually, only some characteristic points and their 
moves are often useful. The relevant points and information about their 
moves are in most of the cases extracted from the video stream and 
constitute the features that are passed to the rest of the system. 

The denoising process occurs before or after the feature extraction process 
or even both. In the case of acoustic signals, it is sometimes interesting to 
apply denoising techniques to the original signal in order to improve the 
accuracy of extracted features. In the case of gesture recognition, noise 
introduced by movements around the user can be suppressed by foreground-
background segmentation, which is a process applied to both the original 
signal and to features.  

2.2.4.2. Fusion and User’s Goal Inferring  
Once proper features are extracted from the original input signal, they are 
passed to a second subsystem that aims at obtaining meanings (semantic 
level) and inferring the user’s actions and intentions.  

As said before, the multi-sensory input data can be redundant or 
complementary. This means that there might exist dependencies among sets 
of data and those dependencies may be time-varying. Although some 
multimodal systems use very primitive data-fusion techniques, the most 
efficient systems use complex statistical models to infer the user’s goal. 
Bayesian Networks (BN) (also called Bayesian Belief Networks), Dynamic 
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Bayesian Networks (DBN) [Pearl 1988] and Influence Diagrams [Howard & 
Matheson, 1984] are general statistical frameworks often used in multimodal 
systems [Wachsmuth & Sagerer, 2002], [Garg et al, 2000] because of their 
ability to learn dependencies among sets of input data. Kalman filters and 
HMMs are particular examples of DBN and recent researches introduced the 
concept of Asynchronous HMMs [Bengio, 2003] for audio-visual signal 
processing.  

2.2.4.3. Interaction Manager 
The Interaction Manager controls the entire behaviour of the system. After 
having understood the user’s intention, the system has to take a decision 
about what to do next. This module coordinates the interaction with the user 
but also with the rest of its environment. Indeed, the system can interact with 
databases, for example, to retrieve information needed either by the 
Interaction Manager itself in order to continue its exchange with the user, or 
by the user. One can imagine that the Interaction Manager could interact with 
other devices, in order to collect information concerning everything but the 
user (like external temperature, time of the day, etc.) and that can be helpful 
to take a decision about the next action to perform. All those possible external 
devices providing extra information (pragmatic level) are grouped in what was 
called the ‘World Knowledge’ on Fig. 2. 

The reaction of the system to the user’s inputs depends not only on the 
inferred user’s intention but, of course, on the actual task. The Interaction 
Manager is then the more task-dependent part of the system and is rarely 
reusable. Challenges of designing an Interaction Manager and particularly in 
the case of a SDS will be discussed later.  

2.2.4.4. Conceptual Feedback Generation 
When the Interaction Manager has taken the decision about the next action, it 
has to communicate some pieces of information to the user according to this 
decision. This process starts with the production of a set of concepts 
supposed to represent this information as well as possible. Indeed, when one 
is solicited by another human during a dialogue, one first thinks about what 
has been uttered and then produces a series of ideas or concepts expressing 
the results of one’s thoughts. No words or gestures are yet used but a 
structure of what one thinks to summarise one’s thoughts is built. In the same 
way, the ‘Conceptual Feedback Generation’ subsystem builds a set of 
concepts to be conveyed by any means to the user. This process is often 
referred to as planning.  
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2.2.4.5. Output Generation 
This last subsystem is in charge of using any means at its disposal (speech, 
screens, sounds, etc.) to express the previously generated concepts in a way 
that the user can understand them. In the literature, this process is called 
surface realisation.  

2.3. General Architecture of Spoken Dialogue 
Systems 

Although the learning methods developed in the framework of this thesis are 
applicable to all types of dialogue systems, this text particularly focuses on 
systems using speech as the main modality. Those systems are usually 
referred to as Spoken Dialogue Systems (SDS).  
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Fig. 3: General Architecture of a SDS 
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As shown on Fig. 3, a SDS is composed of input processing subsystems 
(namely the Automatic Speech Recognition (ASR) and the Natural Language 
Understanding (NLU) subsystems), output generation subsystems (namely 
the Natural Language Generation (NLG) and the Text-To-Speech (TTS) 
subsystems), a Dialogue Management (DM) subsystem and a World 
Knowledge (WK) base. In this section, the general architecture of subsystems 
surrounding the DM will be discussed (as it is the main subject of this thesis, 
the DM will be the subject of another section) and an overview of their internal 
functioning will be given as well. Without entering too deeply into details, this 
section will also show how and why outputs of each subsystem can be prone 
to errors.  

Besides the different levels of speech communication are also depicted on 
Fig. 3 and associated to the subsystems working at this level. Yet, three new 
levels are also defined: the speech, word and intention (or concept) levels. 
These new abstract levels are very important when considering a SDS since 
they are higher-level concepts that can be more easily manipulated. They 
were implicitly defined in section 2.2.1. 
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2.3.1. Automatic Speech Recognition 
The Automatic Speech Recognition (ASR) process aims at transcribing into 
text what has been uttered by the human user. At least, it is supposed to 
extract data usable by subsequent subsystems from the acoustic signal in 
which speech and noise are often mixed up. Thus, according to the definition 
of a SDS adopted in this text (Fig. 3), the ASR subsystem includes the signal 
acquisition devices. On Fig. 4, the complete ASR process is depicted. On this 
figure, VAD stands for Voice Activity Detector. 
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Fig. 4: ASR process 
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2.3.1.1. Signal Acquisition 
The ASR process being a complete DSP operation, the signal acquisition 
subsystem transforms the input acoustic signal in a sequence of digital 
samples suitable for computer-based analysis. To do so, the electrical signal 
outgoing from the microphone is firstly amplified and then filtered to avoid 
aliasing. As the spectrum of telephonic voice can be considered as limited to 
a 4000 Hz band, the cutting frequency of the low-pass filter is often set to this 
upper bound. The resulting analogue signal is then sampled at equally distant 
discrete time instants and each sampled value is quantified (Fig. 5).  

fc fs n

Noise

Amplifier Low Pass 
Filter

Sampling Quantizer

A/D Converter

 
Fig. 5: Signal acquisition process 

On Fig. 5, fc, fs and n are namely the cutting frequency of the low pass filter, 
the sampling frequency and the number of bits of the Analogue/Digital 
Converter. Typical values are:  

• fs = 2.fc = 8 kHz ( or fs = 16 kHz) 

• n = 16 bits 

2.3.1.2. Voice Activity Detector 
The Voice Activity Detector (VAD) aims at distinguishing voice signal from 
noise or silence. It is not always present but it can be useful for several 
purposes: 

• Avoid useless consuming of computational resources: speech 
recognition is very cumbersome and it is completely useless to try to 
recognise anything when only noise or silence is present in the 
acquired signal. 

• Noise modelling: as said in section 2.2.4, it is often necessary to 
apply noise cancellation to the original speech signal in order to 
improve performance. Lots of denoising algorithms are based on 
noise modelling. Thanks to the VAD, it is possible to build a model of 
the environmental noise as it can be identified and measured 
between voice segments. Thus, the role of the VAD is not only to 
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extract voice segments but also to isolate noise segments and both 
tasks are as useful. 

• Enabling barge-in: sometimes it can be ergonomically interesting to 
allow users to stop system’s prompts by speaking over it. The VAD 
can do that job.  

There exist a lot of voice activity detection algorithms based on the signal’s 
energy, more or less complex spectral analysis, etc but none has really 
become a standard. This is why no specific method is detailed here. One 
particular problem of voice activity detection is that voice is precisely not 
considered as noise. This means that the VAD cannot make the distinction 
between useful speech and speech uttered by people surrounding the user.  

2.3.1.3. Feature Extraction  
As said before, since the vocal tract is a physical device, it cannot change its 
state instantaneously. This results in the pseudo-stationarity of the speech 
signal that can be considered as stationary in a time window of 30ms. If 
speech is sampled with a frequency of 8 kHz, 240 samples are necessary to 
represent a 30ms frame. Direct use of raw speech signal samples for speech 
recognition or any other speech processing is too cumbersome and time-
consuming. The sample sequence is instead processed to reduce the data 
stream and take advantage of speech redundancy. The complete process of 
feature extraction is shown on Fig. 6. 

Framing Windowing Signal 
Analysis

Pre-
Emphasis  

Fig. 6: Feature extraction process  

Before any processing, the sampled signal is often submitted to a pre-
emphasis that aims at accentuating high frequencies and thus, flattens the 
signal spectrum. The sampled signal is passed through a filter of the form: 

( ) 1  a  0.9  withaz1zH 1 <<−= − (2.1) 

Then, the framing process divides the sample flow in a sequence of frames 
each containing the number of samples corresponding to 30ms of speech 
and computed every 10ms. That is, two consecutive analysis frames overlap 
each other over 20ms and frames are extracted with a frequency of 100 Hz. 
Overlapping is necessary to take the context of each frame into account. 

 
53 



A Framework for Unsupervised Learning of Dialogue Strategies       

   
Actually, framing corresponds to applying a rectangular window to the original 
signal. This induces well-known edge effects in local computation like 
spectral analysis. To attenuate edge effects, samples from each frame are 
multiplied by a window function, which can be one of the following: 

( ) ( )
( ) ( ) N/2  n  N/2-    with.2cos.46.054.0ngminHam

.2cos.4.05.0nHanning

1N
n
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n

<<π+=

π+=

−
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Eventually, the signal analysis aims at effectively reducing the amount of data 
to be processed by extracting one k-size feature vector xn = {xn1, …, xnk}for 
each N-size sample window. A good feature vector will of course convey the 
same amount of information than the original sampled signal for purpose of 
speech recognition by exploiting the signal redundancy. Analysis techniques 
are generally based on the modelling of the spectral envelope of the speech 
signal. This envelope presents a number of smooth peaks called formants 
corresponding to resonance frequency of the vocal tract. There are two main 
families of signal analysis, respectively the linear predictive (or auto-
regressive) and filter bank analysis 

The first technique, also called Linear Prediction Coding (LPC) analysis, 
consists in modelling the speech production process by a simple speech 
synthesis model composed of an excitation module followed by a filter of the 
form:  

∑
−

−−
= k

1i

i
iza1

1H(z) (2.3) 

In general 10-order to 12-order filters are used to model each analysis 
window. The coefficients of the autoregressive filter are not commonly used 
to directly populate the feature vector but they can be used to compute more 
popular features like Parcor parameters or the cepstral parameters (or 
cepstrum) [Rabiner & Juang, 1993].  

The filter bank analysis method consists in applying a set of contiguous 
symmetric filters to the sampled signal and in extracting one coefficient for 
each filter. The central frequencies of filters can be equally distant or follow a 
non-linear scale like the Mel or the Bark scale. Those very similar scales are 
mapping the linear Hertz frequency scale to a perceptual scale deduced from 
psycho-acoustic experiments. For example, the extraction of Mel Frequency 
Cepstral Coefficients (MFCC) needs a 20-filter bank disposed on the Mel scale 
[Rabiner & Juang, 1993] while the Perceptual Linear Prediction analysis (PLP) 
makes use of 15 filters equally spaced on the Bark scale [Hermansky, 1990]. 

 
54 



A Framework for Unsupervised Learning of Dialogue Strategies       

   
2.3.1.4. Acoustic Model and Language Model 
The acoustic model aims at associating a feature vector with its 
corresponding acoustic unit. Thus, after the signal analysis step, the ASR 
process can be considered as a pattern-matching problem in which each 
class is an acoustic unit and that can be solved by statistical methods. 
Acoustic units can be phonemes (section 2.2.3), allophones (phoneme given 
in a specific context) or even phoneme sub-units. 

But the ASR problem cannot be summarised to the problem of matching 
feature vectors to acoustic units. It actually aims at matching acoustic 
realisations (input acoustic signal) to complex syntactic structure. Although 
ASR systems of the 70’s used direct matching of feature vector sequences to 
words or even word sequences using Dynamic Time Warping (DTW) 
techniques [Myers & Rabiner, 1981], all present systems are based on HMMs. 
HMMs are statistical pattern-matching tools able to integrate local decisions 
(taken, in this case, by the acoustic model) over time in order to take more 
global decisions. Thus, they are used as language model. The way HMMs are 
implemented determines the way the acoustic model has to be implemented, 
this is why both systems are described in the same section. 

qi qj qk

p(qi|qi) p(qj|qj) p(qk|qk)

p(qi|qj) p(qj|qk)

p(
x n

|q
i)

p(
x n

|q
j)

p(
x n

|q
k)

xn xn xn  
Fig. 7: A 3-state HMM 

In the HMM framework, each acoustic unit is modelled by one or several 
states, words are modelled by sequences of states and sentences are 
modelled by sequences of words. As shown on Fig. 7, a HMM is fully 
determined by: 

• A set of k states: { }k1 qqQ ,...,=  

• A set of local probability densities describing the emission probability 
of the feature vector xn by the class qi (acoustic model): p(xn|qi). 

 
55 



A Framework for Unsupervised Learning of Dialogue Strategies       

   
•  The one-step dynamic defined by transition probabilities between 

states: p(qi|qj) 

In this framework, the acoustic model should provide a way to compute 
p(xn|qi) while the dynamic behaviour of the HMM given by p(qi|qj) provides 
integration over time for more global decision. A large model M composed of 
concatenated elementary HMMs mi can model complete sentences and the 
speech recognition problem can be solved by finding the model M that has 
the highest probability P(M|X) to be the sequence of HMMs that generated the 
observed sequence of feature vectors X = {xn}. Using the Bayes’ rule: 

( ) ( ) ( )
( )XP

MPM|XPX|MP ⋅
= (2.4) 

This last equation relates the posterior probability of model M given acoustic 
vector space X P(M|X) to: 

• the probability that model M generates the acoustic vector X among 
all the acoustic vectors it can generate: P(X|M) (acoustic model),  

• the prior probability of model M : P(M) (probability of occurrence of 
the sentence modelled by M in the studied language: language 
model), 

• the unconditional probability of the acoustic vector sequence X: P(X) 
(supposed to be constant over the maximisation process). 

P(X|M) can be computed if all HMMs parameters are known (emission and 
transition probabilities) thanks, for instance, to a Viterbi algorithm [Viterbi, 
1967] [Rabiner & Juang, 1993]. All those probabilities, as well as P(M), are 
generally estimated by training on data corpus (data-driven technique). 
Actually, in practice, handcrafted rules are sometimes written to define 
authorised sequences of words at a given time. The language model is then 
given by a Finite State Grammar (FSG). Reducing the amount of possible 
word sequences obviously allows speeding up the recognition process but 
above all, enhances the performance. Moreover, this permits a first syntactic 
(or even semantic) pre-processing.  

For example, emission probability densities can be estimated by Gaussian 
Mixture Models (GMM) [Juang et al, 1986] like on Fig. 7 or by vector 
quantization of features vectors [Rabiner & Juang, 1993]. Yet, several 
popular ASR systems make also use of Artificial Neural Networks (ANN) to 
classify acoustic vectors and to estimate emission probabilities (P(xn|qi)) 
[Bourlard & Morgan, 1994].  

Typically, ASR systems are able to provide a set of N possible words or word 
sequences that can match the speech input with a given probability. 
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Members of the set are generally called the N-Bests and the associated 
probability is called the Confidence Level (CL). In general, emission 
probability estimates are often used to provide confidence measures 
[Williams & Renals 1997], [Mengusoglu & Ris, 2001]. 

Of course, as the ASR process is a statistical process and assumes that 
several hypotheses are met, it cannot be considered as reliable at 100 
percent. Indeed, one can easily understand that three typical errors can occur: 
insertion, deletion and substitution of words inside the recognised word 
sequence.  

2.3.2. Natural Language Understanding 
After a word sequence has been extracted from the input speech signal, it is 
the job of the NLU subsystem to extract meanings of it. A good NLU system 
dedicated to spoken language understanding should take into account that 
the previous processing subsystems are error-prone and should particularly 
focus on potential errors introduced by the ASR process. To do so, some NLU 
systems are closely coupled to the ASR system, using some of its internal 
results. Others use several hypotheses in order to find out the one that 
makes more sense. On another hand, the NLU system can improve speech 
recognition results and provide contextual confidence measures. 
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Fig. 8: NLU process 
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Nevertheless, assuming that the input is a correct word sequence, most of 
NLU systems can be decomposed as shown on Fig. 8. In the following, basic 
ideas of NLU will be discussed. For detailed explanations about NLU readers 
should refer to [Allen, 1987].  

2.3.2.1. Syntactic Parsing 
Before trying to extract any sense from a sentence, as a person does, the 
system should retrieve the syntactic structure of the sentence: the function of 
each word (part of speech), the way words are related to each other, how 
they are grouped into phrases and how they can modify each other. Indeed, it 
is for example important to solve the problem of homographs (homophones) 
having different possible functions. For instance, the word ‘fly’ can be a noun 
(the insect) or a verb and the word ‘flies’ can stand for the plural of the noun 
or the conjugated verb as shown on Fig. 9. This example shows that 
ambiguity can sometimes be handled by the syntactic analysis of the 
sentence.  

The fly flies

S1

The flies fly

NP VP

A N V

The fly flies

S2

NP VP

A N V

The flies fly

Si: Sentence
A: Article
N: Noun
V: Verb
NP: Noun Phrase
VP: Verb Phrase

 
Fig. 9: Syntactic Parsing 

Most syntactic representations of language are based on the notion of 
Context-Free Grammars (CFG) [Chomsky, 1956], which represents sentences 
in terms of what phrases are subparts of other phrases. Most of syntactic 
parsing algorithms, aiming at effectively create the mapping between a 
sentence and its structure, were developed with the goal of analysing 
programming language rather than natural language [Aho & Ullman, 1972]. 
Two main techniques for describing grammars and implement parsers are 
generally used: context-free rewrite rules and transition networks [Woods, 
1970].  
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For instance, a grammar capturing the syntactic structure of the first sentence 
in the above example can be expressed by a set of rewrite rules like the 
following: 

S → NP VP 

NP → A N 

VP → V 

A → The 
N → fly 
V → flies 

Rules of the first columns are called non-terminal rules because they can still 
be decomposed and others are called terminal rules (or terminal symbols). 
Rewrite rules are very similar to those used in logical programming (like 
PROLOG). This is why logical programming has been widely used for 
implementing syntactic parsers [Gazdar & Mellish, 1989]. 

The above grammar can also be represented by the following State-
Transition Network (STN): 

S S1 S2

art

S3

verbnoun pop

 
Fig. 10: Transition Network Grammar 

In natural languages there are often restrictions between words and phrases. 
There are many forms of agreements including number agreement, subject-
verb agreement, gender agreement, etc. For example, the noun phrase ‘a 
cats’ is not correct in English, as it doesn’t satisfy the number agreement 
restriction. To handle this kind of problems, the previously described 
formalisms can be extended to allow constituents to have features (like 
number, gender, etc) and grammars are then called augmented grammars. 
There are Augmented CFGs and Augmented Transition Networks (ATN). 

Although CFGs and ATNs have been the subject of extensive researches, they 
are limited as they are often handcrafted and deterministic. It is in general 
difficult to cope with ambiguities when several interpretations are possible. 
With the emergence of data-driven and statistical techniques came other 
solutions to the parsing problem [Jelinek, 1990]. For instance, the part-of-
speech tagging problem can be expressed as the problem of selecting the 
most likely sequence of syntactic categories (C1, … , CT)  for the words 
(w1, … , wT) in a sentence, that is the sequences (C1, … , CT) that maximises 
the probability:  

( )T1T1 w,...,w|C,...,CP (2.5) 
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Using the Bayes’ rule:  

( ) ( ) ( )
( )T1

T1T1T1
T1T1 w,...,wP

C,...,CPC,...,C|w,...,wPw,...,w|C,...,CP ⋅
= (2.6) 

This last equation doesn’t solve the problem as, even with a large amount of 
data, it is quite impossible to evaluate probabilities of the numerator (as the 
denominator stays constant, it is ignored for the maximisation problem). Two 
assumptions are generally made.  

Firstly, P(C1, …, CT) can be approximated by using a n-gram model. That is 
assuming that the probability of occurrence of category Ci only depends on 
the n-1 previous categories: 

( ) ( )1ni1ii01ii C,...,C|CPC,...,C|CP −−−− ≅ (2.7) 

In particular, a bigram model is often adopted and only P(Ci | Ci-1) is used, 
which leads to: 

(2.8) 

On another hand, it can also be assumed that a word appears in a category 
independently of the word in the preceding and the succeeding categories: 

(2.9) 

Each P(wi | Ci) can be compared to the emission probability of the ASR 
problem while each P(Ci | Ci-1) can be compared to a transition probability. 
The part-of-speech tagging problem is then to find the sequence (C1, … ,CT) 
that maximises: 

(2.10) 

( ) ∏
=

≅
T

1i
iiT1T1 C|wPC,...,C|w,...,wP ( )

( ) ( ) (∏
=

−⋅≅
T

2i
1ii1T1 C|CPCPC,...,CP )

)( ) ( ) ( ) (∏
=

− ⋅⋅⋅
T

2i
ii1ii111 C|wPC|CPC|wPCP

All the probabilities in the above equation can be estimated using a manually 
tagged data corpus and the problem can then be solved with the same tools 
used for solving the ASR problem (a Viterbi algorithm, for instance). 

2.3.2.2. Semantic Parsing 
Semantic parsing aims at extracting the context independent meaning of a 
sentence. For example, whatever the context, the noun phrase ‘video 
cassette recorder’ has a single meaning and refers to the device that records 
and plays back video tapes. In the same way, although the word ‘flies’ 
presents an ambiguity, once it has been correctly identified as a verb by the 
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syntactic parser it doesn’t need any contextual interpretation to reveal its 
sense. This shows the utility of the syntactic parsing before any attempt to 
give a semantic interpretation to a sentence.  

Nevertheless, a single word can have several meanings that cannot be 
disambiguated by a syntactic parsing. Sometimes, synonyms of a word’s 
particular sense can be found, thus a same meaning can also have several 
realisations. Anyway, in a given sentence, some senses of a word can be 
eliminated. For instance, in the sentence ‘John wears glasses’, the word 
‘glasses’ means spectacles and not receptacles containing something to 
drink, because John cannot wear receptacles. Remaining ambiguities are 
context-dependent and will be considered in the next sub-section.  

From these considerations, it appears that semantic interpretation is a 
classification process in which words or groups of words are to be placed in 
classes regrouping synonyms. The set of classes in a particular 
representation of the world (or at least of a task) is called its ontology. Such 
classifications have been of interest for a very long time and arise in 
Aristotle’s writings in which he suggested the following major classes: 
substance, quantity, quality, relation, place, time, position, state, action, 
affection.  

It has also been shown that some information should be enclosed in the 
semantic representation. For example, the verb is often described as the 
word in a sentence that expresses the action, while the subject is described 
as the actor. Other roles can be defined and are formally called thematic 
roles. A good semantic representation should enclose information about 
thematic roles.  

On another hand, utterances are not always used to make simple assertions 
about the world. For example, the sentence ‘Can you pass the salt?’ is not a 
question about the ability of someone to pass the salt but rather a request to 
actually pass the salt. That means that utterances can have the purpose to 
give rise to reactions or even to change the state of the world, they are the 
observable performance of communicative actions. Several actions can be 
associated to utterances like assertion, request, warning, suggestion, 
informing, confirmation etc. This is known as the Speech Act theory and has 
been widely studied in the field of philosophy [Austin, 1962]. As the Speech 
Act theory is an attempt to connect language to goals, it is very important to 
take it into account the semantic representation of an utterance. Thus, 
computational implementations of this theory have been early developed 
[Cohen & Perrault, 1979]. 
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Philosophy provided lots of other contributions to natural language analysis 
and particularly in semantics (like the lambda calculus, for example) 
[Montague, 1974].  

Given this, Allen proposes to use a particular formalism to map sentences to 
context independent semantic representations: the logical form [Allen, 1987]. 
Although it is not always used, lots of semantic representation formalisms are 
closely related to logical forms. Allen also proposes some techniques to go 
from the syntactic representation to the logical form. 

Attempts to apply the previously exposed probabilistic techniques to semantic 
parsing have been realised [Pieraccini & Levin, 1992]. Indeed, the problem 
can be expressed as the problem of selecting the most likely sequence of 
concepts (C1, … , CT)  for the words (w1, … , wT) in a sentence. This problem 
can be solved assuming the same hypotheses about dependencies of 
variables along the time and by the same algorithms. It should be noticed that 
this technique bypasses the syntactic parsing. 

2.3.2.3. Contextual Interpretation 
Contextual interpretation takes advantage of the discourse level’s information 
to refine the semantic interpretation. The term discourse defines any form of 
multi-sentence or multi-utterance language. In general, contextual 
interpretation is used to resolve several particular ambiguities staying in the 
semantic interpretation.  

Three main ambiguities can be resolved at the discourse level: 

• Anaphors: an anaphora is a part of a sentence that typically replaces 
a noun phrase. There are several types of anaphora: intrasentence 
(the reference is in the same sentence), intersentence (the reference 
is in a previous sentence) and surface anaphors (the reference is 
evoked but not explicitly referred in any sentence of the discourse).  

• Pronouns: pronouns are particular cases of anaphors as they 
typically refer to noun phrases. Nevertheless, they have been the 
subjects of lots of specific studies as they are very common.  

• Ellipses: ellipses involve the use of clauses (parts of discourse that 
can be considered as stand-alone) that are not syntactically 
complete sentences and often refer to actions or events. For 
instance, the second clause (B) in the following discourse segment 
is an ellipsis:  

A. John bought a car.  
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B. I did too.  

There are several techniques for resolving anaphors but they are almost all 
based on the concept of Discourse Entity (DE) [Kartunnen, 1976]. A DE can 
be considered as a possible antecedent for an unresolved ambiguity in the 
local context and it is typically a possible antecedent for a pronoun. The DE 
list is a set of constants referring to objects that have been evoked in 
previous sentences and can subsequently be referred implicitly. Classically, a 
DE is generated for each noun phrase. 

Although there exist simple algorithms for anaphora resolutions based on DE 
history (the last DE is the most likely to be referred to), the most popular 
techniques are based on a computational model of discourse’s focus [Sidner, 
1983] that evolved into the centering model [Walker et al, 1998 b]. The ideas 
behind these theories are that the discourse is organised around an object 
(the center), that the discourse is about, and that the center of a sentence is 
often pronominalised. The basics of the centering theory are based on two 
interactive structures: 

• The preferred next center (Cp): this is the first of the potential next 
centers’ list (or the forward-looking centers: Cf), which are listed in 
an order reflecting structural preferences (subject, direct object, 
indirect object…).  

• The center, which is what the current sentence is about (Cb). Cb is 
typically pronominalised.  

Generally, three constraints are stated between the center and the anaphora:  

1. If any object in the current sentence is referred to by a pronoun, then 
the center Cb must also be referred to by a pronoun 

2. The center Cb must be the most preferred DE in the current sentence 
to be referred to by a pronoun. 

3. Continuing with the same center from the current sentence to the 
next is preferred over changing.  

Given this, the anaphora resolution is based on the tracking of the center Cb. 

The ellipsis resolution is generally based on syntactic constraints. Indeed, the 
hypothesis underlying most of ellipsis analyses is that the completed 
structure of the elliptical clause corresponds to the structure of the previous 
clause. Thus, when a structure matching has been found between the two 
clauses, the semantic interpretation of the previous clause can be updated. 
Remaining ambiguities are solved by semantic closeness [Dalrymple et al, 
1991].  
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2.3.3. Natural Language Generation 
Natural Language Generation (NLG) systems aim at producing 
understandable text in a human language, generally starting from a non-
linguistic representation of information (concepts). Researches in this field 
started in the 1970’s but reference books are quite recent [Reiter & Dale, 
2000]. NLG systems can be used for example to produce documentation 
about a programming language [Lavoie et al, 1997], to summarise e-mails, to 
provide information about a topic [Goldberg et al, 1994], and it starts to be 
studied in the field of SDS [Rambow et al, 2001]. There are lots of NLG 
techniques and particularly when the generated text should be used for 
speech synthesis afterward (concept-to-speech synthesis).  
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Fig. 11: NLG process 

In many SDS systems, the NLG subsystem is very simple and can be one of 
the following: 

• Pre-recorded prompts: sometimes real human voice is still preferred 
to TTS systems because it is more natural. But this is possible if only 
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a few sentences have to be uttered by the system. In this case, a 
simple table mapping concepts to corresponding audio records is 
built. There are obviously lots of drawbacks with this technique as 
the result is static and recording human speech is often expensive.  

• Human authoring: the idea is approximately identical but the table 
contains written text for each possible concept sequence. The text is 
subsequently synthesised by a TTS system. This solution is more 
flexible as written text is easier to produce and modify but still needs 
human expertise. Nevertheless, this technique is extensively used. 

Although using one of those techniques is feasible and widely done in 
practice, it is not suitable for certain types of dialogue like tutoring or problem-
solving for example. In such a case, the system’s utterances should be 
produced in a context-sensitive fashion, for instance by pronominalizing 
anaphoric references, and by using more or less sophisticated phrasing or 
linguistic style [Walker et al, 1996] depending on the state of the dialogue, the 
expertise of the user, etc. Therefore, more complex NLG methods are used 
and the process is commonly split into three phases like shown on Fig. 11 
[Reiter & Dale, 2000]. 

2.3.3.1. Document Planning 
NLG can be formalised as a process leading from high-level communicative 
goals to a sequence of communicative acts (Speech Acts), which accomplish 
the communicative goals. During the document-planning phase (or text 
planning phase), high-level communicative goals are broken into structured 
representations of atomic communicative goals that can be attained with a 
single communicative act (in language, by uttering a single clause). This 
phase gives then an overview of the overall structure of the document to be 
produced and creates an inventory of what should be contained in it. This is 
very task-dependent and techniques used for document planning are closely 
related to expert system techniques. This first phase is considered as 
language independent while the two following are language dependent. 

2.3.3.2. Microplanning 
Microplanning (or sentence planning) is the phase during which abstract 
linguistic resources are chosen to achieve the communicative goals 
(lexicalisation). For instance, a specific verb is chosen to express an action 
etc. Then an abstract syntactic structure for the document is built 
(Aggregation). This means that microplanning also defines how many clauses 
will be produced. Finally, in order to produce more natural language, a last 
process focuses on referring expression generation. Indeed, if several 
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clauses of the generated document refer to the same DE, it can be 
pronominalized after the first reference. The result is a set of phrase 
prototypes (or proto-phrases) 

Several techniques can be used to perform microplanning. Some are based 
on ‘reversed parsing’, that is semantic grammars used to analyse input 
sentences uttered by the human user are also used to generate document 
prototypes [Shieber et al, 1990]. The idea seems attractive but the 
development of semantic grammars suitable for both NLG and NLU appeared 
to be very tricky and in general, same meanings will always be translated into 
same proto-phrases. Other techniques are based on grammar specifically 
designed for NLG purposes. Template based techniques are widely used in 
practice [McRoy et al, 2000] and learning techniques have been recently 
successfully applied to sentence planning in the particular context of SDS 
[Walker et al, 2002]. 

2.3.3.3. Surface Realisation 
During surface realisation, the abstract structure (proto-phrases) built during 
microplanning are transformed into surface linguistic utterances by adding 
function words (such as auxiliaries and determiners), inflecting words, 
building number agreements, determining word order, etc. The surface 
realisation process even more than the previous one is strongly language 
dependent and uses resource specific to the target language. This phase is 
not a planning phase in that it only executes decisions made previously, by 
using grammatical information about the target language. 

2.3.4. Text-to-Speech 
The Text-to-Speech (TTS) process aims at converting any text string into an 
acoustic speech signal. It is very useful in a SDS as it allows uttering any text 
and thus eases the update and improves the flexibility of the system. It can 
be used either with a complex NLG system or with human-authored prompts. 
There is no need to record human prompts (as long a you own a TTS system 
and you do not develop it) but generally, the subjective quality of synthesized 
speech is not as good as real voice. As shown on Fig. 12, the TTS process 
can be split into two main sub-processes: a NLP and a DSP process [Dutoit, 
1997].  

2.3.4.1. Natural Language Processing 
The NLP block pre-processes the text in order to provide suitable information 
to the DSP block. It is composed of three main blocks as depicted on Fig. 12:  
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• The text analyser is often a syntactic parser that aims at finding 

function of words in the text to be synthesized. For example, to solve 
the problem of heterophonic homographs (words that have the same 
spelling but not the same reading), assigning a part-of-speech to 
problematic words is often enough to resolve the ambiguity. On 
another hand, prosody (intonative contour and rhythmic pattern) is 
often linked to the structure of the sentence: pauses are inserted 
around punctuation marks… This is why the prosody generator also 
uses the analysed structure of the sentence. All what have been said 
so far about parsers remains true for the text analyser.  

Natural
Language

Processing

Words

Text Analyser

Graphemes/Phonemes
Transcriber

Prosody 
Generator

Digital Signal
Processing

[W o r d s]

[W o r d s]

Acoustic signal

Ac
ou

st
ic

 
Le

ve
l

Ph
on

et
ic

/
Pr

os
od

ic
 

Le
ve

l

Le
xi

ca
l 

Le
ve

l

[W o r d s]

 
Fig. 12: TTS process 

• The grapheme-to-phoneme transcriber provides a phonetic 
transcription (similar to those provided by dictionaries and shorters) 
of the input text. This process is extremely language dependent 
(each language has its own set of phonemes). As one can easily 
imagine, a simple rule assigning a phoneme to a letter will not 
perform correctly. Indeed, sometimes several letters are associated 
to a single phoneme (e.g. ‘c’, ‘k’, ‘q’), groups of letters produce only 
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one phoneme like in diphthongs (e.g. ‘an’) or a same letter produces 
different phonemes in different contexts (e.g. ‘ce’ ≠ ‘ca’). There are 
lots of other problems to solve and techniques usually make use of 
high-level information such as syntactic and morphological 
information (provided by the text analyser) [Allen et al, 1987]. Rules 
can also be derived from corpus data [Daelemans & Van den Bosch, 
1993].  

• Finally, the prosody generator has to build an intonative contour that 
will be applied to the speech output in order to enhance the 
naturalness of the synthesized acoustic signal. Although early 
prosodic generation systems were rule-based [Crystal, 1969], most 
of current systems rely on the syntactic analysis of the text. Indeed, 
it can be shown that a human being is able to apply very convincing 
intonation on a syntactically correct sentence, no matter if it is 
semantically correct. Nevertheless, semantic analysis of sentences 
for prosody purposes can dramatically improve the naturalness of 
the synthesized speech and particularly when considering contexts 
larger than the sentence [Davis & Hirschberg, 1988]. In the 
subsequent block, prosody will be added by modifying essentially 
the fundamental frequency of the speech signal, which is commonly 
called the pitch or F0. 

2.3.4.2. Digital Signal Processing 
This part of the system converts a phonetic/prosodic description of a text into 
an actual speech signal. This process can be compared to the phonatory 
process consisting in contracting muscles in order to dispose obstacles for 
the air like tongue, lips, teeth and other organs and to control the vibratory 
frequency of vocal folds in the aim of pronouncing a specific sound. 

Early TTS systems (like the VODER discussed earlier) were parametric 
synthesizers and evolved into rule-based synthesizers [Allen et al, 1987]. In 
those systems, the desired speech signal is represented as a sequence of 
dynamic parameters. As explained earlier (see 2.3.1) the speech signal can 
be segmented into slices in which the signal can be considered as stationary. 
The spectral envelope of each slice presents smooth peaks called formants. 
The idea of parametric synthesis is to build filters that produce a similar 
spectral shape when excited with appropriate signals. Several parametric 
techniques exist like the LPC technique and the formant technique. In the first 
technique, the parameters for each slice are the coefficients of the LPC filter 
and the excitation. The excitation can be periodic for voiced sounds (the 
period is a parameter) and a white noise for unvoiced sounds. For the 
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formant synthesizers, a cascade of filters produces the desired spectral 
envelope. Each filter is a second order resonator which parameters are its 
central frequency and its bandwidth. The excitation is still a parameter. 
Parameters are typically learned from a corpus, but the data are useless after 
parameters have been derived.  

Nowadays, most of high-quality TTS systems are concatenation-based 
synthesizers and they are more and more data-driven. The idea that 
underlies those techniques is that the less DSP is used, the better will be the 
subjective quality of speech (its naturalness). In this purpose, a more or less 
large database containing samples of speech units (or segments) is built. 
Segments are chosen in order to minimise later concatenation problems, this 
is why diphones, triphones and half-syllables are preferred. Indeed, they 
include most of the transition and co-articulation features that are the most 
difficult to produce from scratch. According to the amount of available speech 
segments, several concatenation policies are possible. If only one sample of 
each segment is available like in [Dutoit, 1993], the database is smaller and 
unit selection is quite simple but the DSP will be more complex in order to 
produce the target prosody results etc. On another hand, if several samples 
of each segment are available, the optimal sequence of units is harder to 
compute but the subsequent DSP will be simpler and the naturalness will be 
improved. The optimal sequence of segments is chosen as a trade-off 
between a target cost (estimating the difference between a database unit and 
the target), and a concatenation cost (estimating the quality of a join between 
two consecutive units) [Hunt & Black, 1996]. To realise this complex search, 
the database is often formalised as a state-transition network and a Viterbi 
algorithm is (once again) used to find the optimal unit sequence according to 
the target.  

2.3.5. World Knowledge 
All the subsystems discussed so far could be stand-alone systems as they 
are only related to the task by some parameters like speech grammars (FSG) 
for the ASR subsystem or ontology for the NLU subsystem.  

