The Louvain International Database of Spoken English Interlanguage (LINDSEI) is a corpus of informal interviews with higher intermediate to advanced learners of English. It results from a collaborative project between several universities internationally, coordinated at the University of Louvain. The corpus contains over 1 million words, of which almost 800,000 were produced by learners, representing 11 different mother tongue backgrounds: Bulgarian, Chinese, Dutch, French, German, Greek, Italian, Japanese, Polish, Spanish and Swedish.
Foreword . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
Acknowledgement . . . . . . . . . . . . . . . . . . . . . xi
Table of Contents . . . . . . . . . . . . . . . . . . . . . . xiv
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . xxv
1 Introduction 1
1.1 Current Document Analysis . . . . . . . . . . . . . 1
1.2 What is Natural Scene Text? . . . . . . . . . . . . 2
1.3 Numerous Applications . . . . . . . . . . . . . . . 5
1.4 Text Understanding System: Main Steps . . . . . . 7
1.5 Challenges and Overview of Problem Bounds . . . 9
1.6 Overall Structure . . . . . . . . . . . . . . . . . . . 10
2 Image Formation and Representation 13
2.1 Image Formation: Why do Colors Vary for the same Object? . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Light . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Object . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Camera . . . . . . . . . . . . . . . . . . . . 17
2.2 Image Representation: Why do Different Color Spaces Exist? . . . . . . . . . . . . . . . . . . . . . 18
2.3 To Summarize... . . . . . . . . . . . . . . . . . . . 22
3 Background and Literature Survey of Text Understanding 23
3.1 State-of-the-Art of Text Extraction . . . . . . . . . 23
3.1.1 Thresholding-based methods . . . . . . . . 24
3.1.2 Grouping-based methods . . . . . . . . . . 27
3.1.3 Extensively used clustering methods in text extraction . . . . . . . . . . . . . . . . . . . 30
3.1.4 Challenges . . . . . . . . . . . . . . . . . . 34
3.2 Required Pre- and Post-Processing Steps for Efficient Text Understanding . . . . . . . . . . . . . . 34
3.2.1 Pre-processing steps of text extraction . . . 35
3.2.2 Post-processing steps of text extraction . . 37
3.2.3 Challenges . . . . . . . . . . . . . . . . . . 39
4 Text Understanding System 41
4.1 Text Understanding Chain . . . . . . . . . . . . . . 41
4.2 Material and Databases . . . . . . . . . . . . . . . 44
5 Resolution Enhancement 47
5.1 Resolution Enhancement for Still Images . . . . . . 48
5.2 Super-Resolution for Video Frames . . . . . . . . . 49
5.2.1 Context of super-resolution algorithms . . . 50
5.2.2 Color super-resolution text . . . . . . . . . 61
5.3 SURETEXT - Super-Resolution Text . . . . . . . 62
5.3.1 Motion estimation using the Taylor series . 62
5.3.2 Unsharp masking using the Teager filter . . 64
5.3.3 Outlier frame removal . . . . . . . . . . . . 66
5.3.4 Median denoising . . . . . . . . . . . . . . . 66
5.4 Experiments and Results . . . . . . . . . . . . . . . 67
5.4.1 Evaluation of SURETEXT . . . . . . . . . 67
5.4.2 Comparison with state-of-the-art SR algorithms . . . . . . . . . . . . . . . . . . . . . 71
5.4.3 Computation cost . . . . . . . . . . . . . . 72
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . 73
6 Text Extraction 75
6.1 Impact of Color Spaces and Clustering Algorithms 75
6.1.1 Is there a better color space for NS text extraction? . . . . . . . . . . . . . . . . . . . 75
6.1.2 Considerations on different clustering algorithms . . . . . . . . . . . . . . . . . . . . . 77
6.1.3 Evaluation of color representation with state-of-the-art clustering algorithms . . . . 79
6.2 Role of Metrics in K-means . . . . . . . . . . . . . 83
6.2.1 Definition of some metrics, either distances or similarities . . . . . . . . . . . . . . . . . 83
6.2.2 Noteworthy properties of angle-based similarities and complementarity with the Euclidean distance . . . . . . . . . . . . . . . . 86
6.2.3 Evaluation of several metrics . . . . . . . . 88
6.3 SMC - Selective Metric Clustering for Text Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.1 Color reduction and color inversion . . . . . 92
6.3.2 Utilization of a multi-hypothesis text extraction . . . . . . . . . . . . . . . . . . . . 94
6.3.3 Extraction-by-segmentation . . . . . . . . . 96
6.3.4 SMC evaluation and results . . . . . . . . . 98
6.4 Conclusion of the Selective Metric Clustering Technique . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7 Unit-based Segmentation 103
7.1 Line and Word Segmentation . . . . . . . . . . . . 103
7.1.1 Line segmentation . . . . . . . . . . . . . . 104
7.1.2 Word segmentation . . . . . . . . . . . . . . 105
7.2 Character Segmentation using Log-Gabor Filters . 106
7.2.1 Is character segmentation still useful? . . . 106
7.2.2 Why are log-Gabor filters appropriate for NS character segmentation? . . . . . . . . . 109
7.2.3 Character segmentation-by-recognition . . . 112
7.2.4 Evaluation . . . . . . . . . . . . . . . . . . 118
7.3 Conclusion of the Log-Gabor-based Character Segmentation . . . . . . . . . . . . . . . . . . . . . . . 121
8 Considerations on NS Character Recognition and Correction 123
8.1 NS Character Recognition . . . . . . . . . . . . . . 123
8.1.1 What is done in NS character recognition? 123
8.1.2 Description of the exploited recognition system . . . . . . . . . . . . . . . . . . . . . . 125
8.1.3 Conclusion on considerations of character recognition . . . . . . . . . . . . . . . . . . 131
8.2 Recognition-by-Correction . . . . . . . . . . . . . . 131
8.2.1 Context of OCR correction . . . . . . . . . 131
8.2.2 Lexicon-based non-word error correction . . 134
8.2.3 Evaluation . . . . . . . . . . . . . . . . . . 137
8.2.4 Conclusion on recognition-by-correction . . 141
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . 142
9 Conclusion 143
9.1 Conclusions and Contributions . . . . . . . . . . . 143
9.2 Interesting Prolongations and Discussion . . . . . . 147
A Color Spaces Conversion 165
B Expectation-Maximization 173