Cultes et divinités dans les carrières et les mines de l'empire romain


Première édition

Directeur éditorial Federica Gatto, Françoise Van Haeperen

Archéologie et histoire de Rome, de l'Italie et des provinces romaines Lire la suite

Si les mines et les carrières du monde romain ont fait l'objet de nombreuses enquêtes ces dernières années, les divinités et les pratiques culturelles attestées dans ces contextes n'ont guère retenu leur attention. Quant aux études portant sur la religion roumaine, elles n'abordent que très rarement le cadre particulier des sites d'extraction de pierre ou de métal. Ce volume vise à défricher ce terrain peu exploré. Des divinités particulières sont-elles privilégiées par les dédicants oeuvrant dans ces contextes? Certains ont-elles été invoquées afin de protéger une étape précise de la chaine opératoire? Les puissances divines honorées dans les mines et carrières coincident-elles avec celles qui sont présentes dans la cité la plus proche? Divinités locales, romaines ou étrangères étaient-elles amenées à cohabiter dans ces espaces? Les dédicants agissent-ils individuellement ou collectivement? Des panthéons miniers ou carriers émergent-ils de l'analyse? Ces questions et d'autres par des spécialistes des mines ou des carrières mais aussi de religion roumaine.


Livre broché - 26,00 €
PDF (PDF) - 17,00 €

InfoPour plus d'informations à propos de la TVA et d'autres moyens de paiement, consultez la rubrique "Paiement & TVA".
Info Les commandes en ligne se font via notre partenaire i6doc.

Spécifications


Éditeur
Presses universitaires de Louvain
Directeur éditorial
Federica Gatto, Françoise Van Haeperen,
Collection
Fervet Opus
Langue
français
Code publique Onix
06 Professionnel et académique
Date de première publication du titre
07 décembre 2023
Type d'ouvrage
Monographie
Avec
Bibliographie

Livre broché


Date de publication
19 octobre 2017
ISBN-13
978-2-87558-605-6
Ampleur
Nombre de pages de contenu principal : 226
Dépôt Légal
D/2017/9964/42 Louvain-la-Neuve, Belgique
Code interne
95771
Format
16 x 24 cm
Poids
367 grammes
Type de packaging
Aucun emballage extérieur
Prix
28,80 €
ONIX XML
Version 2.1, Version 3

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Si vous avez une question, utilisez plutôt notre formulaire de contact

Sommaire


Nomenclature xxi
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and contributions . . . . . . . . . . . . . . . . . . 4
2 Preliminaries 7
2.1 Regularized inverse problems . . . . . . . . . . . . . . . . 7
2.1.1 Forward model . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Low complexity priors . . . . . . . . . . . . . . . . 15
2.1.3 Sensing model and embedding . . . . . . . . . . . 25
2.2 Recovery methods . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 General optimization formulation . . . . . . . . . 33
2.2.2 Non-convex recovery methods . . . . . . . . . . . 35
2.2.3 Convex recovery methods . . . . . . . . . . . . . . 41
2.2.4 Algorithms for convex optimization . . . . . . . . 46
2.2.5 Dictionary Learning . . . . . . . . . . . . . . . . . 51
3 Sparse Support Recovery with Convex Fidelity Constraint 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.1 Sparse regularization with convex fidelity constraint 58
3.1.2 Dual Certificates . . . . . . . . . . . . . . . . . . . 60
3.1.3 Main result for sparse support recovery . . . . . . 62
3.1.4 Relation to PriorWorks . . . . . . . . . . . . . . . 64
x Table of contents
3.2 Preliminaries and main result . . . . . . . . . . . . . . . . 65
3.2.1 Noiseless support stability . . . . . . . . . . . . . . 65
3.2.2 Model subspace and restricted injectivity conditions 66
3.2.3 Formal statement of the main result . . . . . . . . 71
3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.1 Proofs of the lemmas and subdifferential decomposability
. . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . 83
3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . 91
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4 Online Convolutional Dictionary Learning for
Multimodal Imaging 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.1 Main Contributions . . . . . . . . . . . . . . . . . . 97
4.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . 99
4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.1 Problem Formulation . . . . . . . . . . . . . . . . 100
4.2.2 Online Convolutional Dictionary Learning
Algorithm . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Dictionary update . . . . . . . . . . . . . . . . . . 105
4.2.4 Implementation details . . . . . . . . . . . . . . . 107
4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 110
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5 Multispectral Compressive Imaging Strategies using
Fabry-Pérot Filtered Sensors 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.1 Main Contributions . . . . . . . . . . . . . . . . . . 121
5.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . 122
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Fabry-Pérot Filtered Sensors . . . . . . . . . . . . 125
5.2.2 Forward model and analysis prior . . . . . . . . . 127
Table of contents xi
5.2.3 Recovery Method . . . . . . . . . . . . . . . . . . . 128
5.3 Multispectral Compressive Imaging by Generalized Inpainting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.1 Image Formation Model . . . . . . . . . . . . . . . 132
5.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . 135
5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Multispectral Compressive Imaging by Out-of-Focus
Random Convolution . . . . . . . . . . . . . . . . . . . . . 140
5.4.1 Image Formation Model . . . . . . . . . . . . . . . 140
5.4.2 Non-idealities and practical considerations . . . . 145
5.4.3 Sensing matrix implementation . . . . . . . . . . . 151
5.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . 153
5.5 Final Comparison . . . . . . . . . . . . . . . . . . . . . . . 155
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6 Conclusions 163
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Perspectives and open questions . . . . . . . . . . . . . . 166
References 173
Appendix A Elements of Convex Optimization 195