However, most of SDSs are task-oriented and thus, the task has to be known 
in some way by the system in order to provide useful information to the user. 
Actually, the system must have certain knowledge about its environment and 
the history of the interaction in order to perform optimally. Indeed, some 
information can be retrieved by other means than direct (and costly) 
interaction with the human user. For those reasons, the World Knowledge 
(WK) is split as shown on Fig. 13. 
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Fig. 13: World Knowledge 

2.3.5.1. Task Model 
The task model is a formal representation of the task suitable for subsequent 
processing and reasoning. Several frameworks for describing tasks have 
been proposed during the past thirty years and are generally closely related 
to the type of dialogue management chosen when developing the SDS. The 
field of AI that studies formal description of knowledge is called Knowledge 
Representation (KR) and is still in constant development. 

A first family of KR is based on the concept of frame, introduced in [Minsky, 
1975]. It is a relatively complex KR also used in NLU. According to Minsky, the 
theory is based on the following concept: ‘When one encounters a new 
situation (or makes a substantial change in one's view of the present problem) 
one selects from memory a structure called a Frame. This is a remembered 
framework to be adapted to fit reality by changing details as necessary.’ A 
frame is then described as a data-structure for representing a stereotyped 
situation, like being in a certain kind of living room, or going to a child's 
birthday party. Attached to each frame are several kinds of information. Some 
of this information is about how to use the frame. Some is about what one 
can expect to happen next. Some is about what to do if these expectations 
are not confirmed. Most of the concepts developed in this theory have been 
extended to even more complex KR like described in [Brachman & Levesque, 
1985]. 

As their problem-solving SDS is based on the Missing Axiom and Theorem 
Proving theories, Smith and Hipp built their KR base like a list of axioms 
helping to achieve the task [Smith & Hipp, 1994]. Each axiom is a rule 
expressing known information and the dialogue system uses interactions with 
the user to retrieve axioms that are missing in order to prove the theorem ‘the 
task is achieved’. The whole interaction is then conducted like a 
demonstration relying on the rules and logic programming is the base of the 
SDS. 

 
70 



A Framework for Unsupervised Learning of Dialogue Strategies       

   
The task can also be represented as an Attribute Value Matrix (AVM) [Walker 
et al, 1997a]. This representation consists in the information that must be 

uts of the preceding blocks to 

before, the resolution of some discourse 
ragmatic knowledge [Allen, 1987]. This part 

he dialogue session. Indeed, during a dialogue, 

exchanged between the SDS and the human user during the dialogue 
represented as a set of ordered pairs of attributes and their possible values. 
This KR can be extended to handle multiple correct answers (multiple correct 
values for a same attribute during a dialogue session) and one of the main 
advantages of this representation is that the information can be organised 
very systematically into a relational database.  

Besides a formal representation of the task, the Task Model should also 
provide mechanisms allowing transforming outp
include them in the task context. Indeed, after a semantic interpretation have 
been extracted from the spoken utterance by the NLU subsystem, that doesn’t 
mean that the DM is able to process it in order to produce suitable action. 
Indeed, there should be a way to translate the sequence of concepts 
provided by the NLU subsystem into some state representation of the DM and 
to infer user’s goals from the concept sequence. Several techniques were 
proposed for goal inferring. Some techniques are based on heuristics to 
identify Speech Acts or Communication Acts [Allen, 1987] but more recent 
systems make use of BNs [Meng et al, 2000] or even DBNs [Horvitz et al, 
1998]. Whatever heuristics, BN or other means are used to infer user’s goal, 
the Task Model part of the WK should contain parameters of the model used. 

2.3.5.2. Discourse Model 
First of all, as it has been said 
ambiguities necessitates some p
of the WK should then include that pragmatic information in order to resolve 
remaining ambiguities.  

Another issue in dialogue management is the keeping and the update of 
shared beliefs along t
contributors establish and maintain their mutual belief that their utterances 
have been well understood. This process has been referred to as grounding 
[Clark & Shaefer, 1989]. In order to provide information, human contributors 
typically do more than just utter the right sentence at the right time. They 
coordinate the presentation and acceptance of their utterances until they 
have reached a sufficient level of mutual understanding to move on and 
provide new information. An utterance is considered as instructive if it 
provides information that was not in the history of beliefs. A formal theory of 
grounding has been recently used in widely distributed software [Paek & 
Horvitz, 2000]. It is also the role of the Discourse Model to serve as a 
memory of beliefs and their degree of certainty. 
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2.3.5.3. Environment Model 
The WK should also keep parameters allowing modelling the environment of 

ialogue Manager (DM). Indeed, the SDS 
erformance of all the subsystems that 

e system itself [Veldhuijzen van Zanten, 1999]. Several studies have 

ket fluctuation [Meng et al, 2001] etc. The Environment Model 

The Dialogue Manager (DM) can be considered as the brain of the SDS. 
arly blocks, the history of the dialogue 

WK and its internal strategy (mapping of 

rnal state representation, the possible actions the DM 

the SDS, or more precisely of the D
should behave according to the p
compose it. The Environment Model should then contain parameters allowing 
foreseeing ASR, NLU, NLG or TTS problems in order to avoid them [Litman et al, 
1999].  

In the same way, the SDS should not behave the same when interacting with 
users with different levels of knowledge and expertise about the task and also 
about th
shown that users adapt themselves to the system and the task as well 
[Kamm et al, 1998]. Thus, even with a same user, the system should adapt 
its behaviour.  

Finally, external events can occur and modify the state of the system. New 
information can be provided by peripherals like measure instruments, 
databases, mar
is independent from the task but can modify the state and the behaviour of 
the system.   

2.4. Dialogue Manager 

According to the outputs of the e
session, information it can find in the 
states to actions), the DM takes decisions about what to do next. The main 
topics developed in this text are all closely related to the design of an optimal 
DM, which means an optimal strategy. However, the definition of optimality in 
the case of dialogue strategies is not straightforward and until now, no 
definitive definition has been found despite the amount of recent studies 
about SDS evaluation.  

Moreover, there are several issues in the design of a DM like the depth of the 
history to be considered (closely related to the way the overall dialogue is 
thought about), the inte
can perform, the level of initiative let by the system to the user, its adaptability 
to the environment and to the user, the confidence it can have in the results 
obtained by the preceding subsystems and the confirmation sub-dialogues it 
can enter to improve this confidence etc.  

This section, gives an overview of different topics and challenges the design 
of an optimal DM addresses. 
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2.4.1. Dialogue Modelling 
Before investigating the possibility of building artificial SDS, studies have been 

an dialogues. One main purpose was to 

Dialogue grammars are an approach with a relatively long history. When 
of a SDS considers that there exist a 

Plan-based models are founded on the observation that humans do not just 
ther they plan their actions to achieve 

conducted in the field of human-hum
develop a theory of dialogue, including, at least, a theory of cooperative task-
oriented dialogue, in which the participants are communicating in the aim of 
achieving some goal-directed task. Although researchers do not agree on the 
fact that human-human dialogue should serve as a model for human-machine 
dialogues (because people adapt their behaviour when talking to machines 
[Jönsson & Dahlbäck, 1988], [Dahlbäck & Jönsson, 1992]), four approaches 
to modelling HMD coming from studies about human-human dialogues have 
been applied in the field of SDS design: dialogue grammars, plan-based 
models, conversational game models and joint action models.  

2.4.1.1. Dialogue Grammars 

adopting this model, the designer 
number of sequencing regularities in dialogue and that some Speech Acts 
can only follow some others [Reichman, 1981]. For example, a question is 
generally followed by an answer (both of them corresponding to different 
Speech Acts). In the vein of the NLU process, a set of rules state sequential 
and hierarchical constraints on acceptable dialogues, just as syntactic 
grammar rules state constraints on grammatically acceptable utterances. 
Notice that a particular (but very similar) Speech Acts theory has been 
developed for the purpose of SDS design: the Dialogue Acts theory.  

The biggest drawback of dialogue grammars (and what make them so simple) 
is that they consider that the relevant history for the current state is only the 
previous sentence (the previous Speech Act or Dialogue Act). This is 
probably why so few systems were successfully developed based on this 
model [Dahlbäck & Jönsson, 1992]. 

2.4.1.2. Plan-Based Model 

perform actions randomly, but ra
various goals, and in the case of communicative actions (Speech Acts), those 
goals include changes to the mental state of listeners. Plan-based models of 
dialogue assume that the speaker's Speech Acts are part of a plan, and the 
listener's job is to uncover and respond appropriately to the underlying plan, 
rather than just to the previous utterance [Carberry, 1990]. In other words, 
when inferring goals from a sentence, the system should take the whole 
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dialogue into account and interpret the sentence in the context of the plan. 
Those models are more powerful than dialogue grammars but goal inference 
and decision making in the context of plan-based dialogue are sometimes 
very complex [Bylander, 1991]. Nevertheless, plan-based dialogue models 
are used in SDSs [Freedman, 2000].  

2.4.1.3. Conversational Game Theory 
er, 1979] is an attempt to 

grammars in the 

el 
ered a dialogue as a product of the 
e user) and a plan recogniser (the SDS) 

e Management 
cribed earlier can be used in SDSs in 
internal state, etc, the dialogue 

The Conversational Game Theory (CGT) [Pow
include the ideas from both plan-based models and dialogue 
same framework. From this point of view, dialogues consist of exchanges 
called games. Each game is composed with a sequence of moves that are 
valid according to a set of rules (similar to grammars) and the overall game 
has a goal planned by participant agents (similar to plan-based models). 
Thus, agents share knowledge (beliefs and goals) during the dialogue and 
games can be nested (sub-dialogues are possible) to achieve sub-goals. In 
this framework, moves are often assimilated to Speech Acts [Houghton & 
Isard, 1987]. The CGT defines quite formally the moves allowed for each of 
the participants at a given instant in the game (according to the rules and the 
goal) and thus, allows simulation of dialogues too [Power, 1979]. 
Computational versions of CGT have also been developed and implemented 
in working SDSs [Lewin, 2000]. 

2.4.1.4. Joint Action Mod
The previous approaches consid
interaction of a plan generator (th
working in harmony, but it does not explain why participants ask clarification 
questions, why they confirm etc. Another dialogue model is emerging in 
which dialogue is regarded as a joint activity, something that agents do 
together. Participating in a dialogue requires the participants to have at least 
a joint agreement to understand each other, and this motivates the 
clarifications and confirmations so frequent in dialogues. This family of 
dialogue models are of a great interest and have been used in some systems 
[Edmonds 1993]. 

2.4.2. Dialogu
Although any of the dialogue models des
order to interpret semantics, build 
management can be of several kinds. This section will describe some of 
possible dialogue management methods found in the literature.  
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2.4.2.1. Theorem Proving 
This approach to dialogue management has been developed in [Smith & 

f a problem-solving SDS aiming at some 
lying this method is that the system tries to 

In the case of finite-state methods, the dialogue is represented like a state-
etween dialogue states specify all legal 

Hipp, 1994] in the framework o
equipment fixing. The idea under
demonstrate that the problem is solved (theorem). As in mathematical 
demonstration, there are several steps to follow and at each step, the system 
can use axioms (things known for sure) or deduction to move on. If in a given 
step, the WK is not able to provide an axiom to the DM allowing it to go on or if 
the DM can not deduce it from other axioms, the axiom is considered as 
missing (missing axiom theory) and the system prompts the user for more 
information. If the user is not able to provide information, a new theorem has 
to be solved: ‘the user is able to provide relevant information’. A tutoring sub-
dialogue then starts. This technique has been implemented in Prolog as this 
rule-based method is suitable for Logic Programming. The major drawback of 
theorem proving management is that the strategy is fixed as the 
demonstration steps are written in advance.  

2.4.2.2. Finite-State Machine 

transition network where transitions b
paths through the network. 

 
Fig. 14: A four-state SDS 

In each state an action is chosen according to the dialogue strategy and the 
result of the action leads to a new transition betw

• None of the values is known.  

een states. 

For example, let’s imagine a simple SDS that aims at retrieving the first name 
and last name of the user. Four states are possible like shown on Fig. 14: 
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• The first name is known and the last name is unknown. 

• The last name is known and the first name is unknown. 

• Both values are known. 

On th f le transitions 
betw n le, there are 
two s a n values indicating whether or not a value is 
know ( per square and the last name for the lower 

s, for the first name or for the last name or closing 

sed in dialogue systems but above all in various toolkits and 

-friendly’.  

• guages can be very easily used to represent state-

• illing, 

e igure, each circle represents a possible state and possib
ee  states are represented by directed edges. In each circ
qu res representing Boolea
n the first name for the up

square). The sign  means that the value is unknown and the sign  means 
that the value is known. 

The starting state is the one where none of the values is known (the upper 
state) and the goal is to reach the state where both values are known (the 
lower state). In each state the DM has the choice between several actions like 
prompting for both value
the dialogue.  

The main drawback of these methods is that all possible dialogues have to be 
known and described and the structure is quite fixed resulting in inflexible and 
often system-led behaviours. Nevertheless, state-transition methods have 
been widely u
authoring environments [McTear, 1998] for several reasons.  

• It is an easy manner for modelling dialogues that concern well-
structured tasks that can be mapped directly on to a dialogue 
structure. 

• Finite-state method is easier to understand and more intuitive for the 
designer as a visual, global and ergonomic representation of other 
management techniques would be difficult to realise. In short, it is 
more ‘user

• It is much more straightforward to give a visual representation of 
finite-state as a dialogue is described as a set of states linked by 
transitions.  

• Only user-led systems can’t be described by a finite-state model. 
Most of dialogues are generally system-led or mixed-initiative.  

Scripting lan
transition networks.  

As discussed in [McTear, 1998], lots of applications like form-f
database querying or directory interrogation are more successfully 
processed this way. Those applications are the most popular.  

 
76 



A Framework for Unsupervised Learning of Dialogue Strategies       

   
• System-led behaviour is very easy to describe as a state-transition 

network.  

Even if other methods (like self-organised methods) are defin• itively 

-state methods.  

2.4.2
Form fil ame-driven, frame-based or slot-based 
methods, are mainly used when the application consists in a transfer of 

 to the SDS and when the information can be 

chniques, the self-organised 
management family does not require all the dialogue paths to be specified in 

ystem and reaction of the user contributes to 

in issues in designing a dialogue strategy is the degree of 
gue state. Indeed, it seems obvious that 

 the system controls completely the 

more compliant, nested sub-dialogues may help to gain in flexibility 
in the finite

.3. Form Filling 
ling methods, also called fr

information from the user
represented as a set of attribute-value pairs. The attribute-value structure can 
be seen as a form and the user should provide values for each field (attribute, 
slot, frame) of the form. Each empty field is then eligible for a prompt from the 
system to the user. The dialogue strategy aims at filling completely the form 
and to retrieve values for all the fields. Each field is given a priority defining 
the sequence in which the user is prompted [Goddeau et al, 1996]. Each of 
the user’s utterances has then to be processed in order to provide an 
attribute-value representation of its meaning.  

2.4.2.4. Self-Organised 
Unlike previous dialogue management te

advance. Each action of the s
build a new configuration to which is associated a particular behaviour. There 
is no need to know how the configuration occurred. This is generally referred 
to as event-driven dialogue management. One of the more famous attempts 
to use this kind of dialogue management was the Philips Speechmania 
software based on the HDDL language (Harald’s Dialogue Description 
Language, from the first name of its creator) [Aust & Shroer, 1998]. Other 
attempts were made to use event-driven dialogue management [Baekgaard, 
1996] but the complexity of development of such systems overcame their 
potentialities.  

2.4.3. Degrees of Initiative 
One of the ma
initiative let to the user in each dialo
the dialogue management will be easier if
dialogue flow while a user will be more satisfied if he/she can be over-
informative and take initiatives. Three degrees of initiative can be 
distinguished, each with their advantages and drawbacks:  
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• System-Led: the system has the only initiative and asks sequences 

of precise questions to the user. The user is then supposed to 
answer those questions and provide only the information he/she has 
been asked for.  

• User-Led: the user has the only initiative and asks for information to 
the system. The system is supposed to interpret correctly the user’s 
queries and to answer those precise questions without asking for 
more details.  

• Mixed Initiative: the user and the system share the control to 
cooperate in order to achieve the user’s goal. The user can be over-
informative and provide information he/she has not yet been asked 
for or even ask the system to perform particular actions while the 

Instinctiv
from the
users so
is greate . Other studies have even shown that, besides 

by input processing subsystems. Indeed, it is often very 
arification sub-dialogues in the aim 
 its beliefs. Notice that such sub-

system can take the control at certain dialogue states in order not to 
deviate from the correct path leading to goal achievement. The 
system can also take the control because the performance of the 
previous systems in the chain is likely to get poorer (because of 
noise or whatever).  

ely, one can state that mixed-initiative systems should perform better 
 user point of view. Nevertheless, some researches have shown that 
metimes prefer system-led SDSs because the goal achievement rate 
r [Potjer et al, 1996]

the fact that system-led gives better performance with inexperienced users, 
the mixed-initiative version of the same system does not perform better 
(objectively neither subjectively) with more experienced users [Walker et al, 
1997b]. Indeed, those reported researches emphasise on the fact that human 
users adapt their behaviour because they know they are interacting with a 
machine. They usually accept some constraints in order to obtain a better 
goal completion rate. 

2.4.4. Confirmation Strategies 
Another issue in the design of a dialogue strategy is to handle correctly 
possible errors made 
useful to enter in some confirmation or cl
of enhancing the system’s confidence in
dialogues also occur in human-human dialogues, because of 
misunderstandings of all kinds (speech signal as well as meaning). 
Nevertheless, the choice of a confirmation strategy is not trivial. When and 
how the system should engage in a confirmation sub-dialogue are two 
important questions the dialogue designer should ask himself. As for previous 
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problems, there is no straightforward answer to those questions and different 
researches led to different conclusions.  

First of all, the designer should decide when to engage in a confirmation sub-
dialogue. Some system designers argue that it is to the user to detect 
interpretation problems and that the retrieved information should always be 
played back for confirmation [McInnes et al, 1999]. On another hand, 

ed 

formation to be confirmed is combined 

Expli
reliab y
interactio
confirma  

objective measures of the confidence the system can have in the information 
retrieved from the user can help to make a decision. Some systems use the 
ASR confidence level [Williams & Renals 1997] as unique information to take 
a decision about whether or not the information should be confirmed. Then, 
the question is to know under which level the information should be 
considered as unsure. Moreover, as a complete SDS owns a NLU subsystem, 
some confidence in the meanings and context should also enter into account 
in order to improve the overall confidence and to decide when to ask for 
confirmation [Komatani & Kawahara, 2000]. Finally, another strategy would 
be to avoid problematic dialogues by predicting them [Litman et al, 1999].  

If the need for confirmation is detected, the DM still has the choice between 
two possible confirmation methods:  

• Explicit confirmation: the user is asked explicitly if the recognis
information has been correctly understood.  

• Implicit confirmation: the in
with the request for the next piece of information. This strategy relies 
on the user instinctively contradicting any incorrect information. 

cit confirmation has proven to be the most reliable. However, this 
ilit  tends to be at the expense of the naturalness and efficiency of the 

n as it increases the dialogue’s length. On another hand, implicit 
tion can cause confusions and has been found to be less reliable in

guiding users to successful achievement of their goal. Yet, when information 
is correctly recognised, it has a significant advantage in terms of the speed 
and therefore usability of the interaction. The trade-off between reliability and 
speed has resulted in several attempts to combine the use of both. In general, 
the choice between one of both confirmation strategies still relies on the 
confidence level of the information. Most of systems apply implicit 
confirmation when the system has a quite good confidence in the information 
while explicit confirmation is chosen when poor confidence level is computed 
[Bouwman et al, 1999]. 

Eventually, the effectiveness of explicit confirmations has also been the 
subject of different studies. It appeared that they should have question 
intonation rather than statement intonation and that the details to be 
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confirmed should be placed near the end of the confirmation message: they 
should not be followed by a question such as ‘Is that correct?’ Since users 
will often speak before or during such a question [McInnes et al, 1999]. 

2.4.5. Evaluation 
Previous sections underlined the main problems of DM design like the choices 

 degree of initiative the system should leave to the 
n strategy to deploy. It has also been shown that 

rmance evaluation of such high-level communicative systems 

ne of the first 

SDS evaluation is the PARADISE 
ystems Evaluation) paradigm [Walker et al, 1997a]. 
mpt to explain users’ satisfaction as a linear 

of a dialogue model, the
users or the confirmatio
several studies lead to controversial conclusions for each of those problems. 
Consequently, it would be of great interest to have a framework for SDS 
performance evaluation and it is the object of a large field of current 
researches.  

Despite the amount of researches dedicated to the problem of SDS 
performance evaluation, there is no clear and objective method to solve it. 
Indeed, perfo
highly relies on the opinion of end-users about their interaction and is 
therefore strongly subjective. Thus, studies on subjective appreciation of 
SDSs through user satisfaction surveys have often (and early) been 
conducted [Polifroni et al, 1992]. But even those surveys proved to have non-
trivial interpretation. For example, experiments reported in [Devillers & 
Bonneau-Maynard, 1998] demonstrate as a side-conclusion that the users’ 
appreciation of different strategies depends on the order in which SDSs 
implementing those strategies were presented for evaluation.  

Nevertheless, there have been several attempts to determine the overall 
system’s performance thanks to objective measures made on the SDS 
components, such as speech recogniser performance with o
tries in [Hirschman et al, 1990]. Other objective measures taking into account 
the whole system’s behaviour (like the average number of turns per 
transaction, the task success rate etc.) have been exercised in the aim of 
evaluating different versions (strategies) of the same SDS [Danieli & Gerbino, 
1995] with one of the first tries applied in the SUNDIAL project (and after 
within the EAGLES framework) [Simpson & Fraser, 1993]. More complex 
paradigms have been developed afterwards. 

2.4.5.1. PARADISE 
One of the most popular frameworks for 
(PARAdigm for DIalogue S
PARADISE is the first atte
combination of objective measures. For the purpose of evaluation, the task is 
described as an AVM and the user’s satisfaction as the combination of a task 
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completion measure (κ) and a dialogue cost expressed as a weighted sum of 
objective measures (ci). The overall system’s performance is then 
approximated by: 

(2.11) ( ) ( ) ( )∑ ⋅−κ⋅α= ii cwUP NN
i

where N is a Z-score normalisation function that normalises the results to 
have mean 0 and stand α and w
express the relative importance of each term of the sum in the performance 

ormed between the user and the system when using the SDS 

where P(A) is the propo ect interpretations (sum of the diagonal 
elements of M: mii ct interpret
occurring by chance. One can see that κ = 1 when the system performs 

i
comprises around 9 

s never been 

i) will ard deviation 1. This way, each weight (

of the system.  

The task completion measure κ is the Kappa coefficient [Carletta, 1996] that 
is computed from a confusion matrix M summarising how well the transfer of 
information perf
to be evaluated. M is a square matrix of dimension n (number of values in the 
AVM) where each mij is the number of dialogues in which the value i was 
interpreted while value j was meant. The kappa coefficient is then computed 
by: 

(2.12) 
( ) ( )

( )EP1−
EPAP −

=κ

rtion of corr
) and P(E) is the proportion of corre ations 

perfect interpretation (P(A) = 1) and κ = 0 when the only correct 
interpretations were obtained by chance (P(A) = P(E)). 

In order to compute weights α and wi, a large number of users are asked to 
answer a satisfaction survey after having used the system while costs c  are 
measured during the interaction. The questionnaire 
statements on a five-point Likert scale and the overall satisfaction is 
computed as the mean value of collected ratings. A Multivariate Linear 
Regression (MLR) is then applied with the result of the survey as the 
dependent variable and the weights as independent variables.  

Several criticisms can be made about assumptions and methods used in the 
PARADISE framework. First, the assumption of independency of the different 
costs c  made when building an additive evaluation function hai
proved to be true (it is actually false as the number of turns and the time 
duration of a dialogue session are heavily correlated for example [Larsen, 
2003]). The Kappa coefficient as a measure of task success can also be 
discussed, as it is often very difficult to compute when too many values are 
possible for a given attribute. An example is given when trying to apply 
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PARADISE to the PADIS system (Philips Automatic Directory Information 
System) [Bouwman & Hulstijn, 1998]. Recent studies have also criticised the 
satisfaction questionnaire. While [Sneele & Waals, 2003] proposes to add a 
single statement rating the overall performance of the system on a 10-point 
scale, [Larsen, 2003] recommends to rebuild the whole questionnaire, taking 
psychometric factors into account (which seems to be a good idea). Finally, 
the AVM representation of the task has proved to be very difficult to extend to 
multimodal systems and thus, seems not to be optimal for system 
comparisons. Some attempts to modify PARADISE have been proposed 
[Beringer et al, 2002]. 

Besides the abovementioned critiques, PARADISE has been applied on a wide 
range of systems. It was adopted as the evaluation framework for the DARPA 
Communicator project and applied to the official 2000 and 2001 evaluation 

tive evaluation means that the system 
. Although the usual process of SDS 

experiments [Walker et al, 2000]. Nevertheless, experiments on different 
SDSs reached different conclusions. PARADISE’s developers themselves found 
contradicting results and reported that time duration was weakly correlated 
with user’s satisfaction in [Walker et al, 1999] while [Walker et al, 2001] 
reports that dialogue duration, task success and ASR performance were good 
predictors of user’s satisfaction. On another hand, [Rahim et al, 2001] reports 
a negative correlation between user’s satisfaction and dialogue duration 
because users hung up when unsatisfied. Finally [Larsen, 1999] surprisingly 
reports that ASR performance is not a so good predictor of user’s satisfaction.  

2.4.5.2. Analytical Evaluation 
The principal drawback of the method described above is, of course, the 
need of data collection. Indeed, subjec
should be released to be evaluated
design obeys to the classical prototyping cycle composed of successive pure 
design and user evaluation cycles, there should be as little user evaluations 
as possible because it is time consuming and it is often very expensive. This 
is why some attempts to analyse strategies by mathematical means have 
been developed. In [Louloudis et al, 2001], the authors propose some way to 
diagnose the future performance of the system during the design process. 
Other mathematical models of dialogue have been proposed [Niimi & 
Nishimoto, 1999] and closed forms of dialogue metrics (like the number of 
dialogue turns) have been proposed. Nevertheless, too few implementations 
were made to prove their reliability. Moreover, lots of simplifying assumptions 
have to be made for analytical evaluation and it is thus difficult to extend 
those methods to complex dialogue configurations.  

 
82 



A Framework for Unsupervised Learning of Dialogue Strategies       

   
2.4.5.3. Computer-Based Simulation 
Because of the data collection’s inherent difficulties, some efforts have been 
done in the field of dialogue simulation. The
simulation for SDS evaluation is mainly to enlarge

 purpose of using dialogue 
 the set of available data and 

A complete SDS relies on lot of different techniques manipulating high-level 
 2.3.5 and 2.4) and low-level data (see sections 
m acoustic signal to understood concepts. The 

reusability of previous work or at least to define generic 

to predict the behaviour of the SDS in unseen situations. Simulation 
techniques will be more extensively discussed in the second part of this text. 

2.5. Conclusion  

(see sections 2.3.2, 2.3.3,
2.3.1 and 2.3.4) going fro
design of such a system therefore implies lots of strategic choices on the 
implementation of each of the subsystems. Moreover, given the subsystems 
surrounding the DM, the internal functioning of this last subsystem should be 
adapted to the performance of the others. Thus the challenges of the design 
of an optimal DM include the adaptation to DSP and NLP modules’ 
performance but also the choice of the knowledge representation (section 
2.3.5), the dialogue model (section 2.4.1) and the dialogue management 
method (section 2.4.2). Moreover, the strategy will differ dramatically 
according to the choice of the degree of initiative let to the user (section 2.4.3) 
and the presence of error repair processes involving potential confirmations 
(section 2.4.4). One main challenge of the strategy design is actually to find 
the optimal mixture of all the possibilities that will lead to maximise the user’s 
satisfaction, that is, to achieve the goal of the user without decreasing the 
ergonomics. For this purpose, evaluation of dialogue strategies in needed 
(section 2.4.5). 

It could be shown in all the previous sections that those choices are very 
task-dependent. It is therefore a major challenge of SDS design to ensure the 
portability and 
methods for the design of dialogue systems. 
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Chapter 3: Some Useful Artificial 
Intelligence Techniques  

3.1. A Bit of History  
Artificial Intelligence (AI) can be seen as the branch of computer science that 
aims at modelling aspects of human thought on computers or at trying to 
solve by computer any problem that a human can solve faster. Thus AI deals 
with knowledge representation and the faculty for a computer of finding 
creative solutions to problems and to generalise to unseen situations. It finds 
its sources in the development of two science fields, namely computer 
science and probability theory, which amazingly appeared at the same time. 
Indeed, the theory of probabilities was born from a series of problems posed 
by the Chevalier de Méré in 1654 to the philosopher and mathematician 
Blaise Pascal who was also the inventor of the first mechanical adding 
machine, the ‘Pascaline’. The Chevalier de Méré was very interested by 
gambling and his problem was to decide whether or not to bet money on the 
occurrence of at least one ‘double 6’ during 24 dice throws. This eternal 
problem of easy-earning money by chance led to an exchange of letters 
between Blaise Pascal and Pierre de Fermat in which the fundamentals of 
probability theory were formulated for the first time. Although lots of 
mathematicians and philosophers brought significant contributions to the 
development of probability theory, the name of the Reverent Thomas Bayes 
(1702-1761) should surely be cited. Indeed, his theory about conditional 
probabilities [Bayes, 1763] led to the famous ‘Bayes rule’, which is probably 
the most used rule in the development of statistical AI systems and serves as 
a base of what is called Bayesian Learning techniques.  

It is impossible to talk about the development of computer science without 
citing George Boole who published his determining Boolean algebra in his 
book [Boole, 1854]. But what is also interesting about this theory is that it has 
been developed in order to model human’s thought and is a first attempt to a 
mathematical approach to decision making. 
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The pioneers of what is really called AI, a field born in the 1950’s, were 
principally Alan Turing (who defined the so-called Turing Machine in [Turing, 
1937] and the Turing Test in [Turing, 1950]), John von Neumann (who 
introduced the concept of a stored program in 1945 and published a formal 
description of the game theory applied to economics in [von Neumann & 
Morgenstern, 1944]) and Claude Shannon (who is the father of information 
theory [Shannon, 1948] and published articles about a chess player machine 
[Shannon, 1950 a], [Shannon, 1950 b]). Since a lot of theoretical 
contributions to AI have been made during the last 50 years, there are so 
many fields included into AI that it would not be possible to describe all of 
them here. Nevertheless, it can be noticed that since the 1950’s lots of 
spectacular applications have been developed. Based on an idea of Alan 
Turing, Joseph Weizenbaum developed in 1966 is famous ELIZA program 
[Weizenbaum, 1966] already discussed in section 2.1, which is one of the first 
significant popular contribution to AI in terms of an application. For the last 
decades, everybody could see robots learning to walk on TV; the Japanese 
company Sony releases new dog robots each year, video games have more 
and more learning capabilities. The most amazing application is probably the 
IBM supercomputer Deep Blue that defeated the world chess champion 
Garry Kasparov in 1997 [Hsu, 2002]. 

3.2. Reinforcement Learning 
Reinforcement Learning (RL) [Sutton & Barto, 1998] addresses two main 
problems of AI, namely unsupervised machine learning and decision-making. 
From this point on, the learner and decision-maker will be called the (RL) 
agent and everything outside the agent is its environment. Actually, RL 
addresses the problem of learning how to act through trial-and-error 
interactions with a dynamic environment so as to maximise an overall reward, 
that is, how to optimally map situations to actions by trying and observing 
environment’s feedback. It can also be regarded as a way of programming AI 
agents by reward and punishment without needing to specify how the task 
has to be achieved. In the most challenging cases, actions may affect not 
only the immediate reward, but also the next situation and, through that, all 
subsequent rewards. Trial-and-error search and delayed reward are the two 
important features of RL. A good example of an RL task is chess playing: 
when a chess player makes a move, his decision is driven both by 
anticipating possible replies and by immediate, intuitive judgments of the 
desirability of particular positions. This can lead the player to perform a 
seemingly silly move (deliberately loose his queen, for instance) in order to 
obtain a greater reward later (winning the game). Notice that RL does not 
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define algorithms but a family of problems and each algorithm that permits to 
solve an RL problem will be called an RL algorithm. 

RL differs from supervised learning in that there is no presentation of 
input/output pairs but instead, after choosing an action the agent can observe 
the immediate reward and the subsequent state but not which action would 
have been the best in its long term interest. Furthermore another significant 
difference is that online performance is important since the learner interacts 
with the environment during the learning process. Evaluation of the system is 
therefore often concurrent with learning.  

Contributions to RL theory were made by researches led in two different fields: 
optimal control and trial-and-error learning, which started in the psychology of 
animal learning (the term of RL was actually borrowed from animal learning 
studies by Marvin Minsky in his PhD thesis [Minsky, 1954]). Optimal control 
study started in the 1950’s with Richard Bellman’s researches in which he 
developed the Dynamic Programming (DP) algorithm [Bellman, 1957 a] for 
solving recursively optimal control problems. Bellman’s equation is still 
commonly used as a starting point for lots of RL algorithms. Nevertheless, it is 
only after Barto, Sutton and Anderson published their results about a first RL 
application to the complex pole-balancing problem [Barto et al, 1983] that RL 
started to be more widely studied. During the last 20 years, RL paradigm has 
been applied to a wide range of problems with one of the most impressive 
application being that by Gerry Tesauro to the game of backgammon: the TD-
Gammon [Tesauro, 1994]. It reached nearly the level of the world's strongest 
grandmasters. 

Agent

Environment

st+1

rt+1

rt

st

at

 
Fig. 15: RL as a sequential process 

Formally, solving an RL problem can be seen as a sequential process during 
which an agent and its environment interact at each of (not always equally 
distant) discrete time steps t = t0, t1, t2, t3,… (see  Fig. 15). At each time step t 
(which will be called a turn from now on) the agent receives some 
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observation about its environment's state st ∈ S = {si} (the state space), and 
accordingly selects an action at ∈ A = {ai} (set of possible actions in state st). 
One turn later, partly as a consequence of its action at, the agent receives a 
numerical reward rt+1 and its internal state switches to st+1.  

At each turn t, the agent realises a mapping from states to probabilities of 
performing each possible action. This mapping is the agent's policy or 
strategy πt, with πt(s, a) being the probability of performing action a in state s 
and πt(s) = a if the policy is deterministic. An RL algorithm defines how the 
agent updates its policy as a result of its experience. The agent’s goal is then 
to maximise the expected total amount of rewards over the long run.  

Thus, an optimal policy π* would select at time ti the action a that maximises a 
kind of additive function of rewards {rt+1}t>ti. This function is called the return Rt. 
In the simplest case the return is just the sum of the rewards: 

(3.1) T2t1tt r...rrR +++= ++

This expression of the return supposes that the interactions between the 
agent and the environment ends at time T (in the terminal state sT). Such a 
task that ends at a time T is referred to as an episodic task and each run is 
called an episode while Rt is called the undiscounted return. Yet, if the 
interaction never ends, which is the case in continual tasks, the return could 
be infinite and thus, its maximisation could not serve as an objective function 
for learning an optimal strategy. This is why the concept of discounted return 
is introduced: 
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with 0 ≤ γ ≤ 1 called the discount rate. The discount rate determines the 
present value of future rewards. If γ = 0 the agent is only concerned with 
maximising immediate rewards, as γ approaches 1, the objective takes future 
rewards into account more strongly. If the set of rewards is bounded, the 
discounted return is finite.  

Most of RL algorithms are based on the estimation of two value functions for a 
given policy π: the state-value function Vπ and the action-value function Qπ. 
The value Vπ(s) of a state s under the policy π, estimating how good it is to be 
in state s according to the policy π, is the expected return starting from state s 
and following policy π thereafter: 

( ) [ ]ss|REsV tt == π
π (3.3) 
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The value Qπ(s,a) of performing action a in state s under the policy π, 
estimating how good it is to perform action a when in state s, is defined as the 
expected return starting from s, taking the action a, and thereafter following 
policy π: 

   (3.4) ( ) [ ]a,Ra,s ttπ
π ass|EQ t ===

An optimal policy π* is a policy resulting in a maximal value V*(s) for all states 
and an agent would follow this optimal policy by selecting in each state an 
action that have a maximal value Q*(s, a).  

Since the learning process is often based on the computation of those values 
by means of trial-and-error cycles, one could easily understand that each 
state and each state-action pair should be visited an infinite number of times 
in order to estimate Vπ and Qπ (this is called the search process or 
exploration). Yet, if the RL agent is actually interacting with a real environment, 
it should not deviate too much from a strategy that leads to an acceptable 
behaviour and thus should exploit what was already learned (this is called 
exploitation). A trade-off between exploration and exploitation should 
therefore be made. Several proposals have been made to face this problem 
and two of them are widely used: the ε-greedy action selection and the 
softmax action selection. When using the ε-greedy method, the learner 
selects actions according to the following policy: 

( ) ( )

⎪
⎩

⎪
⎨

⎧

ε∈

ε
=

π

AA y probabilit  with  a any

-1y probabilit  witha,sQmaxarg
a

t
a

t (3.5) 

This means that the learner selects a non-greedy action with a probability ε 
and that each action of the set has an equal probability to occur in that case. 
The greater ε is, the more the learner explores. On another hand, the softmax 
method takes into account the value of each action to select the next one in 
order not to perform very bad actions too often. One way to implement the 
softmax action selection method is to use a Boltzmann or Gibbs distribution in 
order to compute the probability of occurrence on an action as a function of 
its value: 

( )
( )

( )
∑
∈

τ

τ

π
−

π
−

===

Ab

b,sQ

a,sQ

tt
1t

1t

e

ess|aaP
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The τ parameter is a positive real number called the temperature. When it 
has a high value all actions tend to be equally probable and when the 
temperature equals zero the learner always chooses the optimal action given 
the current policy, the one with a higher value. The temperature can be 
decreased along the time in order to make the learner less explorative after 
having learned an acceptable policy.  

