Ce numéro donne la plume à des chercheurs chevronnés et des personnes qui ont connu Michel Henry de son vivant, tout en accueillant de jeunes talents qui révèlent l'intérêt suscité par le regard philosophique neuf de Michel Henry et ce, un peu partout dans le monde. Lire la suite
Ce numéro donne la plume à des chercheurs chevronnés et des personnes qui ont connu Michel Henry de son vivant, tout en accueillant de jeunes talents qui révèlent l'intérêt suscité par le regard philosophique neuf de Michel Henry et ce, un peu partout dans le monde.
Nomenclature xxi
1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Outline and contributions . . . . . . . . . . . . . . . . . . 4
2 Preliminaries 7
2.1 Regularized inverse problems . . . . . . . . . . . . . . . . 7
2.1.1 Forward model . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Low complexity priors . . . . . . . . . . . . . . . . 15
2.1.3 Sensing model and embedding . . . . . . . . . . . 25
2.2 Recovery methods . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 General optimization formulation . . . . . . . . . 33
2.2.2 Non-convex recovery methods . . . . . . . . . . . 35
2.2.3 Convex recovery methods . . . . . . . . . . . . . . 41
2.2.4 Algorithms for convex optimization . . . . . . . . 46
2.2.5 Dictionary Learning . . . . . . . . . . . . . . . . . 51
3 Sparse Support Recovery with Convex Fidelity Constraint 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.1 Sparse regularization with convex fidelity constraint 58
3.1.2 Dual Certificates . . . . . . . . . . . . . . . . . . . 60
3.1.3 Main result for sparse support recovery . . . . . . 62
3.1.4 Relation to PriorWorks . . . . . . . . . . . . . . . 64
x Table of contents
3.2 Preliminaries and main result . . . . . . . . . . . . . . . . 65
3.2.1 Noiseless support stability . . . . . . . . . . . . . . 65
3.2.2 Model subspace and restricted injectivity conditions 66
3.2.3 Formal statement of the main result . . . . . . . . 71
3.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3.1 Proofs of the lemmas and subdifferential decomposability
. . . . . . . . . . . . . . . . . . . . . . . 74
3.3.2 Proof of Theorem 5 . . . . . . . . . . . . . . . . . . 83
3.4 Numerical experiments . . . . . . . . . . . . . . . . . . . . 91
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4 Online Convolutional Dictionary Learning for
Multimodal Imaging 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.1 Main Contributions . . . . . . . . . . . . . . . . . . 97
4.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . 99
4.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.1 Problem Formulation . . . . . . . . . . . . . . . . 100
4.2.2 Online Convolutional Dictionary Learning
Algorithm . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.3 Dictionary update . . . . . . . . . . . . . . . . . . 105
4.2.4 Implementation details . . . . . . . . . . . . . . . 107
4.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . 110
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5 Multispectral Compressive Imaging Strategies using
Fabry-Pérot Filtered Sensors 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.1.1 Main Contributions . . . . . . . . . . . . . . . . . . 121
5.1.2 RelatedWork . . . . . . . . . . . . . . . . . . . . . 122
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.2.1 Fabry-Pérot Filtered Sensors . . . . . . . . . . . . 125
5.2.2 Forward model and analysis prior . . . . . . . . . 127
Table of contents xi
5.2.3 Recovery Method . . . . . . . . . . . . . . . . . . . 128
5.3 Multispectral Compressive Imaging by Generalized Inpainting
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
5.3.1 Image Formation Model . . . . . . . . . . . . . . . 132
5.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . 135
5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . 138
5.4 Multispectral Compressive Imaging by Out-of-Focus
Random Convolution . . . . . . . . . . . . . . . . . . . . . 140
5.4.1 Image Formation Model . . . . . . . . . . . . . . . 140
5.4.2 Non-idealities and practical considerations . . . . 145
5.4.3 Sensing matrix implementation . . . . . . . . . . . 151
5.4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . 153
5.5 Final Comparison . . . . . . . . . . . . . . . . . . . . . . . 155
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
6 Conclusions 163
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
6.2 Perspectives and open questions . . . . . . . . . . . . . . 166
References 173
Appendix A Elements of Convex Optimization 195