3.2.1. Solving RL Problems within the Framework of 
Markov Decision Processes 

In the aim of solving problems by means of RL algorithms, a mathematical 
framework should be defined and particularly, the Markov property of the 
state signal should be assumed.  

3.2.1.1. Markov Property  
An RL problem satisfies the Markov property if the state and reward at time 
t+1 only depends on state and action at time t: 

(3.7) ( ) ( )tt1t1t111t1ttt1t1t a,s|a,sPa,s,...,a,s,a,s|r,sP ++−−++ =

This does not mean that the history of the interaction is irrelevant for 
decision-making at time t, this means that the state representation should be 
sufficiently well designed as to retain relevant information for decision-making 
purposes. A state signal that succeeds in retaining all relevant information is 
said to be Markov, or to have the Markov property. 

3.2.1.2. MDP Definition 
An RL problem that satisfies the Markov property is called a Markov Decision 
Process (MDP). An MDP is completely defined by a tuple {S, A, T, R} where S is 
the state space, A is the action set, T is a transition probability distribution 
over the state space and R is the expected reward distribution. The couple {T, 
R} defines the one-step dynamics of the system: 
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An MDP can be described by a weighted node-transition network with two 
node types: state nodes and action nodes like depicted on Fig. 16. On this 
figure, state nodes are big empty circles while action nodes are small full 
circles. A weighted directed arc represents each transition with weights being 
the probability of the transition occurring. Rewards are also specified.   
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Fig. 16: A node-transition representation of MDP 

According to this definition of MDPs, the state-value function can be rewritten: 

( ) [ ]

( )

( ) ( )( )∏ ∑

∏ ∑ ∑

∑

∑

∈ ∈

π

∈ ∈

∞

=
++π

∞

=
+++π

∞

=
++π

π
π

γ+π=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
=γγγ+π=

⎥
⎦

⎤
⎢
⎣

⎡
=γγ+=

⎥
⎦

⎤
⎢
⎣

⎡
=γ=

==

Aa S's

a
'ss

a
'ss

Aa S's
t

0k
2kt

ka
'ss

a
'ss

t
0k

2kt
k

1t

t
0k

1kt
k

tt

'sVa,s

ss|rEa,s

ss|rrE

ss|rE

ss|REsV

RT

RT

(3.9) 

In the same way, the action value function can also be rewritten: 
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The last equalities of expressions (3.9) and (3.10) are called the Bellman’s 
equations for Vπ and Qπ. Computing Vπ(s) for all states allows the evaluation 
of the policy π and an order among policies can be defined. Indeed, a policy 
π1 is defined to be better than or equal to a policy π2 if its expected return is 
greater than or equal to that of π2 for all states. This means that, π1 ≥ π2 if and 
only if Vπ1(s) ≥ Vπ2(s) for all states s. As the goal is to find the optimal policy π* 
≥ π ∀π that leads to maximal values V*(s) and Q*(s,a), one can write: 
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(3.12) 

Those two last equations are the Bellman’s optimality equations for V* and Q*.   

3.2.1.3. Dynamic Programming 
Assuming that all the parameters of the studied MDP are known and 
especially T and R , equation (3.9) defines a system of |S| simultaneous linear 
equations in |S| unknowns (the Vπ(s)). That means that an exact evaluation of 
a policy π can be obtained by solving this system. Since the computation of 
the exact solution is possible but tedious, an iterative solution method is more 
suitable. It will also help for understanding the next sections. During this 
iterative method, the Bellmann’s equation for Vπ (3.9) is used as an update 
rule: 

( ) ( ) ( )( )∏ ∑
∈ ∈

ππ
+ γ+π=

Aa S's
k

a
'ss

a
'ss1k 'sVa,ssV RT (3.13) 

This kind of operation is called a full backup since each iteration backs up the 
value of every state once to produce the new approximate value function. It is 
called a Dynamic Programming (DP) method because it is based on a perfect 
model of the environment, it eventually produces an exact solution and it is 
based on Bellman’s equations, which expresses the problem of a 
maximisation process in terms of solving maximisation sub-problems 
(typically solved by a full backup process).  

Once Vπ(s) has been computed, Qπ(s,a) can be computed by using (3.10). 
Remembering that Vπ(s) indicates how good it is to follow policy π from state 
s and Qπ(s,a) indicates how good it is to take action a in state s and follow 
policy π thereafter, it is obvious that if Qπ(s,a) ≥ Vπ(s), the policy should be 
updated in order to select a in state s (π(s) = a). Then, the second step of 
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optimal policy learning (after evaluation) is policy updating or policy 
improvement:  

( ) ( )a,sQmaxargs'
a

=π (3.14) 

Once the policy has been updated, it is evaluated again and an iterative 
process composed of evaluation-improvement cycles starts until no 
significant improvement is noticed.  

3.2.1.4. Monte Carlo Method 
The term Monte Carlo is used to define a family of methods that provides 
approximate solutions to a variety of mathematical problems by performing 
statistical sampling experiments. It comes from the city in the Monaco 
Principality, because of a roulette, a simple random number generator and 
has been introduced in 1944 by physicists at Los Alamos who devised games 
of chance that they could study to help understand complex physical 
phenomena relating to the atom bomb. Here, it defines a family of methods in 
which the agent learns from interacting directly with the environment and 
averaging sampled returns. It is mainly defined for episodic tasks since the 
sampled returns are obtained at the end of each episode.  

Using the Monte Carlo method allows evaluating the state value function Vπ(s) 
and the action value function Qπ(s,a) by just measuring and averaging the 
return obtained from the first occurrence of s or (s,a). Nevertheless, what is of 
interest is the optimal control when interacting with the environment. Thus, 
after each episode the action value is updated and the strategy is modified: 
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It can be demonstrated that the Monte Carlo method converges toward the 
same values than the iterative DP method developed in the previous section 
and that after having visited all state-action pairs an infinite number of times, 
the learned strategy is optimal. The major drawback of the Monte Carlo 
method is that the policy is only updated once and the end of each episode 
and thus it converges slowly.   

3.2.1.5. Temporal Difference  
Temporal Difference (TD) learning [Sutton, 1988] combines ideas from Monte 
Carlo and DP methods. As Monte Carlo methods, TD methods learn from 
interactions without an exact model of the environment’s dynamics. Like DP 
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methods, TD methods update estimates based partly on other learned 
estimates, without waiting for the end of the episode (bootstrapping). Indeed, 
at time t+1 the agent builds a target for updating values based on the reward 
rt+1.  

The simplest TD method is the TD(0) method where the update is simply 
based on the immediate reward and the next value:  

( ) ( ) ( ) ( )( )tt1tt1tttt1t sVsVrsVsV −γ+α+= +++ (3.16) 

( ) ( ) ( ) ( )( )ttt1t1tt1tttttt1t a,sQa,sQra,sQa,sQ −γ+α+= ++++ (3.17) 

Whenever a state s in visited, its value (and the action value) is immediately 
updated to be closer to rt+1 + γ Vt(st+1) (or to rt+1 + γ Qt(st+1, at+1) for the action 
value), which is the target for evaluation by TD(0) method. In (3.16) and (3.17), 
α is a positive step-size parameter called the learning rate. It can also be 
shown that the TD(0) method converges to the optimal values after each 
state-action pair has been visited an infinite number of times. The TD(0) 
method that implements the update rule (3.17) is called the SARSA algorithm 
since it is based on the tuple (st, at, rt+1, st+1, at+1). 

In reality, TD(0) is an instance of a more general class of algorithms called 
TD(λ). Actually, TD(0) only uses information from one step ahead to update 
values. The TD(λ) methods have ‘more memory’ and the update rule is: 

(3.18) ( ) ( ) ( ) ( )( ) ( ) Ss    sesVsVrsVsV ttt1tt1tt1t ∈∀⋅−γ+α+= +++

In this expression, et(s) is the eligibility trace of state s at time t. Thus, all the 
state values are updated at each turn (the same thing happens for action 
values). The eligibility trace is defined as follow: 
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with 0 ≤ λ ≤ 1. One can see that et(s) decays exponentially with time when 
state s is not visited. This means that the importance of the reward rt+1 
obtained in time t+1 when stepping from state st to state st+1 on the update 
performed on the value of state s decreases as the last time that s as been 
visited is far away from t. The same type of update rule can be defined for the 
action values in order to obtain the SARSA(λ) algorithm: 
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The policy is then updated by either choosing the action with a maximum 
value or by via an ε-greedy strategy or a softmax strategy using the updated 
action values. Of course, TD(λ) methods converge more quickly than Monte 
Carlo or TD(0) methods since the immediate reward serves to update all the 
state and action values for already visited state-action pairs. Notice that when 
λ = 0, the method becomes the TD(0) method and when λ = 1, the method 
becomes a kind of Monte Carlo method with discounted return.  

3.2.1.6. Q-Learning 
One of the most important breakthroughs in RL was the development of an 
off-policy TD control algorithm that learns the optimal policy while following 
another for control, known as the Q-learning method [Watkins, 1989]. The 
simplest update rule for Q-learning (1-step Q-learning) is defined by: 

( ) ( ) ( ) ( )( )ttt1tta1tttttt1t a,sQa,sQmaxra,sQa,sQ −γ+α+= +++ (3.21) 

It can be demonstrated that, whatever the action selected in state st (thus, 
whatever the followed policy), the evaluated policy is the optimal one. That 
means that whatever the policy being followed, the update rule will lead to 
evaluate Q*(s,a) for all state-action pairs if each pair is visited a sufficient 
number of times. The eligibility trace can be introduced in the framework of 
Q-learning, leading to the Q(λ) methods. Two different methods are known: 
Watkins’ Q(λ) and Peng’s Q(λ) [Peng & Williams, 1994]. The Peng’s method 
is more difficult to implement and does not guarantee to converge (although 
experimental results proved quick convergence on several tasks), thus only 
the Watkins method is described here. According to Watkins, the update rule 
and the eligibility trace are: 

( ) ( ) ( ) ( )( ) ( )a,sea,sQa,sQmaxra,sQa,sQ tttt1tta1tt1t ⋅−γ+α+= +++ (3.22) 
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This method is quite easy to implement and proved to converge while 
enabling to follow an acceptable policy during learning. 

3.2.1.7. Factored MDP 
A particular type of MDPs is factored MDPs [Boutilier et al, 1999] in which 
each state and action is represented as a set of variables, namely state 
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variables and action variables. Formally, a factored MDP is fully determined by 
the tuple { } { }{ }RT ,,,

N
1

M
1 =β

β
=α

α AS  in which: 
• T and R  are defined as previously, 

• Sα is the set of all possible values for state variable α 

• Aβ is the set of all possible values for action variable β 

A state is then a M-tuple and an action is a N-tuple and it is possible to take 
advantage of state and action variable independency in order to solve MDP 
problems with other techniques or even to learn the topology of the MDP. 
Indeed, by using a factored representation for states and actions, it is 
possible that certain action variables affect only certain state variables and 
the transition probabilities are more easily estimated.   

3.2.1.8. Dialogue as an MDP 
The MDP framework is suitable for representing a HMD since it can reasonably 
be considered as a sequential process. Indeed, a dialogue is defined as a 
turn taking interaction between two interlocutors. Moreover, each participant 
performs actions by uttering sentences (Speech Acts) and modifies his state 
by updating his knowledge. Actions are taken according to a more or less 
defined strategy as far as goal-directed dialogues are considered. The 
formalisation of an SDS in the framework of MDPs as been firstly described in 
[Levin et al, 1997] and [Levin et al, 1998]. As explained later, a HMD can also 
be seen as a factored MDP under certain assumptions. More details will be 
provided in the third part of this text.  

3.2.1.9. Partially Observable Markov Decision Processes  
Although it can be argued that a HMD can be modelled as an MDP, it is 
important to remember that one of the dialogue’s participants is a machine 
that infers human user’s intentions from noisy spoken utterances recognised 
by an imperfect ASR system and using a possibly error prone NLU. Thus, the 
inferred dialogue state is not always accurate. This can be seen as an 
uncertainty about the state given the observation and the process might not 
be Markov any more in the observations. Another paradigm is then defined to 
characterise this kind of problems: Partially Observable Markov Decision 
Process (POMDP) [Sondik, 1971]. This approach assumes that the process is 
still Markov in some state variables that cannot be observed and the 
observation at time t are then assumed to be conditionally dependent on a 
hidden state at time t. Given this hidden state, observation at time t is also 
assumed to be independent of all other hidden or observable variables. The 
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unobserved Markov process is called the core process. A POMDP is then 
defined by a tuple {A, S, Ο, T, R, O) with: 

• A, S, T, R, being the same as previously 

• Ο = {oi} being the set of observations  

• O being the observation function that gives for each action and 
resulting state a probability distribution over possible observations. It 
actually gives the probability of making observation o given that the 
action performed at time t was a and that it led to state s’:    a

o'sO

A POMDP can also be factored using the same definitions as previously and 
by adding a set of observation variable values { }K

1=δ
δO to the other sets.  

Several methods for solving POMDPs have been proposed including exact 
solutions like DP methods and mainly approximate solutions because solving 
POMDPs is very complex. In this framework, a HMD can be defined as a 
POMDP by stating that the error prone recognised sentences are observations 
and hidden states are (partly) built on the user’s real intentions. This 
approach has been firstly studied in [Roy et al, 2000] and the authors could 
demonstrate that the POMDP approach outperforms the pure MDP methods in 
the case of a dialogue management for a robot. Yet, the computational cost 
was very high, they obtained a sub-optimal solution and they had to reduce 
drastically the size of the state space. Indeed, POMDP solution is intractable 
for sate spaces larger than 15 states, which is a strong limitation. Another 
experiment is described in [Zhang et al, 2001]. Although this research shows 
once again that the POMDP solution, even if sub-optimal, outperforms the MDP 
one, it faces the same problems as the previous research. Moreover, it points 
out that the design of the POMDP is an expert job and is very task-dependent 
especially for the estimation of the observation function. All those problems 
make impossible the use of POMDPs in the framework of a methodology for 
task-independent design of SDSs. 

3.3. Bayesian Networks 
A Bayesian Network (BN) also called Belief Network is a directed acyclic 
graph encoding relationships among variables in a probabilistic framework 
[Pearl 1988]. In such a graph, nodes represent stochastic variables and arcs 
represent dependencies between variables. It creates an easy and readily 
way to encode uncertain expert knowledge of a given domain. A network so 
constructed also reflects implicit independencies among the variables by the 
lack of arcs. The network must be quantified by specifying a probability for 
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each variable conditioned on all possible values of its immediate parents in 
the graph. In addition, the network must include a marginal distribution 
encoding unconditional probabilities for each variable that has no parent. This 
quantification is realised by associating a Conditional Probability Distribution 
(CPD) at each node. If the variables are discrete, this can be represented as a 
table (Conditional Probability Table: CPT), which lists the probability that the 
child node takes on each of its different parent set values. Together with the 
independence assumptions defined by the graph, this quantification defines a 
unique joint distribution over the variables in the network. Then, exploiting the 
independencies represented within the graphical structure, the probabilistic 
inference aiming at computing the probability of any event over this space 
can be realised.  

The easier way to understand BN is to consider an example, so let’s have a 
look to the following situation taken from [Murphy, 2001]. A person walks by a 
garden and can see that the grass is wet. Since a water sprinkler is installed 
in the middle of the grass, there can be two reasons for the grass being wet: 
either the water sprinkler was on or it has been raining. On another hand, the 
water sprinkler is more often switched on when the sky is sunny (it might 
even be automated) and it is more likely to rain when the sky is cloudy. 
According to this prior knowledge of the domain, what is the most likely 
reason for the grass being wet? 

This example can be captured in the following BN (Fig. 17) in which prior 
knowledge about conditional probabilities have been encoded: 

Cloudy

Sprinkler Rain

WetGrass

0.50.5

P(C=t)P(C=f)

0.50.5

P(C=t)P(C=f)

0.5
0.1

0.5
0.9

f
t

P(S=t)P(S=f)C

0.5
0.1

0.5
0.9

f
t

P(S=t)P(S=f)C

0.2
0.8

0.8
0.2

f
t

P(R=t)P(R=f)C

0.2
0.8

0.8
0.2

f
t

P(R=t)P(R=f)C

0.0
0.9
0.9
0.99

1.0
0.1
0.1
0.01

f  f
t  f
f  t
t  t

P(W=t)P(W=f)S  R

0.0
0.9
0.9
0.99

1.0
0.1
0.1
0.01

f  f
t  f
f  t
t  t

P(W=t)P(W=f)S  R

 
Fig. 17: The water sprinkler BN 
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In this example, four Boolean variables are defined (C for cloudy sky, S for 
sprinkler on, R for rainy weather, W for wet grass). Before going further, one 
should notice that all conditional probabilities are given while only half of them 
are really needed since, according to the sum rule of probabilities, each row 
must sum to 1. Thus, nine parameters are needed to completely define the 
BN. Since all variables are Boolean in this example, the complete distribution 
of variables over the domain is defined by the 24-1 = 15 joint distributions P(C, 
S, R, W). The saving doesn’t seem great but considering the network 
topology of Fig. 18, where all variables are still Boolean, one can see that 212-
1 joint distributions should be needed to define the domain while only 31 
parameters are needed in the BN framework. This is why BNs are often 
considered as a compact representation of the probabilistic properties of a 
domain. This reduction is done thanks to implicit variable independence 
assumptions made when building the network.  

F

E G

H

A

B C

D

I

J K

L  
Fig. 18: A 12-variables BN 

Actually, the BN framework makes use of both probability theory and graph 
theory to define conditional independency between variables. Graph theory 
can help in deriving conditional independency between variables easily and 
without make use of the Bayes’ rule. Indeed, according to graph theory, two 
variables a and b are conditionally independent given an evidence e, that is 
P(a | b, e) = P(a | e), if a and b are d-separated given e (or if e d-separates a 
and b, or they are not d-connected given e or there isn’t a d-connection path 
between a and b given e). More generally, a set of variables A is conditionally 
independent of a set of variables B given a set of evidences E if E d-
separates A and B. A and B are d-separated given E if along every 
undirected path between a node a∈A and a node b∈B there exist a node d 
such that: 

• d has converging arrows and neither d or any of its descendents 
belongs to E 
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• d does not have converging arrow and d∈E 

In the sprinkler water BN for example, W is conditionally independent from C 
given the evidence set E= {R, S} since R and S are along the path going from 
C to W and neither R nor S have converging arrows. That means that 
knowing that it is raining for instance, the state of the grass is independent of 
the state of the sky. In the same way, R is conditionally independent from S 
given the evidence E=C since the upper path going from R to S goes through 
C and the lower path contains W that has convergent arrows but W doesn’t 
belong to E. 

3.3.1. Probabilistic Inference 
The most common task one wish to solve using BNs is probabilistic inference. 
That is finding the likelihood of a variable state given some evidence. For 
example, considering the network of Fig. 17, and suppose that the grass is 
actually wet. There are two possible causes: either it has been raining or the 
sprinkler was just on. Which is more likely? Let’s use the Bayes’ rule to 
compute the posterior probability of each possibility: 
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Inference is based on the computation of the joint probability, which can be 
easily computed thanks to independence assumptions made when building 
the network: 

( ) ( ) ( ) ( ) ( )
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⋅⋅⋅=
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(3.25) 

Because of this, a BN can also be seen as a graphical way to represent a 
particular factorisation of a joint distribution. According to this factorisation 
one can write, for instance: 
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All this provides the desired results: 

( )
( )

( ) 6471.0tWP
708.0tW|tRP
430.0tW|tSP

==
===
===

(3.27) 

Thus, there is a probability of 0.6471 of the grass being wet, and if it is wet it 
is more likely because it has been raining. This process is called bottom-up 
inference or diagnostic process since that according to some observed 
evidences, the more likely cause has been inferred.  

Notice that even if they are not defined as directly dependent in the network, 
S and R compete to explain W. Thus, one can for example compute the 
probability of the sprinkler being on while observing that it is raining and the 
grass is wet: 

( ) 1945.0tWt,R|tSP ==== (3.28) 

The probability of the water sprinkler to be on decreases. It is known as 
Berkson's paradox. It also explains why BNs are also called belief networks 
since observing that the grass is wet but it has been raining decreases the 
belief that the sprinkler was on.  

Finally, one can also compute causal effect of the state of the sky on the 
grass. That is, for instance, the probability of the grass being wet when the 
sky is cloudy: 
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This is called causal or top-down reasoning. Because of this particularity, BNs 
are also considered as generative models as they specify how causes 
generate effects. A generative model is generally defined as a statistical 
model which, when trained on a particular data set, can generate new data. 
They duplicate the probability distribution from which the original data were 
drawn so that they are able to generate new data points that are statistically 
similar to those on which the model was trained. Training of BNs will be briefly 
explained later. 

In the simple case of the water sprinkler BN, exact inference was quite simple 
but it is not always the case. Indeed, the computation of exact inference for 
all nodes is NP-hard [Cooper, 1990]. Yet, exact inference algorithms exist for 
a special case of networks, which are the singly connected networks. In this 
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special case, there is no loop in the network and an efficient algorithm, called 
belief propagation can do the job [Pearl 1988]. For multiply connected 
networks (like the water sprinkler BN), the solution must generally be 
approximated.  

Some methods propose to transform multiply connected networks into singly 
connected networks. Other famous methods are based on the sampling of 
the network, that is they randomly posit values for some of the variables and 
then use them to pick up values for the other nodes. They then keep statistics 
on the values that the nodes take and these statistics give the answer. As 
said before, sampling methods are generally called Monte Carlo methods and 
they have the advantage of not being dependent of the network’s topology. 
Monte Carlo methods include the particular case of Gibbs Sampling [Mackay, 
1999]. Finally, other approximate methods exist such as the variational 
methods [Jordan et al, 1999]. 

3.3.2. Learning Networks 
Until now, it has been assumed that the whole network was defined, not only 
its topology but also the conditional probabilities through the parameters of 
CPD or CPT. In their early uses, BNs were used to encode experts knowledge 
about a particular domain. Experts drew the network and provided associated 
conditional probabilities according to their beliefs about the particular task 
and their confidence in these beliefs. In the mid 1990’s AI researchers 
considered the possibility to learn parameters from data and structure as well. 
Thus, BNs can be considered as a combination of prior knowledge and 
statistical data. It is another reason to call this framework ‘Bayesian’ networks 
since probabilities are really considered as beliefs that can be updated by 
real data (and not as physical observation frequencies).  

From now on, it will be considered that the studied domain can be encoded in 
a network B. Several situations can be investigated according to the 
observability of the domain variables and the knowledge about the structure. 
Although there exist several methods for learning BNs, the focus will be on the 
Bayesian approach [Heckerman, 1995] to give an overview of possibilities 
offered by the BN framework.  

3.3.2.1. Known Structure, Full Observability 
Here it is supposed that the hypothetic structure Bh containing N nodes drawn 
by experts is accurate and that in addition, a data set (or database or training 
set) D = {d1, .., dM} containing no missing data is available, that is each case 
dm in the data set consists of an observation of all the variables of the domain. 
Finally, it is assumed that all variables can only take discrete values. The goal 
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of learning in this case is to find the values of the parameters of each CPD that 
maximises the likelihood of the training data: P(D|Bh). Actually, this is not 
complete since the experts’ prior knowledge K of the domain should be 
mentioned. The likelihood of the training set is actually P(D|Bh, K) and 
P(ΘB|Bh,K) encodes the uncertainty of the experts about the prior parameters. 
It is the prior distribution of the parameters. First, let’s consider the following 
definition:  

• V = {v1, …, vN} is the set of domain variables  

• each variable vi can only have ri values  

• pi is the set of parent nodes of vi  

• pi can have qi = ∏ ∈ il px lr distinct states denoted pij 

• θijk is the physical probability of vi=k when pi=j 

• Θij = { }U ir

1k ijk=
θ is the set of parameters of variable i 

• ΘB = is the set of parameters of the network.  U U
N

1i

q

1j ij
i

= =
Θ

In the case of the water sprinkler: 

V = {C, S, R, W} 

ri = 2 ∀i 

pW = {R, S} 

θRCt = 0.8 

ΘRC = {P(R=t|C=t), P(R=t|C=f), 

             P(R=f|C= t), P(R=f|C=f)} 

Thus, the interest is to find the posterior distribution of the parameters ΘB of 
the network given a prior distribution P(ΘB| Bh, K) (which is a function of the 
knowledge) and a database D. Assuming independence of the learned 
parameters the posterior distributions can be written: 
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where Nk is the number of times that vi = k in the database and α is a 
normalisation constant. In general, it is assumed that the prior knowledge 
about the parameters has a Dirichlet distribution:  
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The posterior distribution of the parameters is then also Dirichlet: 

( ) ∏
=

−′+θ⋅γ=Θ
i

ijkk
r

1k

1MM
ijk

h
ij K,B,|P D (3.32) 

Thus, everything looks like the prior parameters were drawn from a database 
containing M’ cases in which there were M’ijk-1 cases where vi = k and pi = j 
and that the new database in which there are M’+M cases and in which there 
is Mk+ M’ijk-1 such cases is considered. Assuming Dirichlet distribution of prior 
knowledge is therefore equivalent to add artificial pseudo counts to the 
empirical counts. M’ and M’ijk should be assessed by experts, it is a way to 
express their confidence in their prior knowledge.  

This way to update parameter distribution is called the Maximum a Posteriori 
(MAP) method. Assuming no prior knowledge, the additional pseudo-counts 
are dropped and the parameters’ estimates are equivalent to the Maximum 
Likelihood (ML) estimates, which are simply normalised counts of each setting 
of variables given each setting of its parents in the database.  

3.3.2.2. Known Structure, Partial Observability 
In this section, the case of a database D containing cases in which some of 
the domain variables are not observable (hidden variables) is considered. 
Like in other learning processes, the Expectation-Maximisation (EM) can be 
used to learn maximum likelihood parameters of a generative model where 
some of the random variables are observed, and some are hidden [Dempster 
et al, 1977]. The hidden variables might represent quantities that are thought 
to be the underlying causes of the observations. For example, a model 
designed to explain data consisting of shoe sizes and reading ability might 
use age as a hidden variable.  

As the name implies, there are two stages in the EM algorithm: in the E step, 
the expected values of all the nodes is computed using an inference 
algorithm, and then these expected values are treated as though they were 
observed to learn the new parameters by maximising likelihood (M step). 
With O denoting the set of observable variables, H the set of hidden variables 
and ΘB the current parameters of the network: 

• E step: compute the distribution P(H | O, ΘB) over the hidden 
variables, given the observation and the current value of the 
parameters. This is actually an inference problem. 

• M step: compute the new parameters that maximises the expected 
log-likelihood under the distribution found in the E-step: 
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The M-step might require solving a difficult non-linear optimisation problem 
and several exact and approximate solutions can be investigated. The 
iteration of those two steps has proved to converge to a local maximum under 
certain conditions [Dempster et al, 1977]. 

3.3.2.3. Unknown Structure 
Sometimes, it can also be considered that prior knowledge is not only 
inaccurate about the parameters but also about the actual structure of the 
network B that better encodes the relationship between variables of the 
domain. Thus, before trying to learn a structure, a key point is to establish a 
measure of how well a given hypothesis Bh about the structure fits the prior 
knowledge K and the data set D. A criterion often used as an objective 
function for learning structure is the likelihood of the model given K and D: 

(3.34) ( ) ( ) ( )
( ) ( ) ( K|BPK,B|P

K|P
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⋅
= D

D
DD )

Or more often the log-likelihood of the hypothesis on the data: 

( ) ( ) α++= logK|BPlogK,B|Plog hhDL (3.35) 

The best network is the one that maximises L. The presence of the prior 
knowledge in the objective function is quite important since it avoids the 
maximisation process to assess one node to each case of the database on 
the learned structure. There are lots of methods to compute either exactly or 
approximately the terms of expression (3.35) and particularly, the log 
marginal likelihood P(D | Bh, K):  

( ) ( ) ( ) B
h

B
h

B
h dK,B|PK,B,|PK,B|P ΘΘ⋅Θ= ∫ DD (3.36) 

The Bayesian Information Criterion (BIC), for instance, can be used to 
approximate this term and is a trade off between a term measuring how well 
the parameterised model predicts the data and a term that punishes the 
complexity of the model [Schwartz, 1978]. Nevertheless, the priors on the 
parameters P(ΘB | Bh, K) and on the structure P(Bh | K) have to be known for 
the learning process. Several methods can also be considered and a good 
discussion about this can be found in [Heckerman, 1995]. 
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Finally, having an objective function, search methods are required for 
identifying structures with high score by some criterion. This problem is, once 
again, a NP-hard problem since the number of directed acyclic graphs on N 
variables is super-exponential in N. The usual approach is therefore to use 
local search algorithms (for instance, greedy hill climbing, possibly with 
multiple restarts) or perhaps branch and bound techniques, to search through 
the space of graphs. Actually, the objective function can be decomposed as a 
product of local terms:  

( ) ( ) ( )∏ ∫
=

θθ⋅θΠ==
N

1i
iiii

m
ii

h dK|PK,,|dvPK,B|P D (3.37) 

This makes local search more efficient, since to compute the relative score of 
two models that differ by only a few arcs, it is only necessary to compute the 
terms that they do not have in common.  

3.3.3. Some Special Cases 
Although BNs have only been developed as a general framework for a little 
more than two decades, some of their particular cases are widely used in 
practice for decision theory, pattern matching or data fusion. Here are some 
examples of BNs particular cases. 

3.3.3.1. Influence Diagrams 
Influence diagrams were originally introduced in [Howard & Matheson, 1984] 
as a compact representation of symmetric decision trees, but may also be 
considered as an extension of BNs. Actually, one can see influence diagrams 
as BNs with three different kinds of nodes: belief nodes (as usual), utility 
nodes and decision nodes.  

Weather

Umbrella

Forecast Utility

 
Fig. 19: Influence Diagram 

The influence diagram shown on Fig. 19 depicts the problem of deciding 
whether or not taking an umbrella to go out according to the weather forecast. 
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The actual weather influences the forecast and the utility of having taken the 
umbrella. On this figure, the belief nodes are ovals, action nodes are 
diamonds and utility nodes are squares. The problem of solving the influence 
diagram can be seen in two ways. First, the simple inference in which the 
problem is to find the utility of an action according to some observations 
(what’s the utility of taking the umbrella while the forecast predicted cloudy 
weather and it is actually not raining). Second, the decision-making problem 
in which one wants to find the action maximising the expected utility 
according to some observations. Some variables might not be observable 
(hidden variables). The most widely used application of influence diagrams is 
probably the Lumiere project, which is embedded in the MS Office assistant 
[Horvitz et al, 1998]. 

3.3.3.2. Dynamic Bayesian Networks 
Until now, it was considered that the BNs represented relationship between 
variables of a domain and could be learned from a database containing 
observation of some configuration of the variable set. The cases contained in 
the database were also considered independent. In temporal processes, 
each observation is a sequence of configurations of domain variables and 
each configuration (state) at time t influences the configuration (state) at time 
t+1. There is a temporal dependency among variables.  
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vn-1
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Fig. 20: 2 time slices of a fully connected DBN. 
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Dynamic Bayesian Networks (DBNs) is a framework for representing temporal 
processes [Ghahramani, 1998]. They are directed graphical models of 
stochastic processes and represent the hidden (and observed) states in 
terms of state variables, which can have complex interdependencies. The 
graphical structure provides an easy way to specify these conditional 
independencies, and hence to provide a compact parameterisation of the 
model. It is generally assumed that the parameters do not change and the 
model is time-invariant. 

On Fig. 20, a fully connected DBN is depicted. In general, temporal 
dependencies are described by drawing a 2-time slices graph (2TBN), since it 
is assumed that parameters are time-invariant. On this figure, empty circles 
represent observed variables while filled circles stand for hidden variables. 

Two particular kinds of DBNs are widely used in AI researches and applications: 
the Hidden Markov Models (HMMs) extensively used in pattern matching (and 
specially in speech recognition: see section 2.3.1) and the Linear Dynamic 
Systems (LDSs) of which Kalmann filters are special cases (widely used in 
data fusion). In the HMM framework for instance, a sequence of observed 
variables (X) is supposed to be conditioned by some hidden variables (Y) and 
the sequence of hidden variables is assumed to be Markov (see Fig. 21). 

XX X X

YY Y Y

 
Fig. 21: HMM topology 
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AAlthough it is admitted that the general design process of human-
machine interfaces is a cyclic process composed of prototype 
releases, user satisfaction surveys, bug reports and refinements, it 
is also well known that human intervention for testing is time-
consuming and above all very expensive. Indeed, we live in an era 
of consumer surveys where appeared professional testers because 
people commonly get tired of answering questions. Avoiding 
human intervention as much as possible is then a desired objective 
that simulation tries to achieve. Although it is not (yet) realistic to 
simulate human behaviour in all situations, it is argued that human 
beings adapt their behaviour when communicating with machines 
and that this modified behaviour can be captured in probabilistic 
models. While Artificial Intelligence tried for a long time to simulate 
human behaviour in a wide range of applications, it finally looks like 
it was easier to get human to adapt to machines and find it 
natural… Yet, to encode this modified behaviour, most of 
probabilistic models need real examples, a knowledge database 
collected by prototype releases or by other means in order to 
generate new data points, which is precisely what was to avoid. 

On another hand, a dialogue system relies on signal processing 
and natural language processing systems. A human-machine 
dialogue simulation should then take into account these 
subsystems because they are prone to errors by nature. The 
optimal behaviour of the dialogue system as well as the user’s 
behaviour will be dependent of performance of these elements. 
Models of task-dependent DSP and NLU performance should also 
be part of a realistic simulation environment. 
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Chapter 4: Generalities about Dialogue 
Simulation 

4.1. Dialogue Simulation: How and What for? 
First of all, let’s define dialogue simulation as a method to artificially generate 
interactions between two agents engaged in a task-oriented dialogue 
(remember that a dialogue is an interaction between two agents based on 
sequential turn taking). The simulation purpose is of course to avoid releasing 
an imperfect system to users in order to collect data because real human 
tests are very expensive. Two ways of achieving this mission can be 
investigated: ‘Wizard of Oz’ simulation and computer-based simulation. 

4.1.1. Simulation Methods 
The ‘Wizard of Oz’ (WOZ) method (or Oz Paradigm), developed in the early 
80’s by Jeff Kelley at the John Hopkins University [Kelley, 1984], is a testing 
or iterative design methodology wherein a human experimenter (the "Wizard") 
simulates the behaviour of a theoretical intelligent computer application and 
interacts with potential users. It takes its name from the obvious parallels with 
the 1900 book by L. Frank Baum. In the SDS framework, the human 
experimenter embodies the DM strategy and interacts with several human 
users for testing it. The WOZ technique is widely used for testing and 
designing NLP systems [Dahlbäck et al, 1993] and particularly for SDS 
evaluation and design [Klemmer et al, 2000]. The advantages of WOZ 
techniques are that no real implementation of the prototype is needed and 
real potential users can rate the system. Nevertheless, the purpose of this 
thesis is to avoid as much as possible human intervention during the design 
process.  

One alternative to WOZ techniques is computer-based simulation. In this case, 
in opposition to WOZ method, the whole simulation system is composed of 
computer software. In this simulation framework, the current DM 
implementation (the DM prototype) interacts with another software standing for 
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the DM’s environment. The environment part of the software will be described 
later (see section 4.2) but it is obvious that it should include user simulation. 
Computer based simulation has the big advantage to avoid human 
interactions with a non-optimal system (the SDS prototype), which can be very 
time consuming and very expensive. Another advantage of computer-based 
simulation over WOZ is that the actual current implementation of the DM is 
tested and not a human interpretation of the strategy. 

4.1.2. Computer-Based Simulation Application 
There are several reasons for which dialogue simulation became the subject 
of lots of researches since thirty years. Initially, systems developed in the 
purpose of simulating dialogues aimed at validating dialogue models like 
those discussed in section 2.4.1. They were essentially systems involving two 
artificial agents built according to a formal description of the model and 
communicating with each other. Their simulated exchanges were logged and, 
obviously, the more the logs looked like a real human-human dialogue, the 
better the model was (or at least, its formal description) [Power, 1979].  

During the SDS design process, series of prototypes are typically released 
and enhancements from one system to the next are made by collecting a 
corpus of dialogues between users and prototypes to evaluate their 
performance. One way to avoid prototype releases is to use WOZ techniques 
of course but human users are still needed. Thus, another application of 
dialogue simulation by computer means is the evaluation of SDS like 
discussed in section 2.4.5. Most powerful simulation systems for evaluation 
purpose are probabilistic. Of course, a first way to use simulation to evaluate 
SDS performance is to build a handcrafted system able to interact with the 
SDS by some means and to evaluate the quality of the resulting dialogue 
sessions by using objective dialogue metrics [Lin & Lee, 2001]. While this 
technique avoids human involvement, it is driven by a set of fixed parameters 
and performs always the same in a given situation. Parameters have to be 
modified in order to obtain different behaviours. Another use of a simulation 
system for SDS evaluation is the expansion of a data set. Indeed, if user 
evaluations of one or more prototypes have already been realised, the 
designers have a data corpus at their disposal that is hopefully representative 
of possible interactions between users and prototypes. This corpus can then 
be used to create a generative model of the SDS’s environment [Eckert et al, 
1998]. The model is then theoretically able to produce new dialogues having 
the same statistical properties than those in the corpus and enables to 
evaluate unseen dialogues. This way, designers can obtain a more accurate 
evaluation of the system.  
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Finally, the last simulation application discussed here is the simulation for 
strategy learning purposes. Indeed, once a way to simulate as many 
dialogues as desired has been obtained as well as a way to evaluate the 
resulting dialogues, it is natural to think about exploiting this framework to 
learn optimal strategies from experiences. The evaluation method is then 
used to build an optimality criterion. As the learning process requires lots of 
dialogues to converge toward an optimal strategy, computer-based simulation 
is very valuable. One of the first attempts is described in [Levin & Pieraccini, 
1997] although the idea of has been firstly suggested in [Walker, 1993]. More 
about dialogue strategy learning will be discussed in the third part of this text. 
Nevertheless, the dialogue simulation part is motivated by the potentialities of 
simulation in the purpose of strategy learning by RL means. In this framework, 
real interactions between a learning agent and human users would be 
unfeasible since a large number of dialogues are needed, some of them can 
be long and seem silly and the overall operation would be very expensive 
and time consuming. 

4.2. Probabilistic Simulation Environment 
As seen in section 2.3, most of low-level components of an SDS make heavy 
use of probabilistic methods. Unlikely, the DM design has historically been 
based on heuristics and iterative refinements. It was thus reasonable to 
attempt at applying probabilistic techniques to the design and simulation of 
the DM too. Indeed, probabilistic techniques offer a powerful theoretical 
framework and let foresee learning capabilities.  

(st , nt)

Environment

at ot

DM

Task Model

st+1st

 
Fig. 22: Black box scheme of a simulation environment  
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With this idea in mind and defining a DM in terms of internal states and actions 
within the framework of MDPs, the general black box scheme of Fig. 22 for the 
environment of a DM can be drawn.  

The reader should remember that a first order Markov process is considered. 
In this figure (where dotted objects are not part of the environment),  

• t is a discrete representation of time snapped at each dialogue turn,  

• at is the action performed by the DM and transmitted to the 
environment at time t, 

• st is the internal state of the environment at time t (it is closely 
related to the internal state of the DM), 

• nt is the contribution of noise at time t (including real acoustic noise 
but also modelling other errors occurring in the lower level 
processes),  

• ot is the observation the DM can perceive at time t after its action at 
has been processed by the environment and is typically a sequence 
of concepts, 

• st+1 is the internal state at time t+1. 

In a first probabilistic approach of the simulation problem, let’s express the 
probability of a given configuration as the joint probability of action, 
observation at time t and state at time t+1 given the internal state at time t 
and the noise:  

( ) ( ) ( ) ( )
443442144 344 21444 3444 21

DM

ttt

Env. Simulation

tttt

Model Task

tttt1ttttt1t n,s|aPn,s,a|oPn,s,a,o|sPn,s|a,o,sP ⋅⋅= ++ (4.1) 

Several assumptions can be made without loss of generalities. For example, 
it can be reasonably assumed that the task model (that interprets the 
observation in order to build a new internal state for the DM) is independent 
from the action and the noise: 

( ) ( )tt1ttttt1t s,o|sPn,s,a,o|sP ++ = (4.2) 

It is also reasonable to think that the DM does not take the noise into account 
in order to decide which action to perform next, at least not directly. If it does, 
it is through the observations and thus, according to the state representation 
extracted from it:  

( ) ( )ttttt s|aPn,s|aP = (4.3) 
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Thus: 

( ) ( ) ( ) ( )
4342144 344 2144 344 21

DM

tt

Env. Simulation

tttt

Model Task

tt1ttttt1t s|aPn,s,a|oPs,o|sPn,s|a,o,sP ⋅⋅= ++ (4.4) 

All the problem of dialogue simulation is to evaluate the second term of this 
last expression, while the evaluation of the last term depends on the actual 
strategy of the DM. 

4.2.1. Several Probabilistic Proposals for Simulating the 
Environment  

As said previously, there have been several attempts to dialogue simulation 
before. This section first describes previous work in the field and finally gives 
a first description of a more realistic proposal.  

4.2.1.1. State Transition Model 
This model is not the first that appeared in the literature but it seems to be the 
simplest. Indeed, in [Walker, 2000] the author describes a simulation system 
based on the extraction of transition probabilities from a corpus of dialogues 
obtained by direct utilisation of a prototype by users. Other descriptions and 
uses of this model can be found in [Singh et al, 1999]. In this framework, both 
the task model and the simulation environment terms are estimated by one 
transition probability.  
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at st+1
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Dialogue
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Fig. 23: State-transition simulation model 
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Indeed, assuming that the outputs of the simulated environment are directly 
state representations (st+1 = ot ) the following can be written: 

( ) ( ) ( )

( )ttt1t

os tttt1t

Env. Simulation

tttt

Model Task

tt1t

n,s,a|sP

n,s,a|o,sPn,s,a|oPs,o|sP
t1t

+

=++

=

=⋅
+44 344 2144 344 21 (4.5) 

In the abovementioned researches, the noise was also neglected, as it is 
quite difficult to include in this framework. Thus, the estimated transition 
probability was expressed as: 

( ) ( ) a
'sstt1tttt1t s,a|sPn,s,a|sP T=≈ ++ (4.6) 

The estimated probability is actually the transition probability of the underlying 
dialogue’s MDP representation (see section 3.2.1) and no task model 
interpretation is needed anymore but a dialogue corpus.  

The principal drawback of this model (besides the need of data collection) is 
that the dialogue’s MDP representation must be known in order to collect 
suitable data for probabilities estimation. The model can then be used for one 
pair of state space and action set but it is hardly extendable to new 
configurations, except if a new state space (or action set) can be derived from 
the previous one. Moreover, the entire state space must be visited a sufficient 
number of times in order to have reliable estimates of the probabilities, which 
is quite hard if not impossible. Finally, these estimates are obtained by 
following a particular strategy, which can make the model poorly reliable. 
Nevertheless, it has proved to be useable for evaluation purposes.  

4.2.1.2. Simulating Individual Components 
According to the prior knowledge of what composes the DM’s environment, it 
is natural to include stochastic models of each component in the simulation 
environment. Remember that the DM’s environment contains all the SDS 
components except the DM itself and the WK but also the user. It is precisely 
this last one that has been modelled first in [Eckert et al, 1997]. At the 
beginning, the authors described their simulated user as a probabilistic model 
based on the interaction history with the probability of user pronouncing 
utterance ut at time t according to the history being 

( )...sys,u,sys|uP 1t1ttt −− (4.7) 

where syst stands for the utterance pronounced by the system at time t. 
Rapidly, they concluded that only a bigram model would be tractable and the 
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context has been reduced to the previous system’s utterance. The probability 
of the user pronouncing utterance ut at time t according to the history became: 

( )tt sys|uP (4.8) 

The utterance ut can be assimilated to observation ot while the system’s 
utterance syst can be assimilated to the action at. Thus, the last expression 
means that the simulated user is memory-less and that it only answers to 
system’s questions even if it already answered before or if it didn’t previously 
provide necessary information to answer the question. The current state is 
not taken into account, the user is not goal directed and no error modelling 
was included (noise is not taken into account neither):  

( ) ( ) ( )tttttttt sys|uPa|oPn,s,a|oP =≈ (4.9) 

Moreover, those probabilities have to be extracted from data corpus. As the 
problem of data collection is recurrent, the same authors, who faced the 
problem, proposed another set of probabilities (still based on the bigram 
model) for describing the user’s behaviour that can be handcrafted by experts 
[Levin et al, 2000].  
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Fig. 24: Simulation environment with individual components 
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A goal-directed simulated user has been introduced in [Scheffler & Young, 
1999]. The model follows a quite complex ‘grammar-based’ scheme and its 
design is very task-dependent and also requires a corpus. Nevertheless, this 
model takes the current state into account. 

On another hand, several attempts to model errors occurring when acquiring 
users intentions have been realised. Most of studies rely on the well-known 
problem of ASR errors (insertion, deletion and substitution of words in a 
recognised sequence). Once again, a probabilistic model is built to simulate 
the error generation process. The model is included in the environment and 
affects the produced observation (Fig. 24). 

Until now, very simple error modelling has been realised (except in [Scheffler 
& Young, 1999] where a quite complex error model is described). According 
to this model, the next expression is derived: 

(4.10) 

With the same assumptions than previously and assuming that the user’s 
utterance actually depends on the current state (at the opposite of the 
memory-less model described in the above), equation (4.10) becomes: 

(4.11) 
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Notice that this model doesn’t take the noise into account like most of models 
described in the literature. The simulation problem is then to evaluate the two 
first terms of this last expression, which is generally done by collecting a data 
corpus like in [Scheffler & Young, 1999].   

Yet, an even more corpus-based technique has been proposed in [López-
Cózar et al, 2003] where real ASR and NLU systems are used and the 
simulated data come from a corpus of recorded utterances that are selected 
according to a scenario itself coming from a corpus. The major drawback of 
this proposal is that it can only be used with a completely implemented and 
working SDS, and is therefore useful only for evaluation. 
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4.2.1.3. Toward A More Realistic Simulation Environment  
In order to build a more realistic simulation environment for SDS evaluation, 
several facts should be taken into account. Here are some reflections that 
can be done about the problem: 

1. The simulation environment should be minimally task-dependent.  

2. The simulated user should be goal-directed and should behave 
consistently according to its goal. 

3. A human user would have a sufficient knowledge about the task to 
have a consistent goal according to the task.  

4. The DM’s action set includes actions that are meant to become 
synthesized speech utterances spoken to the user but also actions 
that are meant to query or modify the WK. 

5. If there can be errors introduced by the input processing systems of 
the SDS, output generation can also be error-prone.  

6. If the simulation environment is meant to allow SDS evaluation, it 
should provide information about metrics that affect user’s satisfaction. 

7. Noise influences the input processing results but also the way 
synthesized speech is perceived. 

8. Synthesized speech quality and the length of system’s utterances 
influences user’s satisfaction [Walker et al, 2001].  

According to this list the simulation environment on Fig. 25 is proposed as an 
extension of the environment described in [Pietquin & Renals, 2002] and 
[Pietquin & Dutoit, 2002]. The inclusion of the WK in the environment meets 
the requirements of statements 1, 2, 3 and 4 of the above list. Indeed, if the 
goal is to obtain a user model as task-independent as possible but to make it 
able to build a task-dependent goal at the beginning of each simulated 
dialogue session, it should access to the task model included in the WK.  

Moreover, if DM’s actions can affect the WK, it should definitely be considered 
as a part of the environment. In agreement with statement 5, a model of the 
output generation blocks has been included to the simulation environment. 
This model also addresses problems raised by statements 6 and 8. A noise 
source has been added and generated noise is mixed with SDS generated 
output before it reaches the user model and with user model’s outputs in 
conformity with statement 7. 
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Fig. 25: A more realistic simulation environment 

Finally, the DM’s action set A has been split into two parts (Au and AWK) in 
order to address problems expressed by statement 4: 

{ } { } { }
44 344214342143421

WKu

lnlkk,WKl1jj,un1ii aaa
AAA

−→=→=→= ∪= (4.12) 

In Fig. 25, variables are: 

• st is the internal state at time t, 

• at is the action performed by the DM and transmitted to the 
environment at time t, 

• au,t is the action meant to become synthesized speech utterances 
spoken to the user (null if at ∈ AWK) at time t, 

• aWK,t is the action meant to access or modify the WK (null if at ∈ Au) 
at time t, 

• syst is the system’s utterance, derived from action au,t, by the output 
generation block at time t, 
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• ut is the concept sequence produced by the user model at time t in 

response to the concepts he could retrieve from syst (working at the 
word level here would be intractable and useless to model all the 
manners a user can express a set of concepts), 

• g is the user’s goal, 

• nt is the contribution of noise at time t,  

• ot is the observation the DM can perceive at time t after its action at 
has been processed by the environment, 

• st+1 is the internal state at time t+1. 

According to these definitions, the joint probability is given by: 

(4.13) ( ) ( )
( )ttttWKtt1t

ttttutt1ttttttt1t

n,s|g,sys,u,a,o,sP
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A
A

∈+

∈=

+

++

With the same assumptions than before and keeping in mind that actions on 
the WK give deterministic results, the second term of this expression can be 
expressed as: 
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Thus, as long that the WK is part of the simulation environment, nothing has to 
be modelled in this term. The first term of the same expression can be 
decomposed as: 

(4.15) 
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In addition to previous assumptions, the following can also been made: 

• The output generation is independent from the noise and the current 
state. Indeed, the NLG subsystem generates a text according to 
concepts embedded in the action only. This text is then synthesized 
without taking noise into account although one could think about 
output signal level adaptation. This doesn’t mean that the noise 
doesn’t affect the perception of the system’s utterance by the user 
but the production process is not affected by the noise. 

• The user model doesn’t change its goal during a dialogue session 
and all goals have the same probability to be chosen. Noise will be 
kept as a conditioning variable as it can affect the understanding of 
the system’s utterance. 

• User’s utterance is independent from the actual DM’s action. The 
action is transmitted to the user by the system’s utterance syst. 

• The inputs processing block results are independent from the user’s 
goal and the system’s utterance. Indeed, the system cannot be 
aware of the user’s goal to tune its subsystems. Moreover, if the 
actual DM action can be responsible for some tuning, the spoken 
realisation of the concepts embedded in the action is not responsible 
for any tuning. 

• The task model is independent from the user’s utterance and goal 
and from the system’s utterance and noise.  

The previous expression can therefore be rewritten: 

(4.16) 
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The simulation problem can be summarised as the problem of evaluating the 
four first terms of this expression: 

( ) ( ) ( ) ( )
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As equal probabilities for all goals are assumed, evaluating P(g) is quite trivial 
but the evaluation of other terms will be the subject of the following chapters.   
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On another hand, the simulation environment should provide evaluation 
indices for each dialogue session. All the components of the environment 
should then provide metrics indicating how well they performed their job. An 
additional block dedicated to the computation of an instantaneous evaluation 
ct+1 of the turn is then included in the simulation environment (Fig. 26). Inputs 
of this block are metrics supplied at time t by each component and are 
referred to as follow on the figure: 

• { }out
tc  are the metrics provided by the output generation blocks 

• { }in
tc  are the metrics provided by the input processing blocks 

• { }wk
tc  are metrics provided when accessing the WK 

• US is the overall user’s satisfaction which is typically provided once, 
at the end of each dialogue session. 
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Fig. 26: Simulation environment with cost function block 

4.2.2. Implementation Details 
Each of the simulation environment components will be discussed in the two 
following chapters. Nevertheless, it is important to define more properly how 
the communication takes place between components. Therefore, the 
structure of internal variables should be detailed.  

To do so, one central point to be considered is the task representation to 
adopt. Indeed, messages passed from one component to another often 
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contain pieces of information about the task. In the next chapters, it will be 
assumed that the AVM task representation (see 2.3.5) is chosen for the 
following reasons, among others:  

• the AVM representation is suitable for a large set of dialogue 
applications including those discussed in this thesis (such as form 
filling and information retrieval applications), 

• it is compatible with relational database representation of the task 
(which is often a starting point to the deployment of voice-enabled 
interfaces),  

• it is convenient for factored representation of messages. 

This Attribute-Value (AV) data representation will be kept for most of internal 
messages. Consequently, a certain number of internal variables have a 
partially imposed structure: 

• the user’s goal (g) is also represented as an AVM extracted from the 
task representation, 

• the user model’s output is a set of AV pairs, 

• what the user model processes is not a complete utterance 
synthesized by the output processing block mixed with noise but 
also a set of AV pairs. 

Actually, these statements can be interpreted by saying that in the simulation 
environment, communication takes place at the intention level rather than at 
the word sequence or speech signal level, as it would be in the real world. 
The user’s goal is then a collection of all the intentions the user has to 
communicate to the system. An intention is regarded as the minimal unit of 
information that a dialogue participant can express independently. Intentions 
are closely related to concepts, speech acts or dialogue acts.  

It is unnecessary to model environment’s behaviour at a lower level, because 
from the point of view of the DM, only the high level communication is useful 
(see Fig. 3). Additionally, intention-based communication allows error 
modelling of all the parts of the system. More pragmatically, it is simpler to 
automatically generate concepts compared with word sequences (and 
certainly speech signals), as a large number of utterances can express the 
same intention (and above all for user’s utterances). 

Nevertheless, there is another way to interpret the choice of intention-based 
communication. For instance, it is reasonable to say that a user is able to 
translate a speech signal synthesized by the system in a set of AV pairs. It is 
then realistic to model the user by an intention-processing module. 
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Chapter 5: User Model 

5.1. About User Modelling 
User modelling is a quite recent field of AI researches and is still a wide-open 
problem. In general, a User Model (UM) is used in the aim of adapting a 
system’s behaviour to what its user is expected to do and to his/her needs 
and preferences. It is therefore mainly used for user’s knowledge and goal 
inference [Zukerman & Albrecht, 2001]. For example, the MS Office Assistant 
uses a UM to infer user’s needs and knowledge through natural language 
entries [Horvitz et al, 1998]. User models are also used in games in order to 
obtain team behaviour between the user and his/her virtual squad or at the 
opposite to fight the user [Suryadi & Gmytrasiewicz, 1999].   

User modelling for interaction adaptation commonly accepts two different 
approaches. Historically, the user modelling has first focused on the human 
emulation approach in which the UM is used in order to create ‘human-like’ 
behaviour for the system [Kass & Finin, 1988]. Actually, this ‘human-like’ 
behaviour is not as desirable as imagined since human users generally 
behave differently when talking to a machine [Jönsson & Dahlbäck, 1988]. 
Thus, the complementary approach that exploits this asymmetry between 
human and computer to build new interactions and collaborative possibilities 
seems preferable [Fisher, 2001].  

Here, the purpose of user modelling is not only to model user’s knowledge 
and to infer user’s goal for use in a working system but to predict user’s 
behaviour given a SDS action in order to simulate dialogues (more like a 
generative model). In this purpose, several approach can also be considered.  

In the case no data is available about users of a given system, which is 
generally the case in the early stage of the design process, a method has 
been proposed in the early ages of user modelling: stereotyping [Rich, 1979]. 
Stereotyping is a very simple concept seeming obvious but it has been widely 
used and is still used in general. A stereotype captures default information 
about groups of users and it is assumed that a user belonging to a group acts 
in a roughly same way than the others of the group. The design of 
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stereotype-based models implies the judicious choice of user groups and key 
characteristics. Initially, stereotypes were based on people’s description of 
themselves.  

In the case data are available or online learning is feasible, it is possible to 
learn parameters of a UM. Anyway, stereotyping can serve as a starting point 
of the learning process. Whatever the framework used for modelling the user, 
two learning methods can be considered: content-based and collaborative 
learning [Zukerman & Albrecht, 2001]. Collaborative learning models are very 
similar to stereotype-based models in such a way that it is assumed that a 
user behaves in a similar way of other ‘like-minded’ users (those belonging to 
the same group). Parameters are learned from a data set collected on a user 
population that is supposed to represent correctly a group. Content-based 
learning is used whenever it can be assumed that the past behaviour of a 
given user is a reliable indicator of his/her future behaviour. This method 
learns models of each system’s user, which means that it is only applicable 
for systems often used by the same users (like a software for personal 
computers, for instance).  

Finally, a last distinction has to be made between rule-based and statistical 
models. The former are often handcrafted and allows for little uncertainty 
management while the later is more suitable for learning and allows more 
flexible behaviour. They are widely used nowadays and these models will be 
on focus. 

Statistical user modelling in SDS has a non-empty history but employing UMs 
for the purpose of dialogue simulation is not so common. Yet, two recent 
examples can be found in [Eckert et al, 1997] and [Scheffler & Young, 1999]. 
In [Eckert et al, 1997], the authors developed a very simple statistical model 
in which the user’s behaviour is independent of the history of the interaction 
and the user’s goal. This strong assumption simplifies greatly the UM and the 
parameters to be learned. In [Scheffler & Young, 1999], the authors 
developed a quite complex goal-directed UM based on statistical grammars 
capturing dialogue context but the parameters to be learned are very task-
dependent. It requires the use of an accurate prototype in order to estimate 
parameters and a lot of expertise to be built. 

Fig. 27 shows the details of the UM. It is composed of three blocks. The lower 
one represents the user’s knowledge (kt) at time t, which is updated by the 
system’s utterance at time t and of which the user’s goal (g) is a subset. The 
stochastic model is the main part of the UM and implements UM’s behaviour. It 
takes the user’s knowledge and goal and the system’s utterance as inputs. 
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Fig. 27: Stochastic User Model 

Readers should remember that the system’s utterance is considered to be a 
set of AV pairs where the attributes will be denoted {sβ} and the set of possible 
values for attribute sβ will be denoted Vβ = { }. The upper block transforms 
output of the stochastic model in a set of AV pairs transmitted to the ASR 
model in which attributes bellows to {u

β
iv

α} and the set of possible values for uα 

is Vα = { }. Remember that according to equation (4.17), the user model 
should simulate user’s behaviour by providing an utterance u

α
iv

t according to 
( ) ( )gPnssysguP tttt ⋅,,,| . 

5.2. A First Simple Model 
In a first attempt to realise a model of a SDS user, the theory developed in 
[Eckert et al, 1997] was used as a starting point since it is more likely to be 
obtainable by automated means. In this paper, the authors make the 
assumption that the user’s utterance at time t is conditioned by the history of 
the dialogue session: 

( )001t1ttt sys,u...,sys,u,sys|uP −− (5.1) 
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These probabilities being too difficult to obtain whatever the method (even by 
using a corpus of data, it is unrealistic to think that the same history will 
appear a sufficient number of time in order to compute reliable value of 
probabilities for all user’s utterances at time t), the authors make then the 
very strong assumption that the user’s utterance is only conditioned by the 
system’s previous utterance:  

( )tt sys|uP (5.2) 

Once again, the authors didn’t have a sufficiently large amount of data in 
order to compute those probabilities for a mixed-initiative SDS (they worked on 
the ATIS corpus which is only compose of answer to an ‘how may I help you’ 
prompt). Thus in [Levin et al, 2000] they defined a set of simpler probabilities 
and handcrafted most of them: 

• Probabilities associated with response to greeting:  

- P(n|Greeting) is the probability to provide n AV pairs in a single 
utterance when the greeting message is prompted. 

- P(A) is the probability distribution of attributes 

- P(V|A) is the probability distribution of values for each attribute 
in A.  

• Probabilities associated with response to constraining questions:  

- P(uα|sβ) is the probability of the user to provide a value for 
attribute uα when prompted for attribute sβ.  

- P(n|sβ) is the probability of the user to provide n unsolicited AV 
pairs when prompted for attribute sβ. The unsolicited attributes 
are provided according to the distribution P(A), like for the 
answer to greeting prompt. 

• Probabilities associated with response to relaxation prompts:  

- P(yes|sβ) = 1- P(no|sβ) is the probability of the user to accept the 
relaxation of attribute sβ. 

This set of probabilities is quite simple and can be handcrafted if necessary. It 
has been used in a first attempt of dialogue simulation for strategy learning. 
Nevertheless, this UM suffers of a lack of consistency for two reasons: 

• If the UM is prompted twice for a same attribute, it can provide two 
different values since the probabilities are not conditioned on a 
particular goal (this UM is not goal-directed) 
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• If the UM is prompted infinitely for the same attribute, it will answer 

infinitely (and maybe change its answer) since the UM doesn’t 
‘remember’ that the sentence has already been prompted. 

These two problems can lead to unrealistic simulated dialogues but also to 
infinite dialogues since if the user changes its answer to a same question 
infinitely, the task might not be possible to achieve. Moreover, this UM cannot 
express is (un)satisfaction about the dialogue and close the session for 
example when it is not satisfying.  

For instance, suppose an SDS dedicated to train ticket booking which possible 
actions AS are greeting prompt (greeting), constraining questions (const), 
confirmations (conf), relaxation requests (rel) or closing the dialogue (close). 
Attributes of those actions are the departure city (dep), destination city (dest) 
and the travelling class (class). The strategy followed by the SDS can be 
summarized as follow: 

• start with the ‘greeting’ action  
• ask for missing attributes until they are all known 
• confirm before selling the ticket 
• ask for relaxation when no ticket can be sold 
• close when all has been confirmed or after a fixed number of turns. 

 Intentions Expanded Intentions 
sys0 AS = greeting Hello! How may I help you? 

u0
u1 = dest 
v1 = ‘Namur’ I’d like to go to Namur. 

sys1 AS = const(dep) What is your departure City? 

u1
u1 = dep 
v1 = ‘Mons’ I’d like to start from Mons. 

AS = const(class) Would you like a business or an 
economy class ticket? 

u2
u1 = class 
v1 = ‘Business’ Business class, please. 

sys3 AS = conf(all) 
Ok, please confirm the following request: 
you want a business class ticket to go 
from Mons to Namur? 

u3

u1 = conf 
v1 = false 
u2 = dep 
v2 = ‘Namur’ 

No, I want to start from Namur. 

sys4
AS = conf(dep, 
dest) You want go from Namur to Namur? 

u4
u1 = conf 
v1 = true Yes. 
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sys5 AS = rel(dest) 
It is impossible to go from Namur to 
Namur. Do you want to choose another 
destination? 

…  … 

Table 1: An example of dialogue with a memory-less UM 

This UM has been implemented and tested on a simulated implementation of 
the SDS described in the above. It is supposed that the communication is 
error-free. A typical problematic dialogue is depicted in Table 1 (exchanged 
intentions have been expanded into a word sequence representation in the 
right column for comprehensive purpose). From this little example, one can 
see that an indication about the UM performance is the mean length of a 
dialogue session. Since the SDS itself decides to close the dialogue when the 
number of turns crosses a given threshold, the value for the dialogue length 
(in number of turns) can vary from the minimum number of turns allowed by 
the strategy to this threshold. The number of turns is minimum when the UM 
provides the three attributes and their values when answering the greeting, 
confirm them and the ticket is available (that is when the value for dest is 
different of the value for dep). Thus, the minimum number of turns is 3 
(greeting, conf, close).  

Notice also that in this case, the mean number of turns will be dependent of 
the probability of obtaining the same value for dest and dep: 

( ) ( ) ( )dest
i

depdest
i

destdest
i

depdest
i

dest vvPvvPvv,vvP =⋅==== (5.3) 

This effect is shown on Fig. 28. It is of course an undesired effect to avoid 
since the evaluation of the SDS is made more difficult.  

 
Fig. 28: Average number of turns vs. number of possible values for Arguments 
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5.2.1. A Goal-Directed User Model with Memory 
To overcome problems described in the above, a similar UM is proposed but 
each probability is then also conditioned on the user’s goal and on a small 
amount of information about the history of the interaction. The UM has then to 
build a new goal at the beginning of each dialogue session and will act 
consistently according this goal all along the interaction. Moreover, the 
information kept by the UM about the history mainly counts for occurrence of 
the same system’s utterance and a new probability is added: the probability 
to hang off.  

According to the notation of Fig. 27, the information kept by the UM about the 
history is roughly the user’s knowledge at time t (kt) and the goal is denoted g. 
The goal contains a set of AV pairs that will condition the answers of the UM 
and the knowledge contains few information about the history of the current 
dialogue (see Table 2).  

The goal not only contains AV pairs but also priorities for each AV pair that will 
be helpful when prompted for relaxation of some attribute. An AV pair with 
high priority will be less likely to be relaxed. The knowledge of the UM is 
essentially composed of counters initialised at 0 and incremented each time a 
value is provided for a given attribute. This will enable the UM to supply new 
AV pairs when mixed-initiative behaviour is provided (and not to provide 
already supplied values) and to react to unsatisfactory behaviour of the 
system.  

Goal Know. 
Att. Val. Prior. Count 
g1 1

iv  p1 k1

g2 2
jv  p2 k2

M  M  M  M  
gn n

mv  pn kn

Table 2: UM’s goal and knowledge representation 

The probabilities then become: 

• Probabilities associated with responses to greeting:  

- P(n|Greeting, g) is the probability to provide n AV pairs in a 
single utterance when the greeting message is prompted 
according to the goal g.  
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- P(A|kt, g) is the prior probability distribution of attributes given 

the knowledge at time t of the UM about the history and its goal. 
It is modified by the knowledge since already provided attributes 
(kα> 0) see their probability decreasing. 

- P(V|A, g) is the probability distribution of values of each attribute 
in A given the goal. The probability of providing values 
appearing in the goal is maximal while assessing non-null 
values to other probabilities can simulate lack of 
cooperativeness.  

• Probabilities associated with responses to constraining questions:  

- P(uα| sβ, kt, g) is the probability of the user to provide a value for 
attribute uα when prompted for attribute sβ. Here again the 
knowledge and the goal will determine which value will be 
provided.  

- P(n| sβ) is the probability of the user to provide n unsolicited AV 
pairs when prompted for attribute sβ. Attribute will be provided 
according to P(A|kt, g) which means that the probability of 
providing attributes that have not yet been provided can be set 
to higher values since the knowledge of the user conditions the 
probability.  

• Probabilities associated with responses to relaxation prompts:  

- P(yes| sβ, kt, g) = 1- P(no| sβ, kt, g) is the probability of the user 
to accept the relaxation of attribute sβ. Priorities associated to AV 
pairs in the user’s goal will modify the probability of certain 
attributes to be relaxed when asked for.  

• Probabilities associated to user’s satisfaction:  

- P(close| sβ, kt, g) is the probability to close the dialogue session 
before the natural end when asked for the argument sβ because 
of unsatisfactory behaviour of the system, for example when the 
counter of kβ associated to the attribute sβ is over a given 
threshold.  

At the opposite of the previous described model, the mean length of a 
dialogue is now a function of user’s goal (and thus of the task structure), 
knowledge and degree of cooperativeness, but not of the number of possible 
values that can be taken by each of the arguments. The model can be 
learned or handcrafted. Indeed, even if the number of probabilities is larger 
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than in the previous model, they can be assessed a priori by using a set of 
rules if no data is available: 

• The probability P(uα| sβ, kt, g) is set to a high value for uα = sβ and 
non-null values can be assigned to other values to simulate the lack 
of cooperativeness. 

• P(A|kt, g) is conditioned on the knowledge and already provided 
attributes (kα

 > 0) have lower probabilities. Moreover, the priority of 
an attribute increases it probability to be provided.  

• P(V|A, g) is maximal for the value appearing in the goal for the 
attribute while assessing non-null values to other probabilities can 
simulate lack of cooperativeness (a special care must be take to 
ensure that the sum of the probabilities is equal to 1). 

• P(yes| sβ, kt, g) is assessed according to the priority of the attribute: 
the higher the priority, the lower the probability to relax it.  

• The probability P(close| sβ, kt, g) to close the dialogue when asked 
for the attribute sβ is based on a threshold for kβ.  

The generated dialogues are consistent according to the goal and infinite 
dialogues are impossible if the probability P(close| sβ, kt, g) is non null for all 
values of sβ.  

Moreover, the specification of the goal as a set of AV pairs enables the 
measure of the task completion. For example, in the case of a form filling 
dialogue or a voice-enabled interface for database querying, the system can 
access the AV pairs transmitted from the UM to itself and then compare them. 
The kappa coefficient described in section 2.4.5 can be used for task 
completion measure, for instance.  

The task completion measure can condition the user satisfaction, but 
unsatisfactory behaviour of the system, leading to a dialogue prematurely 
closed by the user can also lead to a decreased satisfaction. Thus, this model 
also allows a simple modelling of user satisfaction.  

5.2.1.1. Application 
Although this model is still very simple, it has been tested on a database 
querying system simulating an automatic computer dealing system like 
described in [Pietquin & Renals, 2002] and provided good results in the 
framework of strategy learning. In this experiment, the database contained 
350 different computer configurations split into 2 tables (for notebooks and 
desktops) containing 5 fields each: pc_mac (pc or mac), processor_type, 
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processor_speed, ram_size, hdd_size. To demonstrate this UM behaviour, it 
can be connected to a simple SDS that can perform 6 generic actions: 
greeting, constraining questions (const(arg)), confirmation (conf(arg)), 
relaxation queries rel(arg), database queries (dbquery), close the dialogue 
(close). Each argument (arg) may be the table’s type (notebook or desktop) 
or one of the 5 table fields.  

In order to demonstrate the user’s behaviour, a random SDS strategy is 
chosen. That is the system is only constrained to start with the greeting 
prompt and subsequently chose any other action with the same probability. 
Notice that the system did not enter into a negotiation phase in order to 
conclude the selling but retrieves a computer corresponding to the user’s 
request in the database and provides information about the brand and the 
price of the selected product.  

In this framework, the UM’s goal can be described as in Table 3. 

Goal Know. 

Att. Val. Prior. Count 

notebook_desktop ‘desktop’ high k1 = 0 
pc_mac ‘PC’ high k2 = 0 
processor_type ‘Pentium’ high k3 = 0 
processor_speed 800 low k4 = 0 
ram_size 128 low k5 = 0 
hdd_size 20 low k6 = 0 

Table 3: UM’s goal in the computer dealing task 

The threshold for counts is set at 3 (that means that the after having provided 
the value for an attribute and confirmed it, the UM considers that this piece of 
information should not be asked again). Once again, the communication 
canal is supposed to be perfect and the understanding process as well. A 
typical problematic dialogue is shown in Table 4. 

 Intentions k Expanded Intentions 
sys0 AS = greeting  Hello! How may I help you? 

u0
u1 = note_desk 
v1 = ‘desktop’ k1 = 1 I’d like to buy a desktop computer. 

sys1 AS = const(pc_mac)  Would you prefer a PC or a Mac? 

u1
u 1 = pc_mac 
v1 = ‘PC’ k2 = 1 I’d prefer a PC. 

sys2 AS = rel(note_desk)  Don’t you prefer a laptop? 
u2 u 1 = rel  No. 
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v1 = false (p = high) 

sys3 AS = conf(pc_mac)  Can you confirm you want a PC? 

u3
u 1 = conf 
v1 = true k2 = 2 Yes, I want a PC 

… … … … 
… … … … 
sysi AS = const(pc_mac)  Would you prefer a PC or a Mac? 

ui
u 1 = close 
v1 = true k2 = 3 Ok, bye! (hang off) 

Table 4: A problematic dialogue with the goal-directed UM 

This example illustrates two main points of the goal-directed model. First, a 
relaxation query is denied according to the goal priority of the attribute that 
was asked for relaxation. Second, the user closes the dialogue because the 
system behaved very badly. The update of the user’s counts is also shown. 

5.3. Bayesian Approach to User Modelling 
The model described in the preceding section is based on a set of conditional 
probabilities. These probabilities are conditioned by the knowledge of the UM 
and by its goal. The goal representation and consequently the probability set 
is a function of the task structure. It has also been assumed that some 
intuitive rules can be used to assess a priori values for the probabilities while 
they could also be learned from a corpus of data obtained by releasing the 
SDS to a group of testing users.  

After having enumerated all those features, it seems natural to implement a 
user model using the Bayesian Networks (BN) framework. Indeed, a BN 
graphically encodes conditional probabilities according to prior knowledge of 
the task and allows for parameters and dependencies learning starting from 
prior estimates. Moreover, since it is a graphical model, it is also suitable for 
easy analysis and design by novices. Using BN for user modelling has already 
been realised in very few recent researches and mainly for goal inferring or 
knowledge representation like in [Horvitz et al, 1998] or in [Meng et al, 2000]. 
Here, it is proposed to use the BN framework for simulation purpose. 

5.3.1. Network Structure 
Designing a BN starts by the assessment of the topology and particularly by 
the enumeration of stochastic variables that will be represented by nodes in 
the network. In the case of the UM, variables are grouped in several sets: 

• UM output variables: 
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- The set of the k attributes transmitted by the UM’s utterance ut. 

This set will be denoted . { } AU ⊂= =α
α k

1u

- The set of k values associated to transmitted attributes. This set 
will be denoted V. 

- A Boolean variable indicating whether the UM closes the 
dialogue session. It will be denoted ‘close’ = {0,1}. 

• UM internal variables:  

- The set of knowledge variables. In the case of simple counts like 
in the preceding example, K = {kα}. 

- The set of goal variables including AV pairs contained in the UM 
goal and the optional priorities: G = {[aα, α

i ], pv α} 

• UM input variables (also system’s output variables):  

- The type of system’s action AS. The allowed types can be 
constraining questions, relaxing prompts, greeting prompt,…  

- The attributes concerned by the system’s action: S = { sβ}. For 
example, a constraining question is concerned by one particular 
attribute and a relaxation prompt as well. 

In order to enable the UM to act correctly when prompted for relaxation or 
confirmation, the set of possible attributes U and the set of possible values V 
are extended. New attributes are added with Boolean values: 

{ } { } { }
{ } { } { }1,0        1,0         v

rcuU
rc

i ===

∪∪=
αααα

ααα

VVV
(5.4) 

Once the variables have been defined, the topology of the network must be 
identified. To do so, the conditional dependencies among variables are used: 

• The system’s action AS and the associated attributes S are 
independent variables. Thus, the associated nodes have no parent. 

• If assertion prompts are possible system’s action, then they can 
update the knowledge of the user in the framework of a collaborative 
dialogue. Thus, there is an arc going from node AS to node K and 
another arc going from S to node K. 

• The goal is considered as independent of external events. This 
means that the user doesn’t change its goal during the interaction or 
if it does, it is not done immediately after having heard a system’s 
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prompt but according to a change in its knowledge. Thus, there is no 
arc going from AS or S to G. Yet, there is an arc going from K to G.  

• The decision to close the dialogue is taken when an unsatisfactory 
system’s behaviour is detected. It is then conditioned by the action of 
the system and its attributes. It is also conditioned by the knowledge 
of the user that keeps trace of the history of the interaction. Arcs are 
then drawn from nodes AS, S and K  to the node ‘close’.  

• The attributes U included in the user’s utterance are of course 
conditioned by the system’s action AS and the included attributes S 
and by the user’s goal but also by the user’s knowledge since, when 
simulating a mixed-initiative behaviour, the already provided 
attributes have a lower probability to be provided again. Arcs are 
then drawn from G, S, K and AS to U.  

• The value provided by the UM for a given attribute should be 
consistent according to the predefined goal, thus an arc is drawn 
from G to V in addition to the one drawn from U.  

U

K

S

close

As

V

G

 
Fig. 29: A BN-based user model 

The resulting network is shown on Fig. 29. On this figure, dark grey circles 
represent the output variables, light grey circles represent internal variables 
and empty circles represent external variables (system’s outputs).  
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Of course, it is possible to enumerate all the possible states of each set of 
variables. Yet, each state is defined by a given configuration of individual 
variables that can take only discrete values. Thus, it is natural to think about 
replacing each node of the graph shown on Fig. 29 by a factored 
representation. This means that to each state variable will be affected a node. 
For instance, let’s consider the simple example of an application dedicated to 
fill-in a form containing only two slots (s1 and s2). The system can perform 
four types of actions: greeting, constraining questions, confirmations and 
closing the dialogue. To simplify, the user’s goal and knowledge only include 
AV pairs and counts (no priority): 

Goal Know. 
Att. Val. Count 

g1 v1 k1

g2 v2 k2

Table 5: UM’s goal for a simple form-filling application 

The factored representation of the UM for this application is shown on Fig. 30. 
Notice that the ci (vci) nodes denote the attributes (values) of the user’s 
utterance relative to a confirmation. This factored network can be easily 
generated from the task’s structure.  

U

K

S

AS:
{Greet,

const,conf

close

Close}

V

G

k1k1 k2k2

u1u1 u2u2 c1c1 c2c2

vv1vv1 vv2vv2 vc1vc1 vc2vc2

g1g1

g2g2

gv1
gv1

gv2gv2

s1s1 s2s2

 
Fig. 30: Factored representation of the Bayesian UM 
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• 

 by the system,  

ither 
explicitly or for confirmation. 

 the factored BN is very connected, there are a lot of parameters to set 
 an estimate of the factored representation can 

ce  from a small set of parameters: 

The number of possible attributes (here, the number of slots in the 
form) 

• The number of generic actions that can be performed by the system 
(for example ‘constraining question’ is a generic action) 

The number of actions that can be affected by attr
example, the greeting is not affected by attributes while the 
constraining questions are). 

Some knowledge about t
each attribute etc.  

cture can then be automatically built by following the next steps: 

Create one node for system’s actions (AS). T
many values as there are possible generic actions. 

Create one node for each attribute that
i(s  Each of these nodes can take only a binary value ind

whether or not the attribute affects the current action.  

Create one node for each attribute that can be a part of the UM’s goal 
 Each of these n

whether or not the attribute is present in the user’s goal.  

ate a value node (gv ) for eaci
Each of these nodes can take as many values as there are possible 
values for each attribute.  

Create a priority node (pi) for each attribute present in the UM’s goal. 
Each of these nodes can take as many values that there are 
possible lev
the granularity of priorities can be increased). 

Create a counter node (ki) for each attribute present in the UM’s goal. 
This node can take 3 different values:  

- low  if the attribute has never been asked

- medium if the attribute has already been asked but a reasonable 
number of time, 

- high if the attribute has been asked to many times e
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• Create utterance attribute nodes (ui, ci,…) for each attribute that can 

be recognised by the SDS (generally the same as the attributes that 
can affect SDS’s actions). Each node can only take binary values 

i i

e are 2 

ibute). 

The con

• ction node AS to all the utterance 

• om each system’s action attribute node (s ) to each 
i i

•  

• 

• 

• 

• 
ny-to-

indicating whether or not the attribute is present in the user’s 
utterance.  

• Create utterance value nodes (vv , cv , …) for each utterance 
attribute node. Here, values are different for each node since they 
are dependent of the system’s action (for confirmation ther
possible values while for constraining questions there are as many 
values than possible for the asked attr

• Create a ‘close’ node taking binary values and indicating whether the 
user might close the dialogue or not. 

nections between those nodes can also be drawn automatically: 

Draw edges from the system’s a
i iattribute nodes (u , c ,…) since it obviously conditions the user’s 

utterance: ‘1-to-many’ connection. 

• Draw an edge from the system’s action node AS to the ‘close’ node: 
‘1-to-1’ connection. 

Draw edges fr i

user’s utterance node (u , c ,…): ‘many-to-many’ connection. 

Draw edges from each system’s action attribute node (si) to the
‘close’ node: ‘many-to-1’ connection. 

Draw edges from each knowledge node (ki) to each user’s utterance 
attribute node ((ui, ci,…). There is an edge from ki to uj with i ≠ j to 
have the possibility to simulate the fact that an attribute might not be 
given by the user if another has not been asked before (ui = 0 if kj = 
low): ‘many-to-many’ connection. 

Draw edges from each knowledge node (ki) to the ‘close’ node: 
‘many-to-1’ connection. 

Draw an edge from each goal’s attribute node (ai) to its 
corresponding user’s utterance attribute node (ui): ‘1-to-
1’connection. 

• Draw an edge from each user’s utterance attribute node (ui) to its 
corresponding user’s utterance value node (vvi): ‘1-to-1’connection. 

Draw an edge from each user’s goal value node (gvi) to all the 
corresponding user’s utterance value nodes (vvi, cvi, …): ‘ma

 
140



A Framework for Unsupervised Learning of Dialogue Strategies       

   
many’ connection. This appears to assume independency between 
values of the user’s utterance but not really. Actually, if there was a 

 vvj (with i ≠ j) that would be because 
en vi and vj. An edge should then be 

demanding as 

Although
easily de f

5.3.2. 
There a
purpose sess them thanks to prior knowledge. 
A fir e
previous ted model. Using this model with the computer retailing 
SDS, a data 
this d

Several conclusion
of the r

• The probability of closing the dialogue P(close | AS, s1,…sn, k1,…, kn) 
in the BN model is equal to P(close| sβ, kt, g) in the previous model. 
For example, if si equals 1 and ki = high the probability is maximum 
whatever the other variables.  

• The user’s goal attributes and values are equally probable as well as 
priorities.  

• The probabilities of the user’s utterance values P(vvi | ui, vi) are 
equal to P(V|A, g) in the previous model.  

dependence between vvi and
there is a dependency betwe
drawn between vi and vj but not between vvi and vvj. For example, in 
the train ticket booking example, an arc could be drawn between the 
dest and the dep variables indicating that the probability P(dest = vi, 
dep = vj) = 0 for i = j. Yet, this is very task- dependent and actually 
reflects the task structure. It should then be derived by other means 
than a priori rules.  

• Draw an edge from each priority (pi) to each corresponding user’s 
utterance value nodes that suppose a modification of the goal (for 
example, relaxing an argument suppose to be less 
originally described in the goal): ‘many-to-many’ connection.   

 this structure can be enhanced like will be explained later, it is 
rived rom a small set of parameters. 

Network Parameters 
re several methods for assessing the parameters. Anyway, the 
 here is first to find a way to as

st xperiment has been done for deriving those parameters from the 
 goal direc

set has been generated and the parameters where learned from 
ata set.  

s could be drawn from this experiment. For instance, some 
 p obabilities are equals to those of the previous model: 

• The probability P(ui  = 1 | AS, s1,…, si = 1, sn, k1,…, kn, g1, …,gn) in 
the BN equals the probability P(uα| sβ, kt, g) of the previous model for 
ui = uα and sβ = sj. This is obviously not surprising.  
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• The probabilities for confirmation and relaxing are also equals.  

Yet some probabilities have been replaced. It is interesting to see that mixed-
initiative is easier to compute within the BN framework since the probability of 
each attribute to be present P(ui = 1) in the user’s utterance can be inferred 
without using P(n | sβ, kt, g) and P(A).  

U

K

SAs

close G

V

I

C

 
Fig. 31: Bayesian model for cooperativeness and intiative 

Thus, learning parameters from the previous model is a method for assessing 
the parameters of the BN model but since lots of parameters are equal, it is 
natural to assess them directly. Yet, mixed-initiative should be simulated by 
assessing values for probabilities of the form P(ui = ai | As, s1,…, sj = 1, n

1
s , 

k ,…, k
coopera
(Fig. 31)  will 
prov  
as a
values co

• The probability to provide the value contained in the goal is given by:   
1 i n

n, a1, …,an) where i ≠ j. To model the initiative and the 
tiveness of the user, it is proposed to add two nodes to the network 
. A node C will give a degree of cooperativeness while a node I

ide information about the degree of initiative (that can also be considered 
 level of expertise) for the user. Each node can take a finite number of 

mprised between 0 and 1 and will affect probabilities like follows: 
• The probability P(ui = 1| As, s1,…, si = 0, sn, k1,…, kn, a1, …,an, I)  of 

providing an non-requested argument is equal to I. Thus, the higher 
is I the higher is the initiative (or the level of expertise) of the UM. 

P(vvi = vi | u , …, u  = 1, u , vg1, …, vgi = vi, C = c) = 1 – c          (5.5) 

 
142



A Framework for Unsupervised Learning of Dialogue Strategies       

   
• The probability to give another value than the one contained in the 

goal is giver by:  

V
cP(vvi = vi | u1, …, ui = 1, un, vg1, …, vgi = vj, C = c) =  (with i ≠ j).  

5.3.3. Enhancing the Structure 
Until now, the task’s structure has not been used to model the user. Yet, 
several studies showed that a task-oriented dialogue often follows the same 
structure than the task itself. In the previous cases, it was supposed that each 
goal variable was independent from others. This is not always the case and 
dependencies among goal variables might modify the user’s behaviour. Then, 
the task’s structure can be encoded in the user’s goal structure (Fig. 32) 

(5.6) 

Moreover, the level of initiative (or expertise) is used to set the level in the 
counts above which it is considered that the argument has been ask to many 
times. For example, for I = 1, the level is 1 (a very expert user only accept to 
be asked once for an argument) and for I = 0, the level is unlimited. 

a1a1

a2a2

anan

G

gv1
gv1

gv2
gv2

gv2
gv2

…

…

 
Fig. 32: Structured Goal 

For instance, like already explained, in the train ticket booking example 
described in the beginning of section 5.2, the value affected to the goal 
attribute variable ‘dest’ exclude this value for the goal attribute variable ‘dep’. 
An arc should be drawn between the gvdest and the gvdep variables. This kind 
of dependencies can be learned from some database representing the task 
for example. A learning algorithm has been used on the computer retailing 
database and it has been learned for example that the hard drive size, the 
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ram size and the processor frequency are causes of the price but it can be 
introduced by the designer that the choice of a Mac excludes the value 
‘Pentium III’ for the processor type. Complex structure learning is 
nevertheless very demanding in data and is not always easy to realise. Yet, it 
can also be assessed by hand since it is reasonable to think that the designer 

es are related to each other.  

 previous model, a very 
simple way to model user satisfaction by measuring task completion was 
exposed. Here it is proposed to introduce the user satisfaction in the BN 
framework. It is natural to think that the user satisfaction (US) will be 

of a dialogue can tell if some valu

On another hand, edges drawn between user’s goal attributes (gi) represent 
implication of attributes by others or exclusion of attributes by others. That 
means that sometimes, an attribute needs another attribute. This can also be 
learned from corpus of dialogues like explain in [Meng et al, 1999] or 
handcrafted like proposed in [Wai et al, 2001]. These dependencies are also 
encoded in the arcs drawn between nodes ki to uj with i ≠ j. 

5.3.4. User Satisfaction 
User satisfaction is very difficult to model. Yet, in the

dependent of the history of the dialogue session contained in K, of the user’s 
level of expertise represented by I, the difference between the obtained 
results R and the initial goal variables G and some subjective metrics M 
about the SDS performance like the length of the dialogue or quality of the TTS 
system. These dependencies are shown on Fig. 33.  

U

K

SAs

close

V

G

I

C Us

R M

 
Fig. 33: Complete Bayesian UM 
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Of co
Yet, an 
few disc e parents and defining some range of the 
user t

•  an expected baseline history is 

not equal (in the 

n be done for artificially generated configurations of the 
hen classified according to the possible 

e softened thanks to a probability distribution 

on surveys have been used 
to compute a an v ks t e ra g of several 
subjective ev n  th S performance, the ease of task etc.). No 
particular weight is associated to each subjective evaluation, since it is not 

urse, it is not easy to assess the parameters of this part of the network. 
estimate of US can be obtained if it is assumed that it can only take 
rete values depending on th

sa isfaction. A real number is computed according to the following steps: 

According to the level of expertise,
derived. This means that the higher is the level, the more the 
expected history should contain variables set to low. The actual 
history is then compared to the expected one. Typically, a numerical 
weight is associated to each possible value of the ki variables and 
the distance between the actual history and the expected one is 
computed. This distance is then subtracted to US. 

• The result of the interaction is compared with the actual goal and a 
fixed negative number is subtracted to US if it is 
case of the train ticket booking, attributes are compared between the 
ticket and the goal, for instance). One could also use the kappa 
coefficient described in section 2.4.5.  

• According to the user’s expertise level, an expected number of turns 
is derived (for example, lower than the number of arguments for an 
expert user that would prefer mixed-initiative) and this number is 
deduced from the actual number of turns. The result is deduced from 
US. 

• Other subjective metrics can be used like the quality of the TTS 
system measured on a discrete scale. Those metrics has to be 
measured with real users.  

• The satisfaction is obviously set to its minimal value if the UM closed 
the dialogue before its natural end. 

This computation ca
input values. The obtained US are t
ranges. This classification can b
over the ranges (overlapping gaussian distribution for example) and the 
parameters relating the inputs to the output US can then be estimated. Notice 
that by using the ki parameters, this method implicitly makes use of the 
number of repeated arguments, the number of confirmation. Moreover the 
expected history represents the ideal strategy for the user.  

The ranking of the US value is motivated by the fact that in previous 
researches like [Walker et al, 2000] user satisfacti

 me alue for satisfaction than o th nkin
aluatio  (like e TT

 
145



A Framework for Unsupervised Learning of Dialogue Strategies       

   
clear which are mor searches [Sneele & 

an overall ranking.  

5.3.5. Example

 of the user to 

e important. Moreover, recent re
Waals, 2003] reported that adding an overall ranking statement in the 
satisfaction survey conducted to better results in terms of satisfaction 
prediction by means of objective measures obtained during the dialogue 
session. Thus, a single value for the overall dialogue session evaluation 
seems to be good enough. After all, using several rankings and average them 
to obtain an evaluation of the overall performance of the dialogue system 
makes assumptions about the importance of each ranking. It is natural to 
think that the user himself better re se assumptions when asked for alises the

 of Use 
In the preceding paragraphs, the structure and the parameters of a Bayesian 
UM were described. Yet, it might not be clear how to use it for simulation 
purposes. Let’s consider the network of Fig. 30 and state that the UM is 
completely cooperative (C = 0) and that it is not an expert at all (I = 0). The 
user’s goal is depicted on Table 5. Let’s simulate the answer
the greeting when the dialogue starts. The following evidence is therefore 
inserted into the inference engine of the network: 

As k1 k2 a1 a2 gv1 gv2
greet low low 1 1 v1 v2

Table 6: Evidence for greeting action 

From this, the inference engine produces probabilities P(u1=1), P(u2=1), 
1 2P(c =1), P(c =1) and P(close=1) and their complements. According to those 

probabilities, it is firstly decided whether to close or not (the UM randomly 
choose a real number between 0 and 1, if it is lower than P(close = 1), the 
dialogue is closed). If it is not closed, the same process is done for choosing 

osing that u1 is s
e is then processed: 

arguments present in the user’s utterance. Supp elected to 
be present in the utterance, the following evidenc

u1 u2 gv1 gv2
1 0 v1 v2

Table 7: Evidence for finding out values 

ted all along the dialogue 

the probabilities encoded in the network and does not use a threshold applied 

Inference hopefully produces a null probability for all values of vv2 but a 
maximum probability of 1 for the value vv1 = gv1 = v1 since the user is 
supposed to be cooperative. This process is repea
to simulate user’s utterances. Of course, using probabilities set to 1 and 0 
everywhere in the network is useless and should be avoided.  

It should be noticed that this method produces user utterances according to 
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on the probabilities to state whether or not a given attribute should be uttered. 
It can then produce a variety of different utterances for the same parameters 

 a same group and modelled by a same BN.  

More e mission of empty utterances that 
migh l
or didn’t ear 

Usin t

and the same evidence as far as non-null probabilities are affected to each 
attribute given the evidence. This models inter-variability between users 
belonging to

ov r, this model also allows for the e
t a so occur in real dialogues either because the user didn’t understand 

the system’s query or prompt.  

(g his method, the desired probability )tttt n,s,sys,g|uP  for user 
mode

This a models has 
lots p  by using a 
smal  s

esign. Moreover, the following chapters will demonstrate that the 

: 

• The number of possible attributes. 

• The number of generic actions that can be performed by the system.  

• The actions that can be affected by attributes.  

• The possible values for each attribute.  

• The level for the counts associated to each value of the expertise 
level.  

Some other parameters might be provided for user satisfaction computation:  

• The expected history profile for each level of expertise.  

• The expected length or the dialogue for each level of expertise.  

By using random values for the level of expertise and the cooperativeness, 
this model can generate a large amount of different dialogues. On another 

lling described in (4.17) can be computed. 

5.4. Conclusion 
ch pter described several parametric UMs. Each of these 

of arameters that can be learnt from data or handcrafted
ler et of parameters and some simple rules.  

Since the BN framework is suitable for combining prior knowledge about task 
structure and user’s behaviour with parameter learning capabilities, it seemed 
to be a very good candidate for user modelling in the framework of SDS 
prototype d
Bayesian UM can be used in other very useful ways.  

A simple set of parameters can be used to generate a Bayesian UM for a 
given task
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hand, fixing those values allows to generate dialogues for a given population 
of users.  

This model can also supply a metric usable for dialogue evaluation since it 
computes a rough estimate of user satisfaction according to evaluation of the 
strategy. 
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Chapter 6: Input and Output Processing 
Simulation 

6.1. Input Processing Simulation 
Section 2.3 described the general architecture of an SDS and the different 
subsystems composing the input processing part of the system Fig. 34, 
namely the ASR subsystem (translating acoustic speech signal or its 
representation ut into a word sequence wt = {wt,1,…,wt,N}) and the NLU 
subsystem (creating a mapping between the word sequence wt and a 
sequence of concepts leading to observation ot).  

Input
Processing

NLU

ASR

wt

ut + nt

ot  
Fig. 34: Inputs processing subsystems 

Since ’ term 
of exp  as: 

 the ASR process is a maximisation process, the ‘input processing
ression (4.17) can be expressed

( ) ( )
(6.1) 

(
444 3444 21 ttt,uttt

Processing Inputs

ttt,utt n,s,a,u|,oP maxn,s,a,u|oP
t

w
w

) ( )
4444 34444 21444 3444 21

NLU

ttt,uttt

ASR

ttt,utt n,s,a,u,|oPn,s,a,u|P max
t

ww
w

⋅=

=
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Assuming that the NLU process does not depend on the user’s utterance (but 
on the recognised word sequence) and the noise, last expression can be 
written as follow: 

(6.2) ( ) ( ) ( )
444 3444 21444 3444 21444 3444 21 tt,utt

ASR

ttt,utt

Processing Inputs

ttt,utt s,a,|oPn,s,a,u|P maxn,s,a,u|oP
t

ww
w

NLU

⋅=

The remainder of this section describes methods to approximate the two 
terms of expression (6.2), though it mainly focuses on the first term. It gi
data-driven but not corpus-based approach. 

6.1.1. ASR System Model 
first term

 of words 

odel of an ASR system should thus provide a good prediction 
of error occurrences.  

ves a 

The  of expression (6.2) expresses the conventional speech 
recognition problem of translating a user utterance ut in a sequence
wt belonging to the set of all possible sequences W = {wi}. As explained in 
section 2.3.1, the ASR process is statistical process during which errors can 
occur. A good m

w i

noisenoise
S

ASR wh

 
Fig. 35: High-level view of the ASR process  

 process can roughly be described as on Fig. 35 were the user 
the intended word sequence w

The ASR
speaks 
signal S
hypothes  wh has been uttered. Of course there are 
man
and inte
from wi 
result in hypothesis and the mapping from S 

ons, deletions or 

i by producing the acoustic speech 
. The ASR system then decodes the acoustic signal and produces the 
is that the word sequence

y acoustic representations of a given word sequence because of intra- 
r-speaker variability but also because of noise. Thus, the mapping 
to S is one-to many. On another hand, several speech signals will 
a same decoded word sequence 

to wh is then many-to-one.  

Given this high-level representation of the ASR process, an ASR error occurs 
when wi is different of wh. Typical errors are inserti
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substitutions in the resulting word sequence. Each error can then be 
considered as a confusion Cij between a sequence wi = {wi1,…, win} actually 
uttered and a sequence wj = {wj1,…, wjm} with: 

• n < m if a deletion occurred, 

• m > n if an insertion occurred,  

• m = n and there is a non empty set of indices L = {l} for which wil ≠ wjl 
if a substitution occurred. 

In equation (6.2), the term associated with the ASR process is conditioned by 
the noise. Including directly noise models in the estimation process is not 
straightforward at all. Anyway, one can easily understand that noise addition 
will result in additional confusions n

ijC  (confusion between sequence wi and wj 
because of noise). Thus, let’s write the probability of observing the word 
sequence wk at time t given the noise by: 

( ) ( ) ( )n

kj
tttjttjkttttkt s,a,u|Pn|CPn,s,a,u|P wwww =⋅== ∑

(6.3) 

with ( )t
n
jk n|CP  being the probability of observing the word sequence wk when 

the word sequence w  would have been recognised without 

( ) ( )tttkt
kj

t
n
jk s,a,u|Pn|CP1 ww =⋅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+ ∑

≠

≠

j noise.  

The term associated to pure ASR process without noise can then be 
expressed as: 

likelihood of utterance ut given the word 

(6.4) 

And the ASR problem is to maximise this expression. Comparing this 
expression to equation (2.4), one can see that:  

( ) ( ) ( )
( )ttt

ttttt
tttt s,a|uP

s,a|P|uP
s,a,u|P

ww
w

⋅
=

• P(ut | wt ) is the acoustic 
sequence wt (acoustic model).  

• P(wt | at, st ) is the Language Model (LM). It is a particular feature of 
SDSs to include a dependence on the action and state to the 
probability of occurrence of a given word sequence. Indeed, the LM 
can be changed at each turn in an SDS, making it highly context-
dependent in order to increase ASR performance. As said in section 
2.3.1, the LM can be provided as an FSG, which can be handcrafted 
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for each context, limiting valid word sequences to only a certain 
number at a given turn t. 

• The term P(ut | at, st ) supposes that the a priori user’s utterance is 
conditioned by the context (at, st), as the system’s doesn’t know the 
interpretation of it’s utterance syst by the user and the user’s goal. All 
utterances are equally probable. 

Even without noise, speech recognition is an error prone process. Thus, there 
exist confusions between word sequences S

ijC  (confusion between sequence 
wi and wj because of the system) due to the system itself.  

Several proposals for ASR error modelling in the framework of SDS design 

to account the context but error probabilities are extracted 
from a corpus. If LMs are modified after the data collection for example
error model needs to be updated by a new data collection. 

l to 
think that the larger the allowed vocabulary is, the higher the error ra
Then the probability of occurrence of an ASR error εt is defined by: 

exist in the literature but this problem is generally considered as a side-
problem. For example, the dialogue simulation proposed in [Levin et al, 2000] 
doesn’t take ASR errors into account. In [Hone & Baber, 1995], the ASR errors 
are modelled by a fixed substitution error rate. A more complex error 
modelling method is proposed in [Scheffler & Young, 1999]. Errors are 
modelled taking in

, the 

Making the error model context-dependent is relevant since the ASR process 
is context-dependent according to expression (6.4). The dependence to the 
context is embedded in the LM, thus it is reasonable to think that the errors 
occurring during the ASR process are related to the LM’s properties (as it 
defines the set of possible word sequences). For instance, it is natura

te is. 

(6.5) 

However, the purpose of the simulation environment is to generate a set of 
dialogues having the same statistical properties than a dialogue corpus 
obtain by releasing the SDS to human users. Thus, only the following 
expression is of interest: 

(6.6) ( ) ( )
( )

( ) ( )tttt
s,au

ttttttt LMPs,a|Ps,a|uPs,a,u|P
ttt

ε=ε=⋅ε∑

( )tttt s,a,u|P ε

In this equation, LMt is the language model used at time t and Pε(LMt) is the 
probability of occurrence of an ASR error when using LMt. The remainder of 
this section is dedicated to the estimation of the probability P(εt | at,st) of 
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occurrence of an ASR error in a given action-state configuration (thus using a 
given LM) and to the estimation of some metrics an ASR system can supply.  

6.1.1.1. Task Classification 
In a first attempt to adapt ASR error modelling to the LM, it is proposed to 
distinguish several recognition tasks for which specific LMs are associated. 
Indeed the ASR system can be used to recognise Booleans, digits, numbers, 
dates, isolated words, connected words, unrestricted continuous speech, etc. 
For each of those tasks, the recognition performances can be expressed with 
a set of parameters. All the parameters are estimated by collecting data 
covering efficiently the given task. Each recognition task will be denoted T. It 
is important to notice that recognition tasks are not related to the SDS task 
thus the data collection is not relying on a release of the SDS. It is obvious for 
Booleans, digits, numbers or date tasks, which are of course recognition 
tasks that can be found in any SDS task. But it is not obvious for isolated 
words, connected words or unrestricted continuous speech. Indeed, 
vocabularies and LM for those tasks can be very different but the following 
discussion assumes that an average value for each parameter can be 
obtained for each task by performing measures on several different test sets 
representative of the studied task. It is a strong assumption but relative 
performance of tasks are more important than their absolute real 

(6.7) 

erforming |ASR tests|T recognition 
tests for the particular task T.  This value is an estimate of the probability of 
occurrence of an ASR error for the recognition task Tt at time t.  

(6.8) 

When running recognition tests for each particular task, metrics provided by 
the ASR systems can also be measured and probability distributions of the 
metrics can be estimated. For example, the Confidence Level (CL) is such a 

performance in the point of view of simulation for SDS evaluation and strategy 
learning. 

In the framework of the pure simulation process, the first interesting 
parameter is the Word Error Rate (WER). The WER is very popular as a method 
for rating speech recognition performance and as a measure of goodness of 
LMs. It is a percentage and for a particular task T the word error rate WERT is 
defined as follow: 

% 100×
tests ASR

IDS
WER

++

In equation (6.7), ST, DT and IT are namely the numbers of substitutions, 
deletions and insertions observed when p

= TTT
T

( ) ( ) ( )

T

100
WER

PLMPs,a|P ttttt
TT ≈==ε εε

 
153



A Framework for Unsupervised Learning of Dialogue Strategies       

   
metric. The CL is a real number between 0 and 1, based on acoustic 
measurements and defining how sure the system is to have performed a 
good recognition [Williams & Renals 1997]. Its distribution is composed of two 
distinct curves (as shown on Fig. 36) respectively for good and bad 
recognition results. As those curves cover each other, it is unavoidable to 
reject some well-recognised utterances as well as to accept few bad 
recognition results by defining a single CL threshold. 

The Fig. 36 represents a CL distribution obtained from a real ASR system, for 
the ‘isolated words’ recognition task obtained according to the method 
described in [Mengusoglu & Ris, 2001]. These results are rather optimistic as 
they were obtained in optimal conditions (no noise etc.) and the curves would 
flatten in real running conditions. Since the simulation environment aims at 
comparing SDSs or different implementations of a given SDS, absolute 
individual results are not so important as soon as relative differences 
between values obtained for different tasks are kept.  

 
Fig. 36: Confidence Level distribution for good and bad recognitions 

The input of the ASR model is the message coming from the user model. This 
message is a set of AV pairs standing for its intentions. In this ASR model, it 
will be assumed that recognition errors only affect values of the AV pairs. 
Indeed, only words occurring in a same context can be substituted with each 

ffectation of a correctly recognised value to an 

other and the resulting recognised word sequence must still be correct 
according to the LM. Errors resulting in a complete mismatch between 
attributes and values or in an a
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incorrect attribute will be considered as NLU errors as they actually should be 
detected by this subsystem. 

Considering that the empty word is part of the possible substitution values 
(this allows for deletion errors), the simulation process for this ASR model can 
be summarised by the following algorithm: 

-

The CL 
also be
task mo

{

 

}
-
-
m

and no
generat
dialogu
internal

6.1.1.
Althoug
accoun
really fo
as the d
In this s
 For e

with the "bad recognition" curve of the 
corresponding CL distribution 

 } 
  - else 

{ 
1. Transmit the current value without 

substitution (w

ach value wi of the user’s AV pair list 

vel consistent 

 
- Choose randomly a number Rt between 0 and 1 
- if Rt < Pε(Tt) // ASR error 
  { 

1. Substitute the current value wi with another 
value wk of the same nature (simulate an ASR 
error) 

2. Produce a partial confidence le

k = wi) 
2. Produce a partial confidence level according 

to the "good recognition" curve of the 
corresponding CL distribution 

} 
 
 Transmit the new value list {wk} 
 Generate a global confidence level for the list by 
ultiplying all partial confidence levels. 
can also be seen as an observation given by the ASR model and may 
 used to generate the internal state of the DM after interpretation by the 
del. Thus, it is important to produce CL according to its distribution 

ean value of the CL. Indeed, always 
hat one could think, would not produce 

t to always produce the m
ing the mean , despite wCL
es with similar statistics, as it would not result in any change in the 
 DM state and some states could not be visited. 

2. Perplexity 
h the model described in the previous section implicitly takes into 
t complexity features of some particular recognition tasks, it is not 
rmal. Moreover, its performance would more than probably decrease 
ifferences between the test and the real running conditions increase. 
ection, it is proposed to evaluate more formally the complexity of the 
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recognition task given the LM in order to estimate the WER and to generate 
more realistic confusions between word sequences. 

One very popular measure of the complexity of the speech recognition task 
according to a particular LM is the (lexical) perplexity PP of the LM [Jelinek et 
al, 1977], which is defined by: 

( ) C
C

C 1
21LMLM ,...,,PPP

−
= www (6.9) 

Here, CPP is the perplexity of the model LM measured on the data corLM pus C 
composed of the word sequence (w1, w2, …, w|C|) of length |C| and PLM(.) is the 
probability of the word sequence according to the given LM (the likelih
the model on the corpus). Perplexity can be considered to be a meas
on average how many different equally most probable words can follow any 
given word. The higher the likelihood of the model is, the lower is the 
perplexity.  

often shows poor correlation with the WER [Clarkson & 
Robinson, 1998]. Alternative methods to predict ASR performance using 
metrics purely derived from the LM were proposed [Chen et al, 1998] b
unclear what conclusion has to be drawn from results. 

There is anyway a major obstacle to use perplexity in order to compute a 
corresponding WER and to use it for simulation purpose (by using the 

find a way to predict the possible confusions among 
possible values. Here one must remember that the occurrence of a given AV 
pair in a particular state-action configuration results from the user model. 

ccurrence of a particular attribute relies on the implementation of 
er model, the occurrence of a given value only depends on the AV pairs 

contained in the user’s goal g. As said before, all goals have e
probabilities and thus, no particular value for a given attribute is 

 values are then assumed. If words have 
s to occur, the perplexity is only a function of the size of the 

vocabulary V (set of different words in the corpus) and there is no n
compute it.  

ood of 
ure of 

It is reasonable to think that the smaller the perplexity is, the better the ASR 
results will be since the set of possible words at a given point is smaller. Yet, 
the perplexity 

ut it is 

previously described algorithm, for instance). As a matter of fact, since in this 
work an ASR error is simulated as a modification of values in a set of AV pairs, 
the problem is rather to 

While the o
the us

qual 
to be 

expected. Equal probabilities among
equal probabilitie

eed to 

6.1.1.3. Acoustic Perplexity 
Perplexity has been a popular comparison measure for historical reasons 
because it allows LM research to develop in isolation from ASR research but it 
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has serious shortcoming. Indeed, the possible relationship between LM 
perplexity and WER is due to the indication it gives about the average amount 
of possible words at a given point. If it increases, the added lexical entries 

sability of words. But perplexity doesn’t 

0) 

In this expression, lh is the left context of word wh (its history) and rh is its right
context (its future). Using Bayes rule, each term of this product c

Here, wi ∈V are words composing the vocabulary of all distinct words in
corpus. One interesting conclusion can be drawn by considering th

then: 

(6.14) 

increase the average acoustic confu
take into account acoustic similarities between candidate words at a given 
point, which is of course responsible for most of ASR errors. Two alternative 
measures to pure lexical perplexity, called acoustic perplexity and synthetic 
acoustic word error rate are described in [Printz & Olsen, 2000] and give 
significant improvement in the prediction of WER. The acoustic perplexity (APP) 
is defined according to the likelihood of the LM on the joint corpus (C, S) 
where C is a text corpus containing the written word sequence (w1, w2, …, w|C|) 
and S is the acoustical realisation of C s(w1, w2, …, w|C|), that is the spoken 
version of the written text contained in C:  
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The likelihood of the model on the joint corpus can be decomposed as: 
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and finally,  

(6.15) 

eans that when all words sound exactly the same, the acoustical 
xity equals the lexical perplexity. In other words, this demonstrates 

formally that the lexical perplexity doesn’t take into account aco
confusability and that it is a big drawback since APP correlates bette

6.1.1.4. WER Prediction 

een uttered. As it relies 
on the infinite set of acoustical realisations of any word wh in any right and left 
context, this term should then be approximate in order to compute APP. Yet, 
there isn’t any existing joint corpus as large as to estimate directly these
terms by empirical methods. Considering that the ASR system studied 
framework is based on a ANN/HMM model like described in section 2.3.1, and 
that this model has been trained on a sufficiently large joint corpus (C,S),  

confusions occurring at a particular grammar state (values transmitted 
user) are of interest, from now on in this section it will be considered th

 

n of a word is independent of the previously uttered words: 

ession (4.16) is referred to as the acoustic 
encoding probability in [Printz & Olsen, 2000]. The problem is then to 
approximate the acoustic encoding probabilities for all pair of words. 
Furthermore, in order to generalise this framework, each word of the
vocabulary V will be considered as having multiple pronunciations, that is 
multiple phonetic transcriptions. The following notation will be adopted: 

( )( ) ( ) CC

C

C

C

SC ,

This m
perple

ustical 
r with 

WER.  

The word acoustic confusability is embedded in the term P(s(lh, wh, rh) | wi, lh) 
of expression (6.12). This term can be interpreted as the probability of 
decoding the word wh while the intended word wi has b

 
in this 

several methods for estimating P(s(lh, wh, rh) | wi, lh), can be investigated..  

Before going further in the investigation of possible solutions to the problem 
of acoustic confusability problem let’s define some assumptions. First, 

by the 
at the 

decoding of a word at a given grammar state is done independently of the 
surrounding spoken words. This can also be seen as the decoding of words 
surrounded by silence. Moreover, it will also be assumed that the spoken 
versio

(6.16) 
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where Φ(w) is the set of all possible phonetic transcriptions (or lexeme) for 

LM 

word w and ϕα(w) is the αth possible phonetic transcription for word w.  Each 
ϕα (w) is therefore a sequence of phonemes: 

(6.18) 

According to those notations, the acoustic encoding probability can be 
rewritten as: 
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thus, 
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When introducing this last expression in (6.12), the acoustic perplexity 
expressed by expression (6.10) can be estimated by: 
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Starting from this approximate expression of the acoustical perplexity some 
conclusions can be drawn. On one hand, let’s have a look to the 
contribution. Indeed, if one wanted to simplify the expression, one could write: 

(6.23) 

Considering that ϕβ(wh)∉ Φ(w j) ∀ j → PLM(wj | lh) ≠ 0,  that is that there is no 
homophonous word in the set of the possible words at a given grammar state, 
then: 

(6.24) 

and equation (6.22) becomes 
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(6.25) 
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The log of expression (6.25) is generally easier to compute.  

On another hand, the term P(s(ϕα(wh))| ϕβ(wi)) should be regarded as the 
probability that the acoustic realisation of the intended phoneme sequence 
ϕβ(wi) will be captured by the acoustic model Mh of the phoneme sequence 
ϕα(wh) and decoded by the ASR system as being an acoustic realisation of the 
word wh while it should be captured by the acoustic model Mi of the phoneme 
sequence ϕβ(wi) and decoded as being an acoustic realisation of the word wi.  

Remembering that the ASR system is based on the composition of sub-word 
unit generative models (HMMs), the term P(s(ϕα(wh))| ϕβ(wi)) could also be 
regarded as the probability that a model Mi encoding the sequence ϕβ(wi) will 
generate an observation sequence s(ϕβ(wh)) for which the likelihood on the 
model Mh representing the sequence ϕα(wh) is maximum. With this 
interpretation, a method to approximate the probability P(s(ϕα(wh))| 
would be to generate a large number of sequences from all the models, 
measure the likelihood of each sequence given each model and derive a 
metric enabling to express the similarity of two models. This method family 

lso be solved 
analytically (  objective metric betwee
Mh c ld ra
Researc
emis n
align n
research fields of HMMs 

ϕβ(wi)) 

will be referred as model sampling methods. Some basics of these methods 
can be found in [D’Orta et al, 1987]. 

The problem of estimating P(s(ϕα(wh))| ϕβ(wi)) could a
analytical methods) if an n models Mi and 

ou  be defined when knowing their pa meters (see section 2.3.1). 
h reported in [Lyngsø et al, 1999], for instance, defines the co-

sio  probability of two models in the framework of genetic sequence 
me t and derives a similarity measure between HMMs. Other recent 

es have been made in this sense in other application 
[Bahlmann & Burkhardt, 2001], showing the value of such analytical 
development.   

Nevertheless, both sampling and analytical methods make use of the 
acoustical model of the studied ASR system and thus share the same 
assumptions about the acoustic data. Moreover, it is based on the internal 
functioning of the actual ASR system and particularly on the model parameters, 
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which are not always known (particularly if a commercial product is used). It 
is also highly cumbersome. 

Another method family can be developed if it is assumed that model 
similarities arise because of similarities in the data they are supposed to 
model. In this particular case, the models are used for recognition of 
phoneme sequences from acoustic data. Thus an estimate of P(s(ϕα(wh))| 
ϕβ(wi)) should be derivable from a metric defined on acoustic properties of the 
phoneme sequences. In this framework, the metric could define a distance or 
a similarity between phoneme sequences represented by a phonetic 
transcription. From now on, it will assumed that the phonetic transcription(s) 
of each word of the vocabulary V is known. In general, phonetic transcriptions 
can be obtained from orthographic transcriptions by grapheme-to-phoneme 
techniques mainly developed for TTS synthesis (see section 2.3.4.1).  

The problem is then to find a metric between two sequences of symbols ϕi 
coming from an alphabet A, which can be seen as a sequence alignment 
problem. One of the most popular methods for measuring the difficulty of 
aligning two sequences is the edit distance that is the minimum number of 
edit operations (namely substitutions, insertions and deletions of symbols) 
required to transform one [Levenshtein, 1966]. The 

is to o overall 

 sequence into the other 
edit distance can be efficiently computed by a Dynamic Programming (DP) 
algorithm. In this framework, to each edit operation is associated a cost, for 
deletions (insertions) there exists a single mapping between the symbol and 
the cost d

ic ( i
ic ) of deleting  (inserting) the symbol ϕi while for substitutions, a 

|A|x|A| substitution cost matrix (SCM) has to be built:  

(6.26) 

where s
ijc  is the cost for substituting symbol ϕi with symbol ϕj.The role of the 

DP algorithm 
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ptimise the alignment process by minimising the 
cost. Thus, the primary problem splits into two sub-problems: 

• What are the better costs d
ic , i

ic  and s
ijc  to associate with each edit 

operation knowing that symbols are phonemes of a given language? 

• When the edit distance is computed, how to transform it in order to 
use it in the acoustic perplexity estimate computation? 
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To answer to the first question, several approaches can be considered given 
that acoustic data are available or not. Yet, the standard method is to adopt 
an arbitrary constant cost for each kind of edit operation. The substitution 
cost is generally considered to be higher than deletion and insertion costs but 
it can reasonably thought that such an arbitrary cost policy would provide 
poor results. Indeed it doesn’t take into account particular features of the 
studied symbols, namely the phonemes. Such a cost matrix can be 
represented like on  Fig. 37. Phonemes are numbered from 1 to 35 according 
to Appendix A: Table 39 (vowels and semivowels are numbered from 1 to 18 
and consonants are numbered from 19 to 35), a null phoneme is added in 
position 36 to the set of usual phonemes in order to include insertion and 
deletion costs in the computed matrix. 

 
Fig. 37: Simple cost matrix 

On another hand, one could take the term ‘distance’ in its straight sense and 
use methods similar to those used in previous ASR systems. This means 
using prototypes of acoustic realisation of each phoneme (or more 

emes since insertions and 

realistically, prototype acoustic feature sets representing those acoustic 
realisations). Considering that for each phoneme ϕi a prototype feature set fi 
of length | fi | is available, one could use those data to compute the cost of 
each edit operation. A simple cost for substituting ϕi to ϕj would be || fi | - | fj || 
(absolute value of the length difference) which would make sense since 
substituting long phonemes with shorter ones is less likely. Another more 
realistic cost would be the distance between the feature vector sets computed 
thanks to a DTW algorithm. This would not really result in the same distance 
than if computed between the two large feature vector sets obtained by 
concatenating sets corresponding to the phon
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delet s also 
cons r

The cos
probabil
likelihood of each edit operation to the corresponding cost. Notice that what 
should be measured is the proba ution, 
insertion or deletion  word to be 
mism
can be 
another 
exposed in [Ristad & Yianilos, 1998]. On Fig. 38 are shown the results 
obtained with this method on the BDSons database [Carre et al, 1984]. The 
database contained a vocabulary of 538 different isolated words spoken by 
male
ASR sy t
surprising since the  was around 45% on the 
complete database. Ye  this test. For 
exam
and n t 
equally prob is also important to notice that the 

ion  (for which the target phoneme is the empty phoneme) are 
ide ed.  

t of each edit operation can also be estimated from available data by 
istic methods. One first method would be to associate the log-

bility of a particular symbol substit
to occur and not the probability of a

atched with another. The maximum likelihood estimate of this probability 
computed by measuring the frequency of each edit operation. On 
hand, the edit distance could be directly learned from data like 

 and female users in more than 8000 one-word recorded utterances. The 
s em used was trained on the BREF corpus [Lamel et al, 1991] but 

ly gave very poor results WER
t some conclusions can be drawn from

ple, one can see that vowels are more often confused with each other 
o with consonants (and vice-versa), deletions and insertions are not 

able for all phonemes and it 
matrix is not symmetric.  

 
Fig. 38: Probability-based cost 

less, it is difficult to draw further conclusionNeverthe s from this experiment 
since a lot of very diffe onemes were rent words were confused, lots of ph
deleted instead of substituted and there were also a lot of homophonous 
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words in the corpus. Moreover, lots of substitutions that occur in general 
tasks had a null probability to occur according to this experiments. 

Anyway, a practical cost should only be based on phonetic transcriptions.  

stimate could be derived from the number of different 
acoustic features between the two substituted phonemes. 

Once again, all articulatory feature differences should not be consider
having equal costs because their acoustic realisations are not equally distant. 

uistic conventions, which are confirmed by the test on the 
BDSons database (Fig. 38), the following rules can be stated (phonemes’ 
transcriptions are written according to the SAMPA (Speech Assessment 
Methods Phonetic Alphabet) phonetic alphabet): 

• Confusions between vowels and consonants have a higher cost 

ex: artère [a R t e r] →  [a l t e r] (altère) 

• Confusions between vowels that only differ by the aperture degree 
are more likely (see Table 40) and confusions occur more often by 
augmenting the aperture (thus, the confusion matrix will be 
asymmetric). 

ex: aimer [e m E] → [EmE] 

• Deletions or insertions of liquid consonants are more likely than 
other consonants. 

ex: altère [a l t e r] →  [a   t e r] (à terre) 

• Deletions a) are more likely 
than other vowels.  

Yet, all phoneme substitutions should not be assigned the same cost as well 
as all deletions or insertions since phonemes do not all have the same 
acoustical properties. Particular features of each phoneme resulting in similar 
observable modifications in the acoustic signal can be derived from 
articulatory features (see Appendix A: Table 39 and Table 40). Thus, a better 
substitution cost e

ed as 

For example, confusing a vowel and a consonant should deserve a higher 
cost than a substitution between two vowels or two consonants differing by 
another feature. The following will mainly discuss the case of French 
phonemes although extension to other languages should not be too complex.  

According to ling

• Confusions between consonants that only differ by the articulatory 
point (the location in the mouth where the sound is produced) are 
more likely and even more likely if the articulatory points are close to 
each other. 

or insertions of the phoneme @ (schw
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Although it is more difficult to implement, it is argued that contextual 
information should also be taken into account in order to associate a cost to 
edit operations. Indeed, the following rules can also be asserted: 

• Deletions are more likely at the beginning and the end of a word and 
should then deserve a smaller cost.  

• Insertions or deletions of consonants are more likely immediately 
before or after another consonant.  

ex: à terre [a   t e r] → [a l t e r] (altère) 

• A vowel can be articulated with a different aperture degree when it is 
close to another vowel differing only by this feature (‘close to’ means 
in the surrounding syllables and not further). It is even more likely 
when a tonic accent is on the other vowel.  

ex: aimer [e m E] → [E m E] 

ex: obturer [o b t y r E] →  [o p t y r E] 

 good results, as 
tic proximity not only 

for ASR models but also probable bad pronunciations that can result 
recognitions (in case the modified pronunciation is not known by th

ce based on the articulatory features is chosen, several 
distance definitions can be considered. One distance can be derived from the 
well-known ‘Ratio Model’ matching function [Tversky, 1977] that defines the 
similarity between two sets of features. If the set of articulatory features of 
phoneme ϕi is denoted by fi, the similarity between ϕi and ϕj phonemes can 
be expressed by: 

(6.27) 

In this expression, F(⋅) is a function applied on a set of articulatory features 
that assigns a weight to each feature. The weights can be assigned 
according to the heuristics described in the above. The ‘Ratio Model’ 
matching function can be modified in order to obtain a distance between two 
sets of features: 

( )

• A voiced consonant can become an unvoiced consonant when it is 
just before or after to a unvoiced consonant  

These rules are of course not exhaustive but they provide
will be shown. Moreover, this takes into account acous

in bad 
e ASR 

system).  

Given that a distan
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(6.28) 

According to this definition, a cost can be assigned 
(proportional to the distance). This definition of th

to substitution operations 
e distance between two 

phonemes allows for asymmetric SCM, which is a desired effect since 
asymmetric costs were described (for aperture degrees for, instance).  

  
Fig. 39: Feature-based phoneme distance 

On Fig. 39, the difference between a simple feature-based phoneme distance 
and a weighted version of this distance is shown. One can see that the 
weighted version is asymmetric and the asymmetry arise at the same places 
than on the surface depicted on Fig. 38. Moreover, whatever the distance 
version, consonants are closer to each other than to vowels (and vice-versa).  

Insertion and deletion costs are also adjusted according to heuristics 
described in the above (it is also shown on the weighted feature-based cost 
matrix). A DP algorithm can then be applied to phoneme sequences (word 
phonetic transcriptions) and an inter-word distance can be computed as the 
cost of the alignment between two sequences. The weighted feature-based 
cost matrix has been used for aligning hypothesis phoneme sequences on 
reference database. 

Once the inter-word distance has been obtained, a confusion proba
between phoneme sequences can be derived by simply assessing that:

sequences resulting from the experiment on the BDDons 
The alignment was accurate in 94% of the cases (that is, handcrafted 
alignment was different from automatic alignment in 6% of bad recognition 
results).  

bility 
 

(6.29) ( ) ( )( ) ( )( ) ( )( )ihih |sPlog,d wwww βαβα ϕϕ−∝ϕϕ⋅λ
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were λ is a constant positive parameter. Consequently: 

(6.30) 

This probability is plexity in order to 
estimate the WER.  

( )( ) ( )( ) ( ) ( )( ),d
ih e|sP wwww

βα ϕϕ⋅λ−βα ∝ϕϕ

used to compute the acoustic per

 
Fig. 40: Acoustic Perplexity vs. WER 

Results shown on Fig. 40 show a quite good agreement between est
and real values. Yet the experiment was done on the same databas

In general, CL curves like those depicted on Fig. 36 can be approximate by a 
sum of exponential distributions: 

(6.31) 

In order to approximate confidence level distribution for both good and bad 
recognition results, P(badCL) and P(1-goodCL) should be considered where 
badCL is the CL for bad recognition results and goodCL is the CL for good 
recognition results. These are shown on Fig. 41.  

Yet, it seems quite difficult to find the best sets of λi parameters with a set of 
phonetic tra oblem 
by approx

imates 
e than 

previously (BDSons) and results are quite bad (large WER).  

6.1.1.5. Predicting the Confidence Level 

ih

( ) ∑ ⋅λ−⋅λ∝λ
i

CL
ii

ie|CLP

nscription as only clue. A first thought was to simplify the pr
imating the curves by a single exponential curve: 

 (6.32) ( ) CLe|CLP ⋅λ−⋅λ∝λ
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Fig. 41: Histogram distribution of (a) 1-goodCL and (b) badCL 

A starting estimate for parameter λ could be computed on a real data set 
{CL1,…,CLM} by ML estimation: 

(6.33) 
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This estimate should serve as a starting point to compute new curves thanks 
to some function of inter-word distance inside a given vocabulary. Results of 
parameter estimation on real data are shown on Fig. 42. This figure shows 
that high confidence level probabilities are widely underestimated for both 
curves by the single exponential approximation.   

  
Fig. 42: Exponential approximation (a) for bad recogntion, (b) for good recognition 

The choice made to model these distributions is a sum of two expo
distributions: one computed on the lower half of the data and the other o
upper half: 

(b) 

(a) (b) 
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( ) CL

high
CL

lowhighlow
highlow ee,|CLP ⋅λ⋅λ ⋅λ+⋅λ=λλ  (6.34) 

This pt le  log-lik btained 
distri an rve etter t

assum
bution 

ion doub
d the cu

s the
s fit b

elihood of the data upon the o
he data histograms: 

  
Fig. 43: Approximation by a sum of two exponential distributions 

When the mean distance between the words composing the vocabulary 
decreases, the curves flatten and both λlow and λhigh decrease and especially 

urprising since the CL measure used here 
mes and when the distance between two 

 the 
distance can also takes this problem into account). A problem of 
pronunciation doesn’t always result in a bad recognition result but the 
acoustic priors might be modified.  

for bad recognition results. It is not s
is based on the priors of acoustic fra
confused word decreases, it probably means that phonemes with similar 
acoustic features has been substituted to each other. Thus the CL is less 
reliable. A similar effect is measured on the goodCL distribution but at a 
smaller level. It might be because smaller mean distance means that words in 
the vocabulary induce possible problems of pronunciations (since

 
Fig. 44: Distribution of badCL with smaller mean inter-word distance 
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Since the modifications of the CL distribution for well-recognised words is not 
really significant and not well explained, it will be supposed constant. 
Nevertheless, the distribution for bad recognition results should be modified. 
It can be modified for the whole vocabulary given the mean inter-word 
distance or computed for each word like explain in the next sub-section.  

6.1.1.6. Other Possible ASR Metrics 
The computation of acoustic perplexity is a quite complex computation, 

 Moreover, one could need to create 
ing to a global WER but according to an 

loser to each other. An example is shown in Table 8 and the error rate 

(6.35) 

A global WER can

especially for large vocabulary sizes.
more realistic substitutions, not accord
error rate give the word. Thus, other metrics or other methods for computing 
WER can be investigated. Since an inter-word distance has been defined, a 
clustering algorithm can be applied to the vocabulary to group the words that 
are c
on a given word seems to correlate with the number of word in the same 
cluster. Once again the results obtained on the BDSons database are very 
bad, but since the purpose is to compare dialogues with each other, 
approximating the error rate on a given word by the following expression can 
be satisfactory: 

|)cluster(|)( rate rror ww    e α=

 also be computed:  

( )
(6.36) 

This last equation means that the mean size of a cluster in a given 
vocabulary is an indication of the WER. 

V
V

∑
∈⋅α= w

wcluster
WER

Word Cluster 
Size 

WER Words sharing the same cluster 

Barre 23 95% Bal, Balle, Dard, Gare, Par, Berre, Car, Jars, 
Tard, Parle, Dalle, Gale, Pal, Beurre, Bord, 
Bore, Gère, Guerre, Père, Char, Phare, Sar 

Feinte 16 ente, Teinte, Peinte, Quinte, 
, te, Geinte onte, Fête, Sente, 
e, an ute

 75% Faite, Sainte, F
Tinte P

h
in , F 

 Vent  C te, Fa

Express 1 %0   

Table 8: Clusters in the BDSons Vocabulary 
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In the same way, the confidence level distribution can be estimated from the 
size of the clusters. Indeed, the confidence level distributions for a given word 
have the same shape as shown before. When the recognised word (and not 
the actually spoken word) is in a large cluster, the distributions are flattened 

 at transforming a sequence of words in a sequence of 

and they are very sharp otherwise. 

6.1.2. NLU System Model 
The NLU process aims
concepts. According to the AVM description of the task, the NLU process affects 
values to attributes given the ASR results (Fig. 45). Thus, a NLU error would 
mainly result in associating a value to an incorrect attribute.  

wh NLU o = {ai = vi }

Lots of different implementations can be found in the literature. Grammar-
en, 1987]. On another 
n  decoding ( -

models for NLU have been 
proposed based on belief networks and showed pretty good results in several 
tasks [Meng et al, 1999]. Thus, no commonly admitted solution exists and it is 
difficult to model the NLU process thanks to a general implementation 
framework. It is thereafter proposed to make use of the model that generated 
the utterances as a classifier of the concepts embedded in the observed 
utterances.  

6.1.2.1. Bayesian NLU Model 
In section 5.3, a Bayesian User Model was described. It is proposed to use 
this model to simulate NLU process. To do so, the retrieved values coming 

 
Fig. 45: NLU process 

According to equation (6.2), the simulation of the NLU process involves the 
estimation ( )s,a,|oP uhw . In the field of ASR, there are some standard 
implementations (like the hybrid ANN/HMM approach)) and new approaches are 
becoming rare (of course, improvements of currently used techniques are 
always the subject of researches). This allowed taking the general ideas of 
those implementations as a basis for simulation in the preceding section. 
Nowadays, the same conclusions cannot really be drawn in the field of NLU. 

based techniques are still used in some systems [All
hand, statistical approaches similar to those used i ASR HMM
based approaches) have also been developed and used in working systems 
[Pieraccini & Levin, 1992]. Recently, new statistical 
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from the ASR model will be used as evidences for the inference engine of the 
UM. 

Referring to the UM described on Fig. 30, and considering that the ASR 
process produced a word that can represent the value vj when the system 
prompted the user with the greeting prompt. The following evidences can be 
introduced into the inference engine of the Bayesian UM: 

As s1 s2 vv1 vv2
greet 0 0 with vj

or vj

Table 9: Evidence for simulating the NLU process 

Unless the value vj is not a possible value for one of the tested arguments, 
this two different evidences will provide values for P(u1 | As = greet, vv1 = vj) 
and P(u2|As = greet, vv2 = vj). The NLU simulation subsystem will then affect 
the value to the attribu occur in the sentence 
given the evidence. Nevertheless, since non-null probabilities are possible for 

e, considering that the system keeps trace of the 
dialogue history (from its point of view). This is generally done when up
its state. Considering also that another value vk has been retrieved when the 
system asked to confirm the first attribute after the greeting. Then 3 more 

d in the inference engine:  

te with the highest probability to 

other attributes, this might introduce errors.  

The case described just before is very simple but more complex situations 
can occur. For exampl

dating 

complex evidences can be introduce
As s1 s2 k1 vv1 vv2 cv1 cv2

conf 1 0 medium vj vk - - 
conf 1 0 medium vj - vk - 
conf 1 0 medium vj

with 

- - vk

Table 10: Evidences taking history into account 

This will provide probabilities for the 3 remaining attributes of having the 
value vk. But what is important to keep in mind is that the history introduced in 
the evidence is the history kept by the system, which is not always the same 
as the user’s one. This might also be a source of errors.  

Finally, when several possible values have been retrieved by the ASR system, 
each value is used to build an evidence, which is processed like said just 
before. The attribute providing the highest probability is kept for each piece of 
evidence separately. 

This method can also provide a kind of  confidence level. In the caseNLU
single value, the CL is simply the probability retrieved by the inference 
process. When there are several values, an individual CL can be affected to 
each retrieved AV pair or a global CL for the utterance can be affected by 

 of a 
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multiplying all individual probabilities. Of course, this provides CL on the 
attributes while the ASR model provides CL on the values.  

It should also be remembered that the language model loaded for speech 
recognition is state dependent. That means that the SDS allows only some 
specific spoken entries in a given state. That should be taken into account 
when applying the NLU process on ASR outputs. This is realised by avoiding 
entering some evidence in the inference engine. For example, when the 
system asks for explicit confirmation, evidence like expressed in the first and 
the third lines of Table 10 shouldn’t be used unless the language model 
allows any entry. This also produce misunderstanding errors or null intention 
outputs when the user has been too over informative or was not cooperative. 

6.2. Output Processing Simulation 
Like exposed in sections 2.3.3 and 2.3.4, the output processing block is 
composed of a NLG and a TTS subsystem (Fig. 46).  

Output
Processing

NLG

+ nt

syst

TTS

wt

at  
Fig. 46: Outputs processing blocks 

The modelling of these subsystems should lead to the estimation of the 
probability P(syst | au,t) according to equation (4.17). This probability can be 
expressed as: 

(6.37) ( ) ( ) ( )
4342143421

NLU

tu,t

TTS

tttu,t a | P  | sysP  a | sysP ww ⋅=
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6.2.1. NLG System Model 
The NLG block’s job can be seen as the translation of the Dialogue Manager’s 
intended action at in a sequence of words wt that communicate the Speech 

aid in section 2.3.3, several methods are generally 
orded spoken utterances, handwritten prompts or 

ubsequently transformed into speech thanks to a 

stem, errors in the 

ng 

Acts embedded in at. As s
used going from the rec
automatically generated sentences. 

Although most of systems use either recorded prompts or more generally 
human authored prompts (s
TTS system), the possibility of generating more natural sentences thanks to a 
completely automatic NLG system is a novel field of researches and even 
more recent in the framework of SDS [Walker et al, 2002]. Indeed, it has been 
a little more studied in fields of automatic summarisation or document 
generation [Reiter & Dale, 2000]. Nevertheless, it can be considered that 
recorded prompts or human authored prompts are not subject to error in the 
transmission of the concepts while the NLG method might be error prone. 

Similarly to the ASR and the NLU techniques, the same conclusion can be 
drawn for the NLG and the TTS processes. Researches in the field of TTS are 
those with the longer history in the field on speech processing and some 
standard methods have been developed. In the field of NLG, no commonly 
admitted standard really exists (there are rule-based, stochastic or corpus-
based NLG methods) and it is therefore difficult to simulate thanks to a prior 
knowledge of the implementation. Yet, whatever the NLG sy
transmission of the concepts embedded in the systems action at generally 
arise because of bad references in the pronominalisation or the anaphora 
generation. That means that they can only arise when talking about an 
attribute that has already been referenced in the conversation. This is why it 
is proposed to add an ambiguity parameter ξ ∈ [0,1] modifying the meanit 
of a system’s utterance syst when a system’s action is modified by an already 
referenced attribute. A confirmation of attribute ai might be mismatched with a 
confirmation of attribute aj if both ai and aj have been asked before. This 
implies ξt is not null and the action at to be possibly mismatched with another 
action a’t (Fig. 47).  

NLG

P(wt = f(at) = 1-ξt
P(wt = f(a’t) = ξt

at wt

 
Fig. 47: Error-prone NLG 
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Of course, this mismatch is generally the result of a user misunderstanding  
but it is because of an ambiguity in the generated sentence, this is why this 
parameter is included in a NLG model and not in the user model. The more ξt 
is close to 0, the more the NLG system is accurate and ξt will be considered as 
null for recorded and human authored prompts. 

6.2.2. TTS System Model 
In general, the TTS synthesis process in the framework of a SDS is 
deterministic in that sense that a given sequence of words wt will always 
result in the same spoken utterance syst that will always be interpreted in the 
same way by a given user as a given set of AV pairs. Thus, the only things 
that can be modelled in the case of a TTS system are objective metrics.  

Objective metrics that can be provided by a TTS system are not very 
numerous in the purpose of a SDS design since it only affects the subjective 
satisfaction of the user [Walker et al, 2001] (hopefully not his/her 
understanding of the sentence or it should be avoided to use the TTS system). 
Indeed, satisfaction surveys showed that the TTS performance was an 
important factor. Therefore it is proposed to use information about the general 
perceived quality of the TTS in the computation to generate a metric provided 
by the TTS model. This can result in decreasing the number of prompts when 
learning a strategy for example.  

On another hand, it has also been shown that the time duration of prompts 
influences the user’s satisfaction. Thus, this duration should also be part of 
the metrics provided by the TTS model. 

6.3. Conclusion 
In this chapter, a simulation model of the whole speech-processing channel 
has been proposed. It is as least parametric as possible and particularly 
relies on the specific task.  

Indeed, the ASR model takes as inputs the possible values of each attribute in 
the AVM representation of the task in order to estimate the possible 
confusions between those values when they are spoken and to provide 
metrics about the confidence an ASR system can have in the recognition 
result provided. The inter-word distance computed in the framework of the 
ASR modelling section of this text can also be used as source of assistance 
during the design of speech grammars and vocabularies. Indeed it can point 
out very close words in a given vocabulary or provide information such as the 
mean inter-word distance or the mean size of a cluster of words in this 
vocabulary. The parameters of the ASR model are mainly included in the edit 
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cost matrix used for computing inter-word distances. These parameters can 
be either deduced from articulatory features but also replaced by a measured 
confusion matrix if a sufficiently large corpus of acoustic and annotated data 
is available, which is rarely the case for non-expert users.  

The NLU model relies on the task structure and on the Bayesian UM already 
described before and therefore does not require new pa
a way to simulate attribute classification errors taking the
and provides an estimate of the seman

The output processing subsystems (n
have also been the subject of a concise modelling study. Possible 
ambiguities in the generated sentence has been introduced and some 
metrics about the performance of the TTS systems (specially the time duration 
of the generated spoken utterances). 

In the beginning of this chapter, the noise was also introduced as a variable 
influencing the process. Several experiments have been realised in order to 
evaluate the effect of artificially added noise in recorded speech utterances 
on the confusability between phonemes. Yet, as indicated before, the results 
obtained on the BDSons database were dramatically bad and nothing could 
be done to improve them in a reasonable amount of time (since the subject of 
this work was not pure ASR researches). Adding noise to the spoken 
utterances resulted in a WER close to 100% and no conclusion could 
reasonably be drawn from these. 

rameters. It supplies 
 context into account 

tic and contextual confidence level. 

amely the NLG and the TTS systems) 
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TThhiirrdd  PPaarrtt::                
LLeeaarrnniinngg  SSttrraatteeggiieess  
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CChildren learn to speak very early. Yet smartly interacting with 

 matter of technical 
erform automatic 
man authoring in 

others is a complex and almost lifelong quest mainly based on a 
trial-and-error process. The definition of a smart interaction is not 
clear anyway and should be revised for each particular case and 
each particular participant. No one can actually provide an 
example of what would have objectively been the perfect 
sequencing of exchanges after having participate to a dialogue. 
Human being has a greater propensity to criticise what is wrong 
than to provide positive proposals.  

It then came like obviousness that machines should mimic the 
natural human behaviour and use unsupervised learning 
techniques to become able to interact with human beings in a 
useful and satisfying manner. Moreover, unlike for other artificial 
intelligence problems where humans perform better than 
computers, human-authored dialogue strategies are generally 
sub-optimal because optimality is also a
performance. The problem is then not only to p
design of strategies but also to outperform hu
this domain. 
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Chapter 7: Dialogue in the MDP Framework 

7.1. Generalities 
From the beginning of this text, a spoken dialogue has been considered as a 
turn taking process between two agents. It is therefore a sequential process 
during which two agents try to achieve a goal (generally accomplishing a task: 
task-oriented dialogue). In order to achieve the agents’ mutual goal, they 

ted or one 
 optimality 

d of 

exchange utterances embedding intentions until the task is comple
of both agents gives up. Although it is not realistic to think about an
criterion for generic human-human dialogue, in the special case of task-
oriented and goal-directed dialogues, there should be possible to rank 
interactions and the underlying strategy followed by each agent. It should 
therefore be possible to learn an optimal strategy according to this optimality 
criterion. Yet, it is not always easy to identify important indices of dialogue 
goodness and to derive such a criterion. Moreover, obtaining training data for 
the special purpose of task-oriented dialogue strategy learning is a very 
complex problem that should also be optimised. 

7.1.1. Choice of the Learning Method 
Nowadays, thanks to more than half a century of researches in the fiel
Artificial Intelligence, lots of learning techniques have been developed. 
Several problems are addressed by the paradigm of learning algorithms such 
as pattern matching, decision-making and others, which have as common 
points that no analytic solution can easily be found and human beings 
perform better than computers.  

7.1.1.1. Supervised vs. Unsupervised Learning  
Two main classes of learning methods can be distinguished: supervised and 
unsupervised learning. Supervised learning is mainly related to ‘learning-by-
example’ techniques, which means that, during the training phase, examples 
of a problem are presented to a learning agent as well as the solution. The 
learning agent then learns to provide good solutions to unseen similar 
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problems. Neural networks are such learning agents widely used for pattern 
matching (speech or handwriting recognition) [Bishop, 1995]. Unsupervised 
learning can be seen as ‘trial-and-error’ learning, which means that the 
learner is never told what is the optimal behaviour to adopt but is rewarded or 
punished for its actions in given situations. This last class of learning methods 
seems to be more natural since it is the way animals and young children 
learn. Reinforcement Learning (RL) agents are such learners that make use 
of unsupervised techniques to solve particular decision-making problems 
[Sutton & Barto, 1998].  

In the case of dialogue strategy learning, there is usually no example of 

tty good strategy is already used. 
ge number of interactions (growing with the 

 to converge and online learning 

results obtained by learning the state-transition 

optimal strategies available, basically because it is generally unknown for all 
cases but the simplest ones. Unsupervised learning is then the more suitable 
technique for this purpose. As a matter of fact, RL has already been proposed 
to solve the problem of finding optimal dialogue strategies in [Levin et al, 
1997] and [Singh et al, 1999] and seemed to be appropriate.  

7.1.1.2. Online, Model-Based, Model-Free Learning 
RL has actually been developed in the framework of online learning. As 
exposed in section 3.2 the RL agent interacts with a real environment and 
learns to behave optimally thanks to rewards obtained while interacting. 
Thanks to Q-learning algorithms for instance, the RL agent can learn an 
optimal policy while following another and thus have a coherent behaviour 
(even if sub-optimal) during learning. Yet, online learning is not really adapted 
to dialogue strategy design unless a pre
Indeed, RL algorithms need a lar
size of the state space and the action set)
would involve the system to interact with real human users. This is not 
thinkable because of the time it would take and the money it would cost.  

On another hand, some RL algorithms use a model of the Markov Decision 
Process (MDP) underlying the studied environment to speed up the 
convergence. Learning relies on a probabilistic model including the state-
transition probabilities T and the reward distribution R of the observed 
environment (see section 3.2 for notational information). While interacting, the 
agent learns from real rewards and updates its model to learn from artificially 
generated situations between two real interactions. This algorithm family is 
called model-based learning. The most popular model-based RL method is 
Sutton’s Dina-Q algorithm [Sutton & Barto, 1998]. Starting from this point, 
some researches reported 
probabilities and reward distribution from a corpus of annotated dialogues 
and applying a Q-learning RL algorithm on the model [Singh et al, 1999] 
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[Walker, 2000]. There are several drawbacks to this technique since it 
necessitates the collection of a large amount of data but also to predefine all 
the possible states before collecting the data. Moreover, the data collection 
only provides information about what happened when using a particular 

lot of 
 the 

l-free technique is proposed. Actually, It is 

onment described before. 

s. The dialogue simulation environment 
described in the preceding chapters allows the production of data also 

can produce error-prone observed 
ally emitted intentions. An interesting 

Yet, in the following, only the MDP approximation will be described since the 
rise of performance doesn’t justify the extra amount of computation induced 

strategy (the one used during the data collection). There might be a 
states that are not sufficiently visited and above all, this makes
assumption that the strategy does not affect the user’s behaviour and that 
he/she will always act in the same way in a given state whatever the path 
followed before. This assumption is never met in practice. Finally, it cannot 
predict what will happen if actions are added to the action set.  

For those reasons, the mode
commonly called model-free technique because no prior knowledge about the 
distribution of states and rewards are needed and above all because the 
learner doesn’t updates its internal model like in the Dyna-Q algorithm. But it 
actually relies on a model of the environment like described in the preceding 
three chapters. The thing is that the learner is not ‘aware’ that it is interacting 
with a model and not with a real environment; both can be exchanged without 
any modification in the learner’s behaviour. In order to keep things clear, the 
model-free technique discussed in this text will be referred as a simulation-
based technique. A first simulation-based RL experiment has been described 
in [Levin et al, 1997] followed by [Scheffler & Young, 2002] with the limitations 
described in section 4.2.1. The subject of this chapter is the application of the 
RL paradigm to the problem of dialogue strategy learning using the dialogue 
simulation envir

7.1.1.3. MDP vs POMDP 
As said in section 3.2.1, a dialogue can be described either within the MDP 
framework or within the POMDP framework. Exact solution to POMDP is 
intractable when the state space is larger than 15 states but approximate 
solutions that outperform the general MDP solution might be derived more 
easily. Anyway, the state space must stay very small what is a major 
drawback for more complex dialogue

suitable for POMDP training since it 
intentions and the corresponding actu
experiment might be done using some recently developed techniques for 
solving POMDP my means of the combination of RL and DBN [Sallans, 2002] 
using dialogue simulation.  
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by POMDP solving. Moreover, it is definitely not suitable for the purpose of easy 
design of SDS prototypes. Some tricks will be used to overcome the limitation 
brought by the MDP approximation and particularly introducing indices of the 
dialogue system’s lacks in observations. 

7.1.2. Preliminary Considerations about SDS Design 
In section 2.4.1 and 2.4.2 were introduced the notions of dialogue model and 
of dialogue management method. Designing a SDS starts by making strategic 
choices about those notions that will influence all the design process.  

7.1.2.1. Dialogue Model 
In the framework of strategy learning, the dialogue grammar model is not 
suitable since the RL algorithms’ purpose is to map particular situations to 
actions and not to derive general rules about what to do in generic cases. 
Other models like plan-based or conversational game theory are maybe more 
suitable but still does not consider the dialogue as a whole. Each turn is 
considered to be part o pt to repair subdialogue 
explanation is done. Thus, from now on, the joint-activity point of view will be 

agement 

 section 2.4.2 (like comprehensibility, 
ease i
adopt d
for MDP re

7.2.
Applying 
requires d tates, 
actions, rew

f a plan but no attem

adopted. From this viewpoint, the designer tries to optimise the overall 
dialogue taking into account possible misunderstanding, problems with the 
DSP and NLP subsystems etc. The resulting SDS might then be an agent 
attempting to optimise each dialogue as a whole according to step-by-step 
observations.  

7.1.2.2. Dialogue Man
When describing the general RL framework, it has been shown that an MDP 
could be described as a state-transition network. For this reason but also 
because of all other reasons exposed in

of v sual representation, etc) this dialogue management method will be 
ed espite its known drawbacks. It is anyway the only suitable method 

presentation of a dialogue. 

 Dialogue as an MDP 
RL methods to the problem of optimal dialogue strategy learning 
efining a dialogue as an MDP, which means in terms of s

ards and strategy [Levin et al, 1997].  
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Fig. 48: Learning Process 

While actions are definitely specific to the SDS being considered and defined 
by its designer, the state space and the reward are also dependent of the 
environment. Indeed, the reward is a numerical value provided by the 
environment and the sta  is
input processing blocks and processed by the task model.  

7.2.1. State Space 
e of course many ways to build a state space and it is often argued 
 state space is very task-dependent. Yet, some general 

ations are taken into account:  

The main one is that each state representation should contain 
enough information about the history of the dialogue so as 
the Markov property can be met (see section 3.2.1).  

2. On another hand, state spaces are often considered as 
informational [Denecke, 2000] in that sense that they are built 
thanks to the amount of information the DM could retrieve 
from the environment until it reached the current state.  
The state representation must embed enough information so 
as to give an accurate representation of the situation to which 
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an action has to be associated (it is not as obvious as it 
sounds).  

4. The state space must be kept as small as possible since the 
RL algorithms converge in linear time with the number of 

o 
build the s e. Firs AVM ta nta cond, the 
output processing bloc ob UM might 
supply info  about r’s sta vel of expertise. Indeed, UM 
parameters  lso be rt of the odel he ld the state 
from the ns  se .5. It can actually be another 
model or y of the one used for simulation purpose but it is not 
physically the same (not the same instance), this is why it has not been 

states of the underlying MDP. 
In the framework of this work, several pieces of information are available t

tate spac t, the 
ks provide 

sk represe
servations (Fig. 48). Third, the 

tion is known. Se

rmation
 might

use
 pa

te and le
 task ma

observatio
lping to bui

 like said in ction 2.3
the cop

included in the WK on Fig. 48. Yet, in this work, the same architecture will be 
used for both.  

7.2.1.1. Factored State Space Representation 
A factored state space representation has been chosen because, despite it is 
not generally defined this way, state representations of dialogue systems are 
often based on state variables. Like exposed in section 3.2.1, a factored state 
space is defined as S = { }M

1=α
αS .  

In this framework, several state variables have to be defined as well as their 

he environment. In 
general possible values can either be all the actual possible v
given by the AVM or they can be grouped. Typically, those vari

respective possible values: 

• State variables that are relative to the task. Actually, each attribute ai 
∈ AT of the AVM task representation can be a state variable. Values 
are affected to those variables thanks to recognition results 
embedded in the observations provided by t

alues 
ables 

can only take 2 or 3 values according to their status: known, 
unknown (confirmed). This meets the statement 2 in the above. 

• State variables {mi} that are relative to the metrics provided by the 
output processing blocks. For example, the different confidence 
levels might modify the state. Indeed, when speech recognition 
provided bad confidence level it might be useful to ask for 
confirmation. Adding information about system’s performance is thus 
important to meet statement 3 in the above. These variables can 
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take continuous
classified as low

 values, discrete values or more generally are values 
, (medium) and high.  

• State variables relative to environment {ei} itself, like the UM for 
example. This will be discussed later.  

A particular state is then a tuple of state variables and their corresponding 
values. This tuple is built thanks to output observations and the task model. 

Variable 
type 

High 
granularity 

Medium 
granularity Low granularity 

Task: ai {vi} grouped Known, unknown, 
(confirmed) 

Metrics: mi continuous discrete low, (medium), high 
Env.: ei … … … 

Table 11: Possible state variables and their values 

Table 11 shows the different types of state variables and their possible value 
sets. The larger the value set is, the larger the state space is of course. When 
the state space is not continuous, the evaluation of the policy requires to 
keep parameters for each state-action pair. That is the needed memory is 
proportional to the product of the states space size and the action set size. 
When using value sets of the right column, each state stands actually for 
several states obtained by using previous columns. Indeed, in order to reduce 

State
algorithm
two diffe
in the sm L
which parameters are updated thanks to a back-off rule: 

(7.1) 

In thi
of state 
more oft
using th ays easy to find out which 
states can sha the first learning 
phase). State l e framework of 
dialogue strategy learning since one can feel that lots of states are similar. It 
might be interesting for example to use inductive logic programming to learn 
those similarities like have been done in [Lecoeuche, 2001]. 

tL1tL )param(s))param(s

the state space, it is common to use state tying, which corresponds to make 
several states share the same parameters (state value, action value, state 
transition probability and reward distribution).  

 tying can actually be used for speeding up convergence of learning 
s. If enough memory is available, one can build a system based on 

rent state spaces: a large one L and a smaller one S. Each state sS 
aller state space corresponds to set of states s  in the larger one 

tS )param(s    ⋅ λ − (1 + ⋅λ=+

s expression, λ ∈ [0,1] is a parameter decreasing as the number of visits 
sL increases. Since the state set S is smaller, states sS are visited 
en than states sL and the parameters of sL converge more quickly 
is backing off technique. Yet it is not alw

re the sa
tying cou

me parameters (at least during 
d be advantageously used in th
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7.2.  
The acti of all possible actions the final SDS will be 
allowed to perform. Diff  
action set. Inde mplemented like generating 
a prompt, lo
anot  
of the in
better to
are com d in a fixed sequence not requiring to be optimised. As 
previously sai e s can be 
distinguished according user 
or th
with 
Speech 
some in
system, waiting for the and 
computing the a Since these 
sequences are fixed, they can be considered as a unique action in the 
fram
possible
systems.  

Actions addressed to the dding 
different intentions (Speec following ones: 

2. Action Set 
on set defines the set 

erent granularity levels 
ed, eleme

can be considered inside the
ntary actions could be i

ading a speech grammar, starting the speech recogniser etc. On 
her hand starting a dialogue and let it follow a fixed strategy until the end 

teraction is also an action. Something in between would probably fit 
 the need of an easier design. In general, several elemental actions 
monly execute

d (see s
 to which par

ction 4.2.1), two main action familie
t of the environment they target: the 

e WK. A sequence of elemental actions addressed to a user usually starts 
a prompt. The remainder of the sequence is generally motivated by the 

Acts embedded in the prompt. For example, querying the user for 
formation by a prompt is followed by loading a grammar in the ASR 

 answer, processing it by the NLU subsystem 
 new st te according to the observation. 

ework of strategy learning. It is the job of the designer to specify all the 
 actions but there are generic actions shared by lots of dialogue 

 user are generally system prompts embe
h Acts or Dialogue Acts) like the 

• Greeting: it is the general definition by the system of its capabilities 
generally followed by an open-ended question. This action involves 
loading a large vocabulary grammar in the ASR system in order to 
authorise very natural language entries after the prompt and waiting 
for a speech input.  

System: ‘Welcome to our train ticket booking service. 
How may I help you?’ 

• Constraining que ive): it is a system-directed stion (system initiat
action querying the user for a specific piece of information and 
doesn’t allow over-informative behaviour from the user, thus the 
loaded ASR grammar is often restricted.  

System: ‘Please, say your departure city.’ 
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• Open- re 

information to the the 
content of the answer.  

ended question (mixed initiative): the system asks for mo
 user without specifying strict constraints about 

System: ‘How may I help you?’ 

• 

r allowing for a small set of answers (typically 
‘yes’ o

Explicit confirmation (system initiative): the system asks to confirm a 
specific value before going on. This action also involves loading a 
very simple gramma

r ‘no’). 

System: ‘Did you say you want to go to Namur?’ 

• 

lue in a query for further information. This relies on the 
user in  

Implicit confirmation (mixed initiative): the system asks for 
confirmation about a specific variable by inserting the previously 
retrieved va

stinctively contradicting any incorrect information.  

System: ‘When do you want to go to Namur?’ 

• Final confirmation: generally, before ending a dialogue or a sub-
dialogue, the system can ask to confirm all variables obtained so far.  

System: ‘Please confirm the following transaction: 
you asked for a one-way ticket to go from 
Namur to Mons on next Friday.’ 

• Relaxing prompt: when a specific value involves troubles in the 
achievement of the task, the system can ask to relax the constraint 
on the value. It is the case when the system is dedicated to 
database querying and the provided values results in an empty 
query result.  

System: ‘There is no train going from Namur to Mons 
on next Friday. Would you like to change 
the departure date?’ 

• Repair sub-dialogue: sometimes, the dialogue goes wrong because 
the user’s answers are not coherent or because there has been 
recognition or understanding errors. The system can then engage in 
a repair sub-dialogue. Such a sub-dialogue can be composed of a 
single prompt helping the user to answer correctly to the last query 
or can be more complex in order to ensure that both the user and 
the system are sharing the same beliefs (grounding).  
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System: ‘ date comprised The departure should be 

betwe orrow  of January 2005’ en tom  and the 1st

• Assertion prompt: the system trans the user in 
order to update his/h wledg ser input is 
gene ected afte ssertio be a prompt 
aiming at helping people se the ide information 
the user asked for.  

mits information to 
er kno e. No particular u

rally exp r an a n prompt. It might 
 to u system or to prov

System: ‘The train you aske t line 1.’ d for will arrive a

• Dialogue closing: at the end of th ystem 
utte rompt nitive The user 
cannot inter  unless he/she starts a new session from the 
beginning.  

e dialogue session the s
ly close the session. rs an exit p

act anymore
 and defi

System: ‘Your ticket will be sent to you by postal mail. 
Thank you for using our automated booking 
service.’ 

Actions addressed to the WK are typically database queries or accesses to 
expert systems. Once again they are composed of more basic actions 
executed in sequences like building the database query, executing the query, 
retrieving results and building a new state according to those results.  

7.2.2.1. Factored Action Set Representation 
Like for the state space, the action set can be represented in a factored 
manner. This factored representation has already been implicitly introduced 
with the Bayesian UM in section 5.3. In the framework of this work, two types 
of action variables are proposed: one variable (AS) describing the generic 

noted as a function 

 

action type (like those just described in the above) and a set of Boolean 
variables {si} indicating whether an attribute modifies the action or not. Table 
12 shows the different possible values for action variables. Other action types 
might be added according to the need of the task but such task-specific 
design is out of the scope of this text. 

In the examples of section 5.3 an action has also been de
like const(dest), for instance. It actually is the same as if the action was 
described by the tuple {AS = constQ, dest = 1, dep = 0}. The ‘function’ 
notation is sometimes more convenient for conciseness purpose but it always 
has a factored counterpart. 
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Variables Possible Values Description 

greet Greeting 
constQ Constraining question
openQ Open-ended question
explC Explicit confirmation 
implC Implicit confirmation 
allC Confirm all (final) 
rel Relaxing Prompt 

assert A

Type: AS

ssertion prompts 
close Dialogue closing 
dbQ Database Query 

Modifying 
Attribute : s

Indicates whether 
i Boolean  attribute si modifies 

the action As

Table 12: Factored Action Set 

e an SDS would probably be user 

SDS
probably motivated by the fact that, if one wants in a close future hav
opportunity of evaluating SDS performances according to sales performances, 

7.2.3. Reward Function 
The construction of the reward function is, as much as the state space 
representation choice, a very tricky job. It is generally very hard to tell what 
was a good dialogue since it would actually necessitate comparing dialogues 
with each other. The better metric to evaluat
satisfaction. Yet, even this assumption is subject of discussion. Indeed, in the 
case of a system aiming at a selling task, the better evaluation of the dialogue 
system would probably be the sales performances, and the system’s owner 
satisfaction instead of pure user satisfaction. Nevertheless, user satisfaction 
has been widely considered as the better metric of  goodness. This is 

e the 

SDSs should before be sufficiently attractive to users. 

User satisfaction surveys have therefore been widely used in order to assess 
dialogue systems. Yet, it has been pointed out that surveys aiming at 
comparing different dialogue systems instead of pure subjective evaluation of 
a unique system gave results that were hard to use in practice. Indeed, users’ 
evaluations were proved to be dependent of the order in which systems were 
presented to them [Devillers & Bonneau-Maynard, 1998]. 

User satisfaction is in general not only dependent of system’s performance 
but it is also very task-dependent. Users’ ranking of dialogues are generally 
done in a very subjective manner. Yet it is a sought-after to find out a way to 
evaluate dialogue sessions thanks to objective metrics.  
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Arbitrary choice of the r un s e heffler & 
Young, 2002], where it was defined as a cost: 

(7.2) 

In this equ nds f  the dialo ue cost, N stands fo number of 
user turns and r transaction’ 

s been proposed to predict user 

 2.4.5. For example [Walker et 
al, 1998 a] r ports utility fu  tw  and ELVIS) 
and more recently [Sneele & Waals, 2003] reports results obtained on a 
Deutch flight information system (IRENE). le 13 sh
results the re ose rs. Resu  the third column have been 
obtained by com OT and ELVIS 
systems. 

Failut NFailCostNC

eward f ction ha  been propos d in [Sc

ation, Cd sta or g t r the 

resd = ⋅+

 NFailures is the ‘average number of failures pe
representing a mean task completion measure. FailCost is a varying weight 
indicating the relative importance of failures.  

On another hand, as firstly presented in early works on the subject [Levin et 
al, 1997], a better cost function would be obtained using a weighted sum of 
objective metrics:  

(7.3) 

In this expression, ci are objective metrics and wi are weights. In the 
researches reported in [Levin et al, 1997] and [Levin et al, 2000], a database 
querying system is described and metrics used were the number of user 
turns, the number of tuples retrieved by database queries and the amount of 
data presented to the user at the end of each dialogue. Those metrics have 
the big advantage to be easily measurable.  

The PARADISE paradigm (see section 2.4.5) ha

∑=
i

iid cwC

satisfaction thanks to objective metrics [Walker et al, 1997a]. The reward 
function is then expressed as a utility function (not as a cost anymore), which 
is a weighted sum of objective metrics and of a measure of task completion: 

(7.4) 

In (7.4), US is the predicted user satisfaction or the utility function of the 
studied SDS. Several objective metrics were measured in a wide range of 
applications and a multiple linear regression was used to compute the 
weights α and wi. Metrics used were mean recognition error rate, number of 
turns, elapsed time, timeout prompts, the number of barge-ins, the number of 
ASR rejections and the number of help requests. This experiment led to lots of 
different conclusions like explained in section

( ) ( )∑ ⋅−κ⋅α=
i

iiS cwU NN

e nction for o different SDSs,  (TOOT

 Tab ows a summary of 
ported in th pape lts of

bining results of tests realised with the TO
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 TOOT ELVIS TOOT+ELVIS IRENE 

κ .45 .20 .23 .39 
ASR Perf .35 .45 .43 .33 

Elapsed time  -.23 -.21  
Barge-ins .42    

User Turns    -.32 

Table 13: Objective metrics weights for several SDSs  

d in section 2.4.5 the nature of the survey 
s also 

strategy and the predicted user satisfaction is only valid to evaluate dialo
obtained by following this strategy. Finally, (7.4) implicitly assumes that 

red metrics are independent from each other. This assumption is 

In se io sed. It was 
obtained thanks to comparison of the interaction’s history xpected 
histo   and had different distribution 
acco ialogues has been 
simulated with this puter-retailing 

fferent levels of 
expertise were simulated and 1000 dialogues were generated with each of 
them. Linear regression has then been applied to the results to fin

Except from the first column, it can be concluded that task completion, 
recognition scores and the number of turns are significant predictors of user 
satisfaction (number of turns is highly correlated with elapsed time). The 
second and third columns show that the ASR performances are more 
important than other metrics while the last column shows approximately equal 
weights for all metrics. Yet, it is common to all experiments that task 
completion and ASR performances are significant as well as the number of 
turns. This is not surprising but some researches reported contradictory 
results. Actually, as already notice
itself might induce those results [Larsen, 2003], which finally seem
arbitrary. Moreover, these results have been obtained under a particular 

gues 

measu
clearly not met like shown in [Larsen, 2003]. 

ct n 5.3.4, a user satisfaction model has been propo
 with an e

ry, number of turns and task completion
rding to the level of expertise of the model. A set of d

 on the train ticket booking and the comUM
examples following a random strategy. Users with three di

d out 
weights related to number of turns, ASR performances and task completion. 
The results can be found in Table 14 in which TC stands for Task Completion. 
It is different from the kappa coefficient since it is more related to a perceived 
task completion measure (see section 5.3.4.) 

 Low (.1) Medium (.3) High (.5) 
TC .31 .32 .31 

ASR Perf. .35 .41 .49 
User Turns -.22 -.31 -.43 

Table 14: Weights obtained with simulated user 
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Results found with the UM are hopefully similar to those obtained previously. 
Of course it is due to the way user satisfaction has been defined in section 
5.3.4. Anyway what is important in the framework of dialogue strategy 
comparison is the relative importance of weights and their evolution with 

M is only available at the end of 
the interaction, which would slow down the learning process. Moreover, the 

ss the dialogues are 
ecognition errors. That 

 of the cluster to which belongs the last 

user’s level of initiative. Different objective functions can be obtained for 
different user populations and after all, the user satisfaction described in 
section 5.3.4 could be used.  

Yet user satisfaction obtained by using the U

ASR performance is not an available measure unle
logged and manually analysed in order to identify r
makes online learning impossible. Using the dialogue simulation environment 
one could access the number of simulated ASR errors but it would be a trick. 
Instead, it is proposed to use confidence levels in the reward function and a 
per-turn reward [Pietquin & Renals, 2002], [Pietquin & Dutoit, 2002] in order 
to speed up the learning process. 

Doing so, the base of the reward function used in the following will be: 

(7.5) 

with: 

TCwCLwNwC TCCLttd ⋅−⋅−⋅=

• Nt = 0 if the dialogue is closed and 1 otherwise, 

• CL is the confidence level of the last retrieved utterance, 

• TC is a measure of task completion, 

• wi are positive weights set according to Table 14. 

An optimal strategy would minimise the mean dialogue cost: 

 (7.6) [ ] [ ] [ ] [ ]TCEwCLEwNEwCEC CLttdd ⋅−⋅−⋅== TC

The use of the confidence level instead of the ASR actual performance is 
motivated by the correlation existing between those two metrics. Indeed, it is 
the purpose of the CL to reflect ASR performances. Moreover, optimising the 
dialogue partially according to the CL will conduct to maximise the overall 
dialogue CL. Since the dialogue simulation environment can provide estimates 
of the CL it is suitable for learning with this cost function. Yet, the environment 
can provide other metrics (like the size
recognised value, the mean inter-word distance of the vocabulary used to 
recognise the last value etc.) but those metrics are not naturally provided by 
real systems. Thus, in order to make the learning system able to learn online 

 
192



A Framework for Unsupervised Learning of Dialogue Strategies       

   
without changes, only metrics provided by usual DSP and NLP systems will be 
used. This way, the simulated environment can be substituted with a real 
environment or another simulation environment like the one described in 
[López-Cózar et al, 2003] for instance.  

Readers will notice that the use of metrics describing confidence in the 
processing of speech inputs in the state space and in the cost function is also 
an attempt to overcome the problem involved by partial observability of the 
process without using the POMDP framework. 

7.3. RL Algorithm and Parameters 
 3.2.1 presented several different algorithms to solve the RL 

problems. In researches reported in [Pietquin & Renals, 2002], the chosen 
algorithm was a Monte Carlo method with a ε-greedy action selection strategy. 
The ε parameter was set close to 1. These choices were motivated by the 
fact that the learning agent interacts with a simulated environment and so, is 
in a pure learning process. Thus it doesn’t have to follow any consistent 
strategy but has to evaluate all the state-actions pairs as fast and as many 
times as possible. This algorithm converged after 20,000 to 70,000 simulated 
dialogues (this number justifies the use of simulation, at least for early design 
stages). Yet, those choices have several drawbacks.  

First, the learning agent waits the end of a complete dialogue session to 
update the action values of the visited states. The algorithm convergence is 
therefore slowed down. Second only the followed policy is evaluated while 
algorithms like Q-learning enables the learner to evaluate the optimal policy 
while following another (there actually exist off-policy Monte Carlo learning 
methods but the problem of late update of action values stands). Finally, the 
ε-greedy action selection strategy also slows down the learning process since 
after a certain number of iterations, the learner should give up the evaluation 
of state-action pairs showing very low Q values.  

A Watkins Q(λ) algorithm implementation has finally been chosen as well as 
the use of a softmax action selection strategy. Moreover, the initial Q values 
were set to optimistic values. The effect of optimistic initial values is that the 
learning agent explores a lot at the beginning of the learning process since 
actions with higher values are selected by the softmax method. The 
exploration decreases as the learning agent covered sufficiently each state-
action pair in order to evaluate them.  

The discount rate γ of equation (3.22) is set to 1 since the task has a finite 
horizon, there is no need to use discounted rewards. The learning rate α is 

The section
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set to be dependent of time and is decreasing over time. It was set to 1/k, 
with k being the number of time the updated state-action pair has been visited. 
Finally, the λ parameter has to be set. Actually, better results are obtained 
with very high value of λ (close to 1). Actually, Q(1) is often referred to as a 
Monte Carlo method while it is not since the Q(1) uses a full back-up at each 
step and not once at the end of the interaction. Thus, Q(1) converges more 
quickly than pure averagin
(3.15). While it is not suita
this case. 

g Monte Carlo methods described by expression 
ble for lots of RL problems, it gives better results in 
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Chapter 8: Two Case Studies 

8.1. Computer-Retailing System 
The first  describe ame as 
described n 5.2.1. ter-retailing example. The task mainly 
consists ery system and the goal of the application is to 
provide the price of a computer selected according to specific features 
provided  the comple ling task is not considered 
(no credi ed or whatever).  

The database contains 350 different computer configurations split into 2 
tables (for no _mac (pc or 
mac), process  brand. 

example
 in sectio

d in the framework of SDS design is the s
1: the compu

in a database qu

 by the user. Notice that
t-card number ask

te sel

tebooks and desktops) containing 6 fields each: pc
or_type, processor_speed, ram_size, hdd_size and

8.1.1. AVM Task Representation 
Since the task relies on an existing database, the AVM representation is quite 
straightforward. Attributes are the fields of the database and an additional 
attribute is added for the table name. Generally speaking, choosing the table 
in a database is often associated to the choice of a goal type. Here, two goal 
types can be distinguished, buying a notebook or a desktop computer. The 
AVM representation of this task is shown in Table 15. The used database has 
three years old so described computers are not sold anymore. 

Attributes # Values 
table 2 ‘Notebook’, ‘Desktop’ 
pc_mac 2 ‘PC’, ‘Mac’ 

processor_type 9 ‘Pentium II’, ‘Pentium III’, ‘Celeron’, ‘AMD-K6- 2’, 
‘AMD K7’, ‘AMD Athlon’, ‘Cyrix’, ‘G3’, ‘G4’ 

processor_speed 551 [350-900] MHz 
ram_size 3 32, 64, 128 
hdd_size 4 20, 30, 40, 60 Gb 
brand 14 ‘IBM’, ‘Sony’, ‘HP’, ‘Toshiba’, etc.  

Table 15: AVM representation for the computer retailing task. 
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Some values for a given attribute exclude values for another (like, PC 
excludes the ‘G3’ value for the processor type) but such internal structure will 
not be specified. Indeed, if the user provides incompatible values, that will 
lead to an empty result of database queries. The system should learn to 
behave correctly in such a case. 

8.1.2. Action Set 
Since the task involves database querying, actions will not only imply 
interaction with the user but also with the database. The following action 
variables will be considered: 

Variable Values 

Type: AS
‘greet’, ‘constQ’, ‘openQ’, ‘expC’, ‘allC’, ‘rel’, 
‘dbQ’, ‘close’ 

Attr ble, 

{0,1} 

ibutes: ta
ac, pc_m

processor_type, 
processor_speed, 
ram_size, 
hdd_size, brand 

Table 16: Action set for the computer-retailing example 

All attrib not modifying all actions thus,  of the AS 
variables exclude the 1 value ibute var example, the 
‘greet’ ac g) is no any attri er the ‘close’ 
action. On another hand, there are some va  
argument modifies them like  (constra tion), ‘expC’ 
(explicit con  
the size tributes 

ording to these considerations, the action 

As argued previously, the state space is very important and several state 
spaces can be investigated for the same task. Table 17 shows available state 
variables for building the current task’s state space. In this table, each 
attribute of the task’s AVM is present (Attributes), the ‘status’ variable indicates 

utes are  certain values
iables. For  for certain attr

t modified by tion (greetin bute, neith
lues involving that only one

 the ‘constQ’ ining ques
firmation) and ‘rel’ (relaxation) actions. This reduces dramatically

 of the action set. Finally, there are actions modified by all at
at the same time like ‘openQ’ (considering that the open ended questions 
accepts any attribute or sequence of attributes as a valid answer), ‘allC’ 
(confirma all) and ‘dbQ’ (since the database query is conditioned by all the 
attributes provided by the user). Acc
set size is 25. 

Reader will notice that there is no data presentation action. Actually, it is 
considered that the data presentation is included in the ‘close’ action. 

8.1.3. State Space 
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whether the attribute has been confi
has a corresponding confidence leve

rmed by the user or not, each attribute 
l CL  and the ‘DB’ variable indicates the 

. It is important to know that the larger the value set is, the larger will 

ro, 
1994]).  

When using the value set of the right column (only composed of Boolean 
values), the state space size decreases to 210 states, which is already 
tractable but quite large for this simple task.  

i
number of database records that correspond to AV pairs retrieved so far. 
Table 17 also shows that different sets of values can be used for each 
variable
be the resulting state space.  

For example, if one takes the values of the first column to build a state space, 
its size will reach more than 109 states, which would lead to an almost 
intractable solution (unless using particular techniques like in [Tesau

Variable Values 
Attributes: table, 
pc_mac, 
processor_type, 
processor_speed, 
ram_size, 
hdd_size, brand 

Actual Values {known, unknown} 

Status:   {confirmed, not 
confirmed} 

ASR CL: {CLi} 
Discrete Value 
{.0, .1, …, 1.0} {high, low} 

DB: retrieved 
records  Actual Values Number of records or  

{high, low} 

Table 17: State space variables for the computer-retailing example 

The state space size can still be reduced by noticing that when an attribute is 
‘unknown’, it cannot nfidence level. Thus 

plemented. This 

In the experime  here wo c  tested. The 
first is the 28-state state space using Boolean values described in the above 
(S1) and the other, even simpler is realised by n ing  ‘DB’ variable 
in the set of s ). 

 

be ‘confirmed’ and has a ‘low’ co
ave to be imsome states will never been visited and don’t h

reduces the state space size to 28. 

nt exposed , t  different state spa es are

ot includ  the
tate variables (S2
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8.1.4. Dialogue Simulation 
In the second part of this text, several methods to simulate a dialogue have 
been proposed. In the present experiments, 3 different configurations were 
used.  

First, a simple simulation (Sim1) has been realised by connecting a RL agent 
to a simple probabilistic user model based on a set of probabilities exposed in 
section 5.2.1 and which utterances are filtered by a minimal error modelling 
with a fixed error rate and a unique confidence level distribution (Fig. 49).  

Simulation 
Environment

User 
Model

ASR

ut
WER

{P(uα|sβ)} ot

syst

 
Fig. 49: Simulation environemnt Sim1 

Second, the same simple UM has been connected to the ‘Task Classification’ 
error model exposed in section 6.1.1 (Sim2) as shown on Fig. 50. Thus, each 
attribute of the task’s AVM ha egorised and associated with a WER 
and two CL distributions (one ell recognised word and another for wrong 
recognitions  s o this classification manually.  

s to be cat
for w

). The designer hould then d

Simulation 

ASR

User 
Model

Environment

ut

{P(uα|sβ)}
otsyst

WERi

 
Fig. 50: Simulation environement Sim2 

The chosen classification is shown in Table 18. 
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Attributes # Recognition Task WER 

table 2 Boolean .05 
pc_mac 2 Boolean .05 
processor_type 9 Isolated words .2 
processor_speed 551 Number .1 
ram_size 3 Number .1 
hdd_size 4 Number .1 
brand 14 Isolated words .2 

Table 18: Recognition task classification for the computer-retailing example 

Third, the Bayesian UM has been connected to
based on inter-word distance also discussed in section 6.1.1 

 the automatic ASR model 
(Sim3). The rest 

of the environment simulation has been disabled for explanatory purpose
order to compare results in the following) as depicted on Fig. 52.  

s (in 

Simulation 
Environment

User 
Model

ASR

ut

ot

syst
WER + CL

Vocabulary

U

K

As S

close

V

G

 
Fig. 51: Simulation environment Sim3 

Finally, this last simulation configuration has been used with a UM presenting 
3 different degrees of initiative: low (Sim3a), medium (Sim3b) and high (Sim3c).  

For the purpose of simulation, a user goal has to be created before starting 
each simulated dialogue. As said before, an AVM representation is also used 
for the goal. Before starting a dialogue session, a goal is so built by filling in a 
template with a value for each field. A goal example is shown in Table 19. 

Attributes Values 
table ‘Notebook’ 
pc_mac ‘PC’ 
processor_type ‘Pentium III’ 
processor_speed N/A 
ram_size 128 Mb 
hdd_size 30 Gb 
brand N/A 

Table 19: User goal 
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In order to simulate more realistic behaviour, the user’s goal might not 

be made for building the reward function. 
Yet, one must remember the ge rk defined to do so in section 
7.2.3. According to (7.5),  rew fun n an estimate of 
the number of turns, the el he last retrieved attributes and 
the task completion.  

Consideri  e nu  of s  lly s for the 
total elap im o v s a tu av e nu r of user 
turns NU ies).  

results of different experimental settings are reported. Each 

or NS) and TC stands for the task completion measure (TCmax, TCav).  

contain value for some of the attributes. This suggests that the user doesn’t 
know the value or that he/she doesn’t care about the value of a particular 
attribute (processor_speed and brand in Table 19). 

8.1.5. Reward Function 
Once again, several proposals can 

neral framewo
 the ard ction should rely o

 confidence lev for t

ng the
sed t

e tstima
e), tw

 o  f the
alue

mber
re ac

 turn
ally 

(which
ailabl

actua
: the 

 stand
mbe

and the number of system turns NS (including database quer

On another hand, the task completion is not always simple to define. The 
kappa coefficient is one possibility but didn’t always prove to correlate well 
with the perceived task completion. For the purpose of this experiment, two 
simple task completion measures will be defined: 

(8.1) 

(8.2) 

In these last expressions #(GU ∩ R) is the number of common values in the 
user’s goal GU and a record R presented to the user at the end of a dialogue. 
When a value is not present in the user goal (N/A) it is considered as being in 
common.  

The first task completion measure TCmax is an indicator of how close is the 
closer record in the presented results. The second TCav measures the mean 
number of common values between the user’s goal and each record 
presented.  

8.1.6. Results 
In the following, 

( )( )RG#maxTC U ∩=max

( )( )RG#averageTC U ∩=av

experiment leads to different learned strategies, which will demonstrate the 
sensibility to the parameters. Each of the configuration will be denoted by a 
tuple {S, Sim, N, TC) defining the used parameters. In this tuple, S defines 
the state space (S1 or S2), Sim indicates the simulation environment 
configuration (Sim1, Sim2, Sim3), N stands for the time duration measure (NU 
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Results will be described in terms of average number of turns (user and 
system), average task completion measure (TCmax and TCav) for the 
performance and in terms of action occurrence frequency during a dialogue 
session to g
by sim s w

8.1.6  First : x} 
A first experiment based on the smaller state space (without any clue about 
the retrieved records) has been realised, with the simplest simulation 
environment, using the number of user turns as a measure of elapsed time 
and the TCmax as the task completion measure. Results are shown in Table 
20. 

et a clue about the strategy learned. These results are obtained 
ulating 10,000 dialogue ith the learned strategy.  

.1.  Experiment  {S2, Sim1, NU, TCma

Performance 
NU NS TCmax TCav

2.25 3.35 6.7 1.2 
Strategy 

greet constQ openQ expC AllC rel dbQ close
1.00 0.06 0.0 0.14 0.0 0.05 1.10 1.00 

Table 20: Learning results for {S2, Sim1, NU, TCmax} configuration 

tem turns and has a very high task completion rate in 
terms of TCmax measure. Yet the TC n value.  

When looking to the aver e freq cy ion the strategy table, one 
can see that the only action addressed to the user that happens frequently 
during a dialogue is th eeti the almost never happen. 
Actually, a r t  user 
should answer by pro iding some argument values, performs a database 
query with the retrieved attributes and provides the results to user. 
Sometime g to the 

an 1). 

When looking at the three first columns of the performance table, the learned 
strategy doesn’t look so bad. It actually has a short duration in terms of user 
turns as well as in sys

av shows a very low mea

ag uen of act s in 

e gr ng action
e

. O rs 
the le rned st

v
ategy u ters th  greeting prompt to which the

 the 
s, the user doesn’t provide any attribute when answerin

greeting prompt or the value is not recognised at all by the ASR model, so the 
strategy is to perform a constraining question (and not an open ended 
question) that will provide an argument with a better CL. Sometimes the 
provided arguments have a poor CL and an explicit confirmation is asked for 
and sometimes the provided arguments doesn’t correspond to any valid 
record in the database so the strategy is to ask for relaxation of one argument 
(this also explains why the number of database queries is greater th
The reason for which TCmax is not maximal (equal 7) is that sometimes, the 
dialogue failed.  
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This results in showing to the user almost all the database records when 
he/she only provides one argument when prompted by the greeting. This is 
why there is a so big difference between TCmax and TCav. The desired record 
is actually in the presented data (TCmax is high) but it is very difficult to find 
(TCav is low). This strategy is definitely not suitable for a real system. Table 
21 shows an example of a typical dialogue obtained when following the 
learned strategy.  

 Intentions Expanded Intentions 
a0 → 
sys0

AS = greeting Hello! How may I help you? 

u0
u1 = table 
v1 = ‘Notebook’ I’d like to buy a Notebook. 

o0

u1 = table 
v1 = ‘Notebook’ 
CL = high 

 

a1 AS = dbQ  
o1 DB = 377 (high)  

a2 → 
sys2

As = close 
Ok, here are the computers 
corresponding to your request: (proposes 
the 377 Notebooks in the DB) …  

Table 21: Example of a typical di gy learned with TCmax 

One  s t sults in a all the notebooks 
present in the

8.1.6 . Sec 1 1 U Cav} 
This experiment uses the same settings as the previous one except that the 
‘DB’ v iable to the state variables and the task completion is 
meas d with

alogue when using a strate

 never-ending listing of can ee 
 

hat this re
database.  

.2 ond Experiment: {S , Sim , N , T

ar is added 
ure  TCav.  

Performance 
NU NS TCmax TCav

5.75 8.88 6.7 6.2 
Strategy 

greet constQ openQ expC AllC rel dbQ close 
1.00 0.31 1.12 0.21 3.13 1.00 0.87 1.24 

Table  results for {S2, Sim1, NU, TCav} configuration 

This time, TC  are close to each other, showing that the 
presented resu curate but the number of turns has increased. 
The number of system turns particularly shows higher values. This 
observation is obviously explained by the increase of database queries (since 

 22: Learning

max av and TC
lts are more ac
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it is t only a es the number of system turns and not the 
numb f 

A look at the ccurrence frequencies will help understanding what 
happened. Th g agent ly tries to maximise the TCav value 
while minimising the number of user turns and maximising recognition 
performance. To do so, it always performs a database query after having 
retrie  in m the u  the 
state representation, the agent user 
when in a stat mber of results. If this number is too high after 
the greeting, t  tries  where the result number is 
lower. Thus it almost systematically performs an ‘openQ’ action after the 
greet in er to get as mu  of 
turns s  1.24  
recognition outputs, thus it also mation of all the fields before 
presenting when the 
user answers the greeting and only a constraining question is asked to gather 

etrieved from the 
ecause it leads to 

he ction that increas
er o user turns).  

action o
e learnin  obvious

ved formation fro ser. Since the number of results is part of
 learned not to present the results to the 

e with a high nu
he learner to reach a state

ing  ord
(thi ex

ch information as possible in a minimum
 value). Yet, this often results in poorer
 performs a confir

plains the

 any results. Sometimes, more information is provided 

enough information so as to reach a state with less results r
database. A constraining question is preferred in this case b
better recognition results.  

The mean number of user turns shows that only 5.75 turns are usually 
needed to reach an accurate result set because the computer configurations 
are sufficiently different so as not to need too much attributes in the database 
query to provided accurate results. Thus, the system doesn’t ask for all the 
attribute values to the user. Table 23 shows a typical dialogue obtained when 
following this strategy.  

 Intentions E tions xpanded Inten
a0 → 
sys0

AS = greetin He How  he u? g llo!  may I lp yo

u0
u1 = table 
v1 I’d a Notebook.  like to buy  = ‘Notebook’ 

o0

u1 = table 
v1 bo= ‘Note ok’ 
CL = high 

 

a As = dbQ  1
o1 DB = high  
a2 → 
sys2

AS = openQ Do you have any other preference? 

u2

u1 = pc_mac 
v1 = ‘PC’ 
u2 = proc_type 
v2 = ‘Pentium III’ 

I’d rather like a PC with a Pentium III 
processor. 
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u1 = pc_mac 

1

o2

v  = ‘PC’ 
u2 = proc_type 
v2 = ‘Pentium III’ 
CL = high 

 

a3 As = dbQ  
o3 DB = high  
a4 → 
sys4

AS = constQ 
s1 = ram Ho uch ry would you like? w m  memo

u4
u1 = ram 
v1 = 128 128 MB. 

a5 As = dbQ  
o5 DB    = low
a6 → 
sys6

AS = allC You asked for a PC Noteboo with a k 
Pentium III processor and 128 MB memory.  

u6

c1 = conf_table 
cv1 = true 
… 

Yes. 

a7 → 
sys7

As = close 
Ok, here are the computers corresponding 
to your request: (proposes the 3 results of 
the DB query) …  

Table 23: Typical dialogue obtained with an improved strategy 

8.1.6.3. Third Experiment: {S1, Sim1, NS, TCav} 
The sam e  s  b e e placing 
the NU measure of time It actually make sense 
since in a r pplica  the base could b c  one 
used here. Thus, the d  more time consuming 
and waiting ld bo e u wn in 
Table 24. This obviously results in a decrease of the number of database 
queries involving system turns NS. 

e experim nt as the previou  one has een p rform d but re
 duration by the NS measure. 

eal a tion,  data e mu h larger than the
atabase queries could be much

 wou re th ser. Results of this experiment are sho

a proportional decrease of the number of 
Yet, an increase of the number of user turns NU is also observed.  

Performance 
NU NS TCmax TCav

6.77 7.99 6.6 6.1 
Strategy 

greet constQ openQ expC AllC rel dbQ close 
1.00 1.57 1.24 0.33 1.32 0.31 1.22 1.00 

Table 24: Learning results for {S1, Sim1, NS, TCav} configuration 

By examining the action frequencies, one can notice that the number of 
constraining questions increased resulting in an increase of NU. Indeed, the 
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learned strategy implies gathering enough information from the user before 

In this experiment, the simulation modified and the 
Sim2 environment has bee  use han  is the ASR model, which 
includes different error s a on e level distributions for the 
different recognition tasks

performing a database query. This explains why the systems ask more 
constraining questions.  

8.1.6.4. Fourth Experiment: {S1, Sim2, NS, TCav} 
environment has been 

d. The main cn
rate

ge
n cd fidenc

.  

P aerform nce 
NU NS TCmax TCav

6.53 7.72 6.7 6.2 
Strategy 

greet constQ openQ expC AllC rel dbQ close
1.00 1.56 1.22 0.21 1.32 0.22 1.19 1.00 

Table 25: L r S 2, C

Examining t perform s red n in the 
number of turns (NU n t  t mber of 
explicit con tion a s ened, 
another me  sho e o ed: 
have a comparative view of different action values in a same state, the 
softmax pr ity of  ac  a r m th e l values. 
For example, let ach constraining 

earning esults for { 1, Sim  NS, T av} configuration 

he ance indices, one can see a mall 
ion in

uctio
he nuand NS) a si a t c

d relaxation prompts. To under
and gnific  redu

firma
asure

n
uld b

tand what happ
bserv the actions value in each state. To 

obabil  each tion is bette etric an th actua
’s examine the softmax probability of e

questions in the initial state (when nothing is known yet). Results are shown 
in Table 26.  

note_desk pc_mac p_type p_speed ram hdd brand 
Experiment {S1, Sim1, NS, TCav} 

0.1 0.1 0.01 0.04 0.04 0.04 0.01 
Experiment {S1, Sim2, NS, TCav} 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Table 26: Comparison of initial state Q-values 

ne can notice that the probabilities have been modified comparing to the 
revious experiment (shown on the second result line). Some actions have a 

greater probability to occur usin ction selection strategy, which 
means a higher value. This is due  th im n of the CL value. The 
learned strategy now ord he rai uestions in order to ask first 
the values that will produ et og  result. In the case of the task 
classification simulation m , b e obtained with the ‘Boolean’ 

O
p

g a softmax a
 to e max isatio

ers t const ning q
ce a b ter rec nition

odel etter results ar
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recognition task followed by the ‘n sk and finally the ‘isolated words’ 
task provides the worst results. This also condu
the number of database queries since  s pr d by the 
recognitio r m  re  in ty es

8.1.6.5. Fifth Experiment: {

umber’ ta
cted to a small reduction of 

some bad re ults ovide
n erro odel sulted  emp queri .  

S1, Sim3, NS, TCav} 
The last experiment is done thanks to the Sim3 simulation environment in 
which the Bayesian UM and the automatic ASR model are implemented. A first 
experiment has been done with a UM with a low initiative level and results are 
described in Table 27.  

Performance 
NU NS TCmax TCav

6.54 7.65 6.7 6.3 
Strategy 

greet constQ openQ expC AllC rel dbQ close 
1.00 1.55 1.22 0.20 1.33 0.24 1.21 1.00 

Table 27: Learning results for {S1, Sim3, NS, TCav} configuration 

Results seem approximately similar to those obtained with the previous Sim  2
but a closer look at the softmax probabilities will show a significant difference: 

note_desk pc_mac p_type p_speed ram hdd brand 
Experiment {S , Sim , N , TC } 1 1 S av

0.1 0.1 0.01 0.04 0.04 0.04 0.01 
Experiment {S1, Sim2, NS, TCav} 

0.05 0.05 0.05 0.05 0.05 0.05 0.05 
Experiment {S1, Sim3, NS, TCav} 

0.14 0.12 0.01 0.01 0.03 0.02 0.01 

Table 28: Comparison of initial state Q-values 

This time, the order is once more modified according to the actual properties 
of the used vocabularies. It is quite difficult to draw conclusions thanks to 

level of 

comparisons with the previous experiments since it makes assumption on the 
actual performance of a real ASR systems. Comparisons should be made with 
a real system, which as not been possible.  

Other experiments have been realised by making varying the UM’s 
initiative. Results are shown in Table 29.  
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Performance 

NU NS TCmax TCav

6.54 7.65 6.7 6.3 
5.99 7.23 6.6 5.9 
5.74 7.06 6.6 5.2 

Strategy 
greet constQ openQ expC AllC rel dbQ close
1.00 1.55 21. 2 0.20 1.33 0.24 1.21 1.00 
1.00 0.80 1.02 0.31 1.24 1.00 1.67 0.19 
1.00 0.50 1.86 0.15 0.88 0.35 1.32 1.00 

Table 29: Lea g ls 

Results te easily e tem initiative 
actions d sed, the n b ased also but the number 
of system tur lied to relax 
constrains and realise more database queries.  

ng design of the reward function was not 
 obtaining sub-optimal behaviour but also too simple 
ions. Yet a sensible point is the definition of the task 

lso been shown that the strategy can be adapted to 
different user vels. 

8.2. Train Ticket Booking System 
A second simple SDS has been described in section 5.2. This example was 
actually a simplifie tem that aimed at 

rnin  results for different user initiative leve

are qui  int rpreted since the number of sys
ecrea um er of user turns decre

ns decreased not as much because some errors imp

8.1.7. Conclusion 
Different experiments have been realised and showed the importance of the 
choices made when designing the MDP underlying the dialogue system being 
developed. It also showed that wro
the only responsible for
state space representat
completion measure.  

Moreover, optimising the dialogue according to the ASR confidence level 
resulted in an adaptation of the learned strategy to the recognition task 
difficulties. It has a

initiative le

d version of a train ticket booking sys
delivering train tickets corresponding to a particular travel. Users are invited 
to provide information about the departure city and time as well as the 
destination city and time. The desired class was also a possible option.  

It is a very common type of SDS and lots of implementations exist. As no real 
system was available for the purpose of this work, this problem has been 
considered with a theoretical point of view. An artificial application has been 
built and, from now on, it will be considered as a form-filling problem. 
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8.2.1. AVM Task Representation 
This application is actually a pr eneral 
application. s in and 

fty values have been artificially chosen in a list of 
he departure and destination cities and time will be 

etext to study the form-filling g
e, attributes of the AVM are the slots to be filled In this ca

values are of course the different values that can be taken by each slot. In the 
case described here, the different slots are the departure city (‘dep’), the 
destination city (‘dest’), the departure time (‘t_dep’), the desired arrival time 
(‘t_dest’) and the class. Fi
Belgian cities to stand for t
considered as being plain hours (8 AM, 3 PM etc). The class values are 
‘business’ or ‘economic’.  

Attributes # Values 
dep 50 ‘Namur’, ‘Bruxelles’, ‘Mons’, ‘Charleroi’, 

‘Liège’,… 
dest 50 ‘Namur’, ‘Bruxelles’, ‘Mons’, ‘Charleroi’, 

‘Liège’,… 
t_dep 24 ‘1 AM’, ‘2 AM’, …, ‘1 PM’, ‘2 PM’, … 
t_dest 24 ‘1 AM’, ‘2 AM’, …, ‘1 PM’, ‘2 PM’, … 
class 2 ‘Economic’, ‘Business’ 

Table 30: AVM representation of the train ticket example 

In the follow imple problem of retriev alues for each field will 
be studied. Of course, a real syst be much  
datab  be us hich  better 
to the user’s requirements. Yet, this simple example has been designed to 
illustra

8.2.2. Action Set 
As sa  this task d database t is a pure 
form-filling p T s, there lative to t hey are all 
addre he rela and the al ill also be 
suppres

ing, the s ing the v
em would 

ed to find out w
more complex and

options correspondase retrieval should

te some interesting results. 

id just before, oesn’t require queries bu
roblem. hu

ssed to the user. T
 is no action re
xation prompt 

he WK and t
lC actions w

sed. 

Variable Values 
Type: AS ‘greet’, ‘constQ’, ‘openQ’, ‘expC’,  ‘close’ 
Attributes: dep, 
dest, t_dep, t_dest, 
class 

{0,1} 

Table 31: Action et for the ticket example 

Like said for the computer-retailing example, all attributes cannot modify any 
actions thus, certain values of the A

s

riables exclude the 1 value for certain S va
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attribute variables. On another hand
only one argument modifies them lik

, there are some values involving that 
e the ‘constQ’, ‘expC’ and ‘rel’ actions. 

AS = ‘openQ’, dep = 1, dest = 1, 

Unlikely, it will be considered that the ‘openQ’ action will take at least 2 and at 
most 3 arguments. The ‘function’ notation will be used to keep results clear in 
the following. For example, the action openQ(dep, dest) which actually 
corresponds to the factored representation {
t_dest = 0, t_dep = 0, class = 0} will result in the following prompt: 

System: What are your departure and destination cities? 

Like in the preceding example, it will be assumed that the ‘close’ action will 
return the retrieved information to the user at the end of the dialogue session. 

ither the actual values reported in the AVM or be set as 
Boolean variables. The status variable is still in ables 
set and indic te is confirmed or not. 

Yet, two ne wil duced, namely the NLU confidence level 
(CLU) and a nation o NLU and ASR confidence levels (CLT). The 
combination is obtained b iplying the CLs provided by both system 
models. This implies the u ore complex simulation environment in 
which model of those syste d. The state variables are 
summarised in Table 32. 

8.2.3. State Space 
Like in the previous example and as described in section 7.2.1, the attributes 
of the AVM task representation are part of the state variable set. These 
variable can take e

cluded in the state vari
ates whether an attribu

w variables l be intro
 combi f both 

y mult
se of the m

ms are implemente

Variable Values 
Attributes: dep, dest, 
t_dep, t_dest, class Actual Values {known, unknown} 

Status:   {confirmed, not 
confirmed} 

ASR CL: {CLRi} 
Discrete Value {high, low} {.0, .1, …, 1.0} 

NLU CL: {CLUi} 
Discrete Value 
{.0, .1, …, 1.0} {high, low} 

ASR-NLU CL: {CLTi} 
Discrete Value 
{.0, .1, …, 1.0} {high, low} 

Table 32: State space variables for the computer-retailing example 

Once again, the state variable values described in the left column leads to a 
very large state space which size would be 1.44 109. Thus, the right column 
variables will be retained and only one of the three proposed CL will be used. 
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This will result in a 
level is used at a tim

state space size of 26 states since only one confidence 
e.  

ion used for this experiment is the more complex one 

 realised when the switch is closed and the NLU 
ronment, the NLU model is not bypassed.  

The state space including the {CLRi} variables will be denoted SR, the state 
space including the {CLUi} will be denoted SU and the state space including 
the {CLTi} variables will be denoted ST. 

8.2.4. Dialogue Simulation 
The dialogue simulat
described in section 5.3 with the Bayesian UM and the automatic ASR and NLU 
models. Nevertheless, two configurations will be used in which the NLU model 
is either disabled (Sim1) or enabled (Sim2).  

The experimental settings are depicted on Fig. 52 in which the simulation 
environment Sim1 will be
model is bypassed. In the Sim2 envi

Simulation 
Environment

User 
Model

ASR

ut

ot

syst
WER + CL

Vocabulary

NLU
As S

U

K

close

V

G

U

K

S

close

As

V

G

 
Fig. 52: Simulation environment h on) and Sim2 (with switch off) 

A user goal has to be built before eac teraction. As usual, the AVM 
representation is used to build oal. This time, unlike previously, the user 
goal always contains a value for e ute. An example of a user goal is 
shown in Table

Sim1 (with switc

h in
 the g

ach attrib
 33. 

Attributes Values 
dep ‘Mons’ 
dest ‘Namur’ 
t_dep ‘9 AM’ 
t_dest ‘6 PM’ 
class ‘business’ 

Table 33: User goal 
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8.2.5. Reward Function 
To build the reward function, estimates of the duration time, confidence level 
and task completion are still needed. The duration time will be estimated 
thanks to the number of user turns NU since there is no particular action not 
involving only the user. The confidence level will be estimated either by the 
CLR or the CLT value.  

The task completion will be measured by comparing the data presented at 
the end of each dialogue with the initial user goal. An estimate of the task 
completion will simply be the proportion of common values (0, 0.2, 0.4, 0.6, 
0.8, 1).  

The simulation environment w  user model with a medium 
initiative level. 

8.2.6. Results 
In the following ults o rent rimen ttings  reported. The 
settings are  
to the prese is model is 

 in terms of action 
o io  get a clue about the 

lating 10,000 dialogues 

periment: {SR, Sim1, CLR } 
A first experiment is performe  a baseline example. In this 
experiment, the NLU model is disabled, which means that no understanding 
error is introduced. No information about the NLU model’s metrics is used 
neither in the state space represe or the reward function. The user 
model is set up a m ve tive

This experiment shows that with a medium initiative level, the user’s 
satisfaction ompletion. 

ill implement a

, res f diffe expe tal se  are
 modified to point out differences in learned strategies according
nce or the absence of an error prone NLU model. Th

disabled when using the Sim1 and CLR settings and is enabled when using 
Sim2 and CLT settings. The state variable set includes or not the provided NLU 
metrics when using SR or ST. The simulation settings will then be referred to 
as tuple {S, Sim, CL} 

Results will be described in terms of average number of turns and average 
task completion measure for the performance and
occurrence frequency during a dial gue sess n to
strategy learned. These results are obtained by simu
with the learned strategy 

8.2.6.1. First Ex
d to serve as

ntation n
 with edium le l of initia .  

relies as much on the duration time as on the task c
Thus dialogues are short, but task completion is not optimal since one 
attribute is often missing in the presented data (one of the cities in general). 
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There are more open-ended questions than constraining questions (see 
Table 34.  

Performance 
N TC U

5.39 0.81 
Strategy 

greet constQ openQ expC close 
1. 0 0 0.85 1.23 1.31 1.

Table 34: Learning results for {SA, Sim1, CLA } configuration 

Actually, constraining questions are present because sometimes only one 
argument is missing and there is no need of an open-ended question to 
retrieve it. Yet, there are explicit confirmations because the task completion is 
a factor of user satisfaction. It actually illustrates well the trade-off between 
task completion and time duration.  

having a closer look to the results of this experiment, 
t the baseline strategy learned in the preceding 

8.2.6.2. Second Experiment: {SR, Sim2, CLR } 
This second experiment is performed by using the same state space and the 
same reward function but by enabling the NLU model in the simulation 
environment. This results in NLU errors not predictable by the CLR confidence 
level (thus, the explicit confirmation will not be dependent of the value of the 
CL state variable). Before 
it should be noticed tha
example leads to a task completion of 0.69 when faced to the configuration 
explained in this section because of NLU errors. Results of this experiment are 
shown in Table 35.  

Performance 
NU TC 

7.03 0.74 
Strategy 

greet constQ openQ expC close 
1.0 1.25 1.18 2.60 1.0 

Table 35: Learning results for {SA, Sim2, CLA } configuration 

In this case, the duration time increases and the task completion decreases. 
Yet, as explained before, the task completion would have been worst if the 
number of turns didn’t increase (using the previously learned strategy). This 
increase is due to an increase in the number of explicit confirmations 
explained by the fact that the system must confirm more values since it 
cannot use the information about the confidence level.  
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8.2.6.3. Third Experiment: {ST, Sim2, CLT } 
This time, the NLU metrics are used in association with the ASR metrics to build 
the state space and the reward function. Results of this experiment can be 
found in Table 36. 

Performance 
NU TC 

5.82 0.79 
Strategy 

greet constQ openQ expC close 
1.0 1.05 1.18 1.58 1.0 

Table 36: Learning results for {ST, Sim2, CLT } configuration 

These results are comparable to those obtained in the baseline experiment. 
That means that incorpor  NLU metrics wh  facin ches 
approximatel am  performance than incorp at m hen 
facing ASR errors. In t ed the action values, 

ating the en g NLU errors rea
y the s e or ing ASR etrics w

he same way that ASR metrics chang
the NLU metrics changed the values of mixed-initiative actions. Like previously, 
let’s have a look to some action values of the initial state.  

openQ(dest,d
ep) 

openQ(t_dest,
dep) 

openQ(dest,t_
dep) 

openQ(dest,cl
ass) 

0.005 0.11 0.11 0.12 

Table 37: Comparison of initial state Q-values 

Table 37 shows softmax probabilities of some actions in the initial state and it 
can be seen that the mixed-initiative query associating the dest and dep 
attributes has a lower probability to occur than other actions. It is actually 
indicating that the confidence level obtained when asking two city names and 
trying to associate them to their corresponding attributes is lower than when 
asking two other attributes.  

This result is not surprising since the values of the to city attributes dep and 
dest are the same. Thus, the NLU process is made more difficult and this 
results in NLU errors and bad NLU confidence levels. Yet, some other actions 
have a greater value but are not particularly meeting ergonomic rules. For 
example asking the destination city and the class before all is not an 
expected behaviour. Anyway, the designer should fix this problem afterwards. 

8.2.7. Conclusion 
The introduction of NLU errors induces problems that are handled by baseline 
strategies by augmenting the confirmation mechanisms and restricting mixed-
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initiative behaviour. The introduction of the NLU metrics in the state space and 
the reward function results in an adaptation hopefully comparable to the one 
obtained when introducing ASR metrics to handle ASR errors. This motivates 
the use of the NLU model in the RL paradigm. 

8.3. User Adaptation and Goal Inference 
The possibility to use the UM as a part of the WK has been mentioned in 
section 7.2. One possible use of UM would be to create several models for 
different groups of ‘same-minded’ users (content-based user adaptation) or 
even one model for each user if the application is to be often used by a same 
user (history-based adaptation).  

In this work, it has been shown that different strategies can be learned for 
users with different levels of expertise (or initiative). Objective functions are 
different and factors of user satisfaction are varying. It would then be a 

ect the initiative level of the current user in order to 
d of applying the same rules for any user. Of course, 

 evidence is shown in Table 38 which 

certain advantage to det
adapt the strategy instea
user adaptation often involves longer scenarios than those discussed so far 
but it might be interesting to find out a method to make this possible.  

The Bayesian UM described in section 5.3 allows for probabilistic inference. 
The level of expertise is a node of the network and since it has no parent, 
each of its value defines a new sub-network. Finding which sub-network is 
the more likely to have generated a given utterance is finding the level of 
expertise of the user. To do so, evidence can be created with the first 
utterance of the user, for instance. For example, let’s consider the train ticket 
booking service in which the user gives the values of dest and t_dest after the 
greeting action. The corresponding
refers to notations of section 5.3.5.  

AS ki udest ut_dest udep ut_dep uclass vvdest vvt_dest

‘greet’ low ∀i 1 1 0 0 0 ‘Namur’ ‘1 PM’ 

Table 38: Evidence for user adaptation 

Entering this evidence in the inference engine of the user model will provide 
the probability distribution over the value of the initiative level node (I). Taking 
the value with the higher probability do the job of user classification. This 
value might be part of the state variables and could modify the action taken. 
Yet one must not forget that this will multiply the state space size by the 
number of possible values for the expertise level and increase linearly the 
time required for convergence. It is therefore probably a better option to train 
different strategy on particular UMs and add an action ‘changeStrategy’ to the 
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action set which is forced when the strategy followed is not the one trained for 
the type of user being interacting with the system.  

Of course the classification task might not be able to provide good results 
with the initial answer. Thus, the system can use its history estimate in order 
to generate new evidences. For instance, assuming that the user answered a 
value for the dep variable to a constraining question following the greeting. 
The history of the systems indicates that the user already provided a value for 
the dest and t_dest attributes and didn’t confirm it. The corresponding ki are 
set to m iedium the gv  values are set to the values provided before (they are 

 second. Of course the task is made easier and 
results are optimistic because the same model that has been used for 
classification generated the dialogues but no other experimental data was 
available. Yet, the classification algorithm doesn’t give 100% of good results 
because there is always a probability that a particular user model generated a 
behaviour that is more likely to be produced by another model.  

In the same way, goal inference could be realised if the task structure is 
reflected in the Bayesian UM’s goal as explained in section 5.3.3. The 
evidence would then be composed of values for ai and gvi and the inference 
process would concentrate on finding the mode likely value of an attribute aj 
defining precisely the goal. The task structure could be learned from data 
corpus like proposed in [Meng et al, 1999] or handcrafted like proposed in 
[Wai et al, 2001]. 

8.4. Grounding 
Eventually, a first attempt to introduce grounding in the RL paradigm has been 
realised. Indeed, it is also possible to use probabilistic inference with the 
Bayesian UM to retrieve the most probable values of the ki variables 
representing the history of the interaction from the user’s point of view. To do 
so, a new experiment setting has been tested. Starting from the train ticket 
booking example, some constraints have been introduced in the UM. The 
main constraint is that the UM doesn’t provide the departure (arrival) time if it 
has not provided the departure (arrival) city before. This is traduced by setting 

now assumed to be part of the user’s goal) and the corresponding variables 
ai are set to 1. Entering the corresponding evidence in the inference engine 
provides a probability distribution over the expertise level values.  

An experiment have been done by producing dialogues using the same 
configuration as in the fifth experiment of section 8.1.6.5. The user 
classification has been applied afterwards using the log of the simulated 
dialogues and results showed a classification rate of 84% after the first 
utterance and 95% after the
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some probabilities to very low values in the Bayesian UM such as P(ut_dest = 1| 
kdest = ‘low’, ….) = 0.01.  

Suppose then that, after the greeting, the system shifts to a state where it 
seems to have retrieved values for the dep and the t_dest variables. This can 
be introduced as evidence in the inference engine in order to retrieve the 
most probable values of the ki. It will find that th
probably when kdest is set to ‘medium’ while the syste
value for dest ha

To experiment th
environment and removed the NLU confidence level from the state space and 
reward function. Yet, a new variable has been added to the state variables: a 
‘grounding confidence level’ variable. This variable is set to 0 when a 
difference has been noticed between the ki and the state variables 
corresponding to attributes and to 1 otherwise. Yet, no new action has been 
added to the action set. In a real system, a ‘repair’ action should probably be 
added and correspond to a repair sub-dialogue in which the system would try 
to confirm values and to retrieve the actually uttered AV pairs.  

The experiment led to results similar to those obtained by using the NLU 
model metrics as state variables and including them in the reward function. 
That is, the systems learned to ask open-ended questions that more often led 
to a 1 value for the ‘grounding confidence level’ variable, which are open-
ended questions associating dep (dest) and t_dep (t_dest) variables. Yet, the 
behaviour of the UM led to an order in the question asked (first cities and time 
after).  

This experiment can be criticised because adding handwritten probabilities to 
indicate a preference in the order of questions in the UM induces to learn a 
strategy according to this order. It makes assumptions that are not always 
true, it forces the system to ask questions in the preferred order because the 
dialogue lengths is otherwise increased (since the user refuses to answer 
questions in another order) and the system tends at learning a strategy 
similar to the one that could be handcrafted. Yet, this setting has been tested 
for experimental purposes. 

is answer occurs more 
m state indicates that no 

s been retrieved.  

is, the Bayesian UM has been connected to the simulation 
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Chapter 9: Conclusions 

9.1. Simulation 
In its second part, this text presented a probabilistic framework for task-
oriented and goal-directed spoken dialogue simulation based on the statistic 
modelling of each component surrounding a dialogue manager. The 
guidelines followed during the conception of this dialogue simulation 
environment were the desired goal-directed and data-driven behaviour of 
each component and the ease of portability to task-specific applications. To 
achieve these aims, models relying on a small set of tuneable or learnable 

ulation (generative approach) is a new 
application even if they have already been used for encoding user knowledge 

del is used in 
ing purposes. 

parameters were proposed. Despite only tuned versions of these models 
were used in this work (because of the absence of training data), the 
possibility to learn parameters from data or even online refinement of tuned 
parameters are allowed and easily feasible. The absence of training data was 
actually the starting point of this work.  

Two proposals for goal-directed user modelling were suggested, the first 
being quite simple and relying on a set of probabilities but providing good 
enough performance for some applications. The second is based on 
Bayesian networks, which have known a recent interest in a wide range of 
artificial intelligence applications. Bayesian networks for user modelling in the 
framework of spoken dialogue sim

and goal inferring in few other researches before. The user mo
several ways during the dialogue simulation and even for learn
The user model is the trickier module to tune since human behaviour is 
awfully unpredictable. This simulation component is probably the one that 
more deserves to be trained on data even though hand-tuned models 
provided pretty good results when used for dialogue strategy learning.  
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Stochastic models for digital speech processing and natural language 
processing modules were also proposed. First, a simple automatic speech 
recognition model based on task classification has been described. It was 
obtained by measuring performance of a real speech recognition engine on 
several recognition tasks. It also showed to produce good results when used 
for simple strategy learning. Subsequently, a data-driven speech recogniser 
model has been suggested. It offers more flexible behaviour and automatic 
adaptability to recognition tasks according to their associated vocabularies. It 
doesn’t require particular tuning but parameters (like phoneme a confusion 

xtent. The model relies on the generative 

matrix and inter-word distances) can be either computed thanks to a feature-
based distance or learned from data if available. Application of such a speech 
recognition engine model in the purpose of spoken dialogue system 
simulation and comparison is also a new proposal. The feature-based inter-
word distance developed in this framework can also serve as help in the 
design of speech recognition vocabularies indicating similarities between 
words potentially resulting in recognition errors. It could be used to create 
clusters inside a French vocabulary, isolating similar words.  

An attempt to model natural language understanding errors and confidence 
levels is also supplied. It allows for contextual natural language 
understanding simulation at some e
Bayesian user model and uses statistical inferring to reproduce 
understanding behaviour. Since it relies on predefined Bayesian networks, it 
doesn’t need to be parameterised.     

Other modules were also added in the dialogue simulation environment like 
the natural language generation and text-to-speech system models but at a 
very simpler level. Particularly, an ambiguity in the generated sentences 
depending on the context has been introduced but has not really been tested.  

The proposed simulation environment allows for reproduction of spoken 
dialogues at an intention level taking into account physical properties of the 
speech signal to model errors in the transmitted concepts. More than 
reproducing the modifying behaviour of spoken dialogue systems, it also 
provides estimates of the metrics such a system would generate such as 
confidence levels, number of retrieved records in a database or time duration 
of synthesized spoken utterances. 

9.2. Strategy Learning and Optimisation 
Besides other interests of computer-based spoken dialogue simulation like 
system evaluation or model assessment, the dialogue simulation environment 
described in the second part of this text has been used for optimal strategy 
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learning. Strategy learning in the framework of dialogue management is 
actually helpful for the design but also for the refinement of existing systems. 
Indeed, unlike for other artificial intelligence problems where humans perform 
better than computers, human-authored dialogue strategies are generally 
sub-optimal because optimality is also a matter of technical performance. 
Dialogue strategy learning is then more than an automation problem but also 
a matter of outperforming human-authored solutions. Nevertheless, strategy 
optimisation by means of unsupervised learning techniques needs a large 
amount of interactions. For these reasons, simulation is preferred.   

ement Learning techniques. 

o 
llows easy creation of state spaces and actions sets differing by their size. 

Indeed, clustering state variables, for instance, leads to state tying techniques 
speeding up the learning process.  

Experiments performed in this work showed that different settings of the 
simulation environment and the Markov Decision Process parameters 
produced significant differences in the learned strategies. Strategies often 
differ when taking into account the performance of the speech and natural 
language processing modules being part of a spoken dialogue system. Yet 
those performances are not always available for learning and especially for 
online learning. Indeed, a Reinforcement Learning agent is also able to learn 
online. Even if in the case of spoken dialogue system optimisation simulation 
is preferred, it is argued that the simulation process should approach as 
much as possible the real-world behaviour in order to be able to substitute 
the simulation environment with a real system. In real cases, speech 
recognition and natural language understanding performances are not known 
by means of comparison between actually uttered sentences and recognised 
attribute-value pairs. But speech recognisers and natural language 
understanding systems might be able to supply information about their 
confidence in the result. Thus, this confidence levels have been used as part 
of the objective function of the learning process instead of usually used 
metrics often known a posteriori.  

Experimental results showed that optimising dialogue strategies according to 
both speech recognition and understanding performances made sense and 
led to pretty good results. The learned strategy is adapted to performance 

The third part of this text presented methods to put the dialogue strategy 
learning problem in the framework of factored Markov Decision Processes 
which is suitable for applying Reinforc
Reinforcement Learning is an unsupervised learning technique using trial-
and-error methods to find optimal solution to decision-making and optimal 
control problems. The factored representation, consisting in defining states 
and actions in terms of state and action variables, made the construction of 
experimental settings easier. The granularity inside variable value sets als
a
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and thus leads to greater user satisfaction. Yet, such an automatic process 
might not easily take decisions about equally valuable actions (in terms of 
objective performance) in a given state. Unless the user model encodes 
preferences about the sequencing of actions, the learning agent cannot 
distinguish those actions. Yet manually encoding preferences in a user model 
would lead approximately to learn a handcrafted strategy virtually preset in 
the user model. Thus, it is argu
asked to solve subjective pre
been learned and not handcrafted.  

del, even in the 
user model for user adaptation 

ed that the optimisation process should not be 
ference problems unless the user model has 

Intensive use has been made of the Bayesian user mo
optimisation process. An attempt at using this 
and goal inference has also been proposed.  

Although the automatic learning of dialogue strategy depends on a lot of 
parameters, it has been shown that experimental settings could easily be 
obtained by setting user model parameters while speech recognition and 
understanding models were data-driven and could be automatically tuned.   

 

 
222



A Framework for Unsupervised Learning of Dialogue Strategies       

   

Chapter 10: Further Works  

10.1. Completing the Design  
The specifications described in section 1.2 involved not only the optimisation 

tomatic speech recognition and so on. Beyond 

rs without particular skills to access voice technologies. 

of dialogue strategies but the development of a software dedicated to the 
complete design of dialogue system prototypes. The results presented in this 
work are only a step toward this goal but are not directly usable by novice 
designers. Part of the time granted to this work has been assigned to the 
design of tools easing the use of those results [Pietquin & Dutoit, 2003].  

With the growing influence of the Internet and the recent emergence of the 
XML technology, the W3C consortium defined the VOICEXML markup language 
to ease the development of SDSs [McGlashan et al, 2004]. Indeed, the 
VOICEXML markup language describes a universal way to express dialogues 
featuring speech synthesis, au
that, the major strength of this language is to dissociate dialogue description 
from the complex and low level programming generally induced by dialogue 
system development. This way, the dialogue description stands in a set of 
scripts whereas the low level programming takes place in a browser that will 
interpret the scripts and produce the real sequences of interactions. This 
allows designe
Moreover, VOICEXML technology allows platform-independent and portable 
design in opposition with previous dialogue systems design tools [McTear, 
1998][Klemmer et al, 2000]. 

With the concepts of VOICEXML scripts and browsers, dialogue systems 
design becomes analogous to web sites design. Yet, most of current amateur 
web designers don’t write HTML code anymore as graphical design tools 
became widespread during last few years. Thanks to those tools, a large 
number of amateur designers could draw their web site and brought their 
contributions to the growth of the Internet. In the same way, in the purpose of 
easing the dialogue designer’s job and to allow amateur designers to create 
their own dialogues, a graphical interface able to produce VOICEXML scripts 
was developed.  
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Therefore, in the aim of enabling non-specialist designers to create their own 
spoken dialogue systems, it is proposed to use the results of the RL algorithm 
all along the design process to advise the designer. In this manner, designing 
a dialogue strategy will become a semi-automatic process involving itself a 
machine and a human operator.  

For the reasons described in section 2.4.2, the finite-state management has 
been chosen to describe the course of a dialogue. Indeed, it is actually more 

aided design has been implemented, in 
strategy is a mapping between states and 

 chosen. The 

Once the graph has been drawn, it has to be translated in a set of VOICEXML 
scripts. This is actually a quite straightforward job. A template is generated for 

suitable for visual representation and easily understandable. Of course, it has 
several drawbacks since it doesn’t allow the design of all kinds of dialogues 
but it is the better choice for easy design by novices. Moreover, mapping 
state-transition networks to an XML script structure is easier. Finally, as said 
in section 3.2.1, an MDP can be described as a state-transition network.  

Several methods to use the learning algorithm’s results can be investigated. 
Of course, a display of the state-transition network representing the complete 
optimal strategy learned by the RL system could be drawn. This is only 
possible when there are few states in the network and this possibility has 
been implemented. Nevertheless, when the state space is large and the 
number of transitions grows, for example in the case of a mixed-initiative 
dialogue (because the user can be over-informative and provide more 
information than asked by the system), considering all the possible paths will 
result in an unmanageable display. This is augmented if repair mechanisms 
are included in the dialogue.  

To overcome this problem, an 
addition. Indeed, as the learned 
actions, the designer can be advised to perform a given action when he/she 
draws a new state according to the Q-value of each action in this state. 
Actually, several actions can be proposed in decreasing order according to 
their Q-value.  

During the learning process, the learner can also build a model of the 
environment (exactly like it could do it during online-learning since the learner 
doesn’t take any advantage of the knowledge of the environment) in terms of 
transition probability and reward distribution estimates. According to the 
transition probability estimates, the design interface can infer the current state 
and propose possible successors according to the action
designer can anyway correct this. After his choice, the designer will have to 
complete the options of the chosen action (prompts and grammars when the 
action corresponds to a user query, for example). The graph representation 
of the dialogue can then be easily drawn with a minimum of prior knowledge.  
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each possible action type. Indeed,
structure (a prompt and a recogni

 constraining questions have all the same 
tion process with the loading of a speech 

HTML/XHTML used 

ase of an 
SDS generated by the described method is the only way to evaluate and 
validate the accuracy of the simulation and learning methods developed in 
this text. Yet, all previous researches in the field were so far generally based 
on an existing dialogue system, which had to be enhanced [Walker et al, 
1998 a] and from which corpora could be more easily retrieved. It made the 
methods and results very task-dependent. Attempts to use existing public 
dialogue corpora demonstrated that they were not suitable for this kind of 
study since they were often user-initiated [Levin et al, 2000].  

The design of a prototype and the release to users to get a corpus is time-
consuming and could not be done as a preliminary work in the framework of 
this research. Nevertheless, it is in the aim of creating such a prototype that 
the software described in the previous section has been developed. 

grammar). Thus, scripts actually accomplish actions and results of those 
actions are then passed to the dialogue manager that has been implemented 
by PHP scripts. The dialogue manager builds the new state and chooses the 
new action to perform thanks to a look up table filled according to the drawn 
graph.   

There are other possible outputs than VOICEXML scripts. For example, other 
XML-based languages have been proposed for representation of state-
transition networks like the proposed XML Transition Network Definition (XTND) 
[Nicol, 2000]. On another hand, a new VOICEXML-based multimodal scripting 
language has been recently proposed: the XHTML + Voice Profile (XHTML+V) 
[Axelson et al, 2004]. This language is a mixture of the usual 
for website design and of the VOICEXML language. HTML/XHTML already allowed 
users to provide information thanks to edit boxes, combo boxes, buttons and 
others. With the XHTML+V each possible input is coupled with a voice-enabled 
counterpart and the interaction is considered as multimodal since multiple 
input methods are possible. It is more related to a multichannel interface 
since information is retrieved either by text or speech inputs but not by 
providing complementary information by both means. Yet it could be very 
interesting to produce visual information in order to enhance the interaction 
but the optimisation process should then take this into account.  

10.2. Data Collection 
It is an obviousness that the work presented in this text suffers from the lack 
of online testing and data collection for the training of models. Rele
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10.3. Online Learning 
The RL algorithms described in the third part of this text have been initially 
developed for online learning. Nevertheless, the algorithm necessitates lots of 
dialogue sessions to converge, which is not suitable for learning with real 
users. Yet, it is possible to continue the learning process when the prototype
has been realised since off-policy learning is a particula
learning algorithm and it is possible to learn optim
following the previously learned policy. Particularly, s
model (transition probabilities and reward distribution
to create the graphical representation described in the above, it can also be 
used as a starting point of a Dyna-Q learning algorithm [Sutton & Barto, 1998], 

hich could lead to significant improvement of the strategy.  

n another hand, online learning of the user model (for simulation but also for 
 

investigated. Bayesian approach to user modelling is suitable for online 
learning. Going a step further, learning accurate user model parameters can 
be considered as a sub-goal of the system. Thus, incorporating this sub-goal 
in the RL algorithm could lead to other strategies making the system to 
perform sub-optimal actions in term of short-term dialogue performance to 
discover user model parameters and improve subsequent dialogues. The 
likelihood of the model given the observations can be used as an objective 
function.  

Finally, it has been shown that the MDP underlying the dialogue is quite 
difficult to design. The choice of state and action variables is a key point of 
the design. Some proposals have been made to learn the optimal state and 
action variables. For instance, the work reported in [Sallans, 2002]. 

 
r feature of the Q-

al policy online while 
ince a pure probabilistic 
) has been built in order 

w

O
world knowledge: goal inferring, grounding, user adaptation…) can be
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Appendix A: Phonemes and Articulatory 
 Features

 ϕ Kind Location Articulation Lips Voicing 
1 i     vowel palatal oral stretched voiced 
2 e    vowel palatal oral stretched voiced 
3 E    vowel palatal oral stretched voiced 
4 a    vowel palatal oral stretched voiced 
5 e~  vowel palatal nose stretched voiced 
6 y    vowel postpalatal oral rounded voiced 
7 2    vowel postpalatal oral rounded voiced 
8 9    vowel postpalatal oral rounded voiced 
9 @  vowel postpalatal oral rounded voiced 
10 9~  vowel postpalatal nasal rounded voiced 
11 u    vowel velar oral rounded voiced 
12 o    vowel velar oral rounded voiced 
13 O   vowel velar oral rounded voiced 
14 o~  vowel velar nasal rounded voiced 
15 a~  vowel velar nasal rounded voiced 
16 w   semivowel palatal oral rounded voiced 
17 H   semivowel postalveolar oral rounded voiced 
18 j     semivowel postalveolar oral stretched voiced 
19 p    consonant bilabial plosive N/A unvoiced 
20 b    consonant bilabial plosive N/A voiced 
21 m   consonant bilabial nasal N/A voiced 
22 f     consonant labiodental constrictive N/A unvoiced 
23 v    consonant labiodental constrictive N/A voiced 
24 t     consonant alveodental plosive N/A unvoiced 
25 d    consonant alveodental plosive N/A voiced 
26 n    consonant alveodental nasal N/A voiced 
27 s    consonant alveolar constrictive N/A unvoiced 
28 z    consonant alveolar constrictive N/A voiced 
29 S    consonant postalveolar constrictive N/A unvoiced 
30 Z    consonant postalveolar constrictive N/A voiced 
31 k    consonant velar plosive N/A unvoiced 

 
229



A Framework for Unsupervised Learning of Dialogue Strategies       

   
32 g    consonant velar plosive N/A voiced 
33 N   consonant velar nasal N/A voiced 
34 R   consonant postvelar liquidly N/A voiced 
35 l     consonant lateral liquidly N/A voiced 

Table 39: French phonemes (SAMPA transcriptions) and their 
articulatory features 

 

 

Anterior Posterior 
stretched rounded rounded 

 
Aperture 

oral nasal oral nasal oral nasal 
1st i  y  u  
2nd  e  2  o  
3rd 9~ O o~ E e~ 9 
4th  a    A a~  

 @  

Table 40: French vowels and their aperture degrees 
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