This study draws upon Zygmunt Bauman's theory of Liquid Modernity. Employing ethnographic research methods, it analyzes the fluidity of digital spiritual practice among Tibetan Buddhist monks in the southwestern region of China, as well as the transformation of monastic life in this area. Lire la suite
In contemporary society, digital technology and social media have become integral to our daily practices. Through these digital tools, individuals could shape their digital identities, cultivate relationships, participate in online commerce, express their political perspectives, and even explore digitized religious/spiritual practices.
In the milieu of an everevolving societal landscape, both individual identity and interpersonal relationships are confronting numerous challenges. More and more, individuals turn to digital platforms and material consumption to shape and understand their own identities, resulting in a neverending journey of selfdiscovery that rarely reaches a definitive state. Such a constant state of flux holds significant implications for one's selfperception and the manner in which we interact with others and integrate within the broader society.
Overall, this study draws upon Zygmunt Bauman's theory of Liquid Modernity. Employing ethnographic research methods, it analyzes the fluidity of digital spiritual practice among Tibetan Buddhist monks in the southwestern region of China, as well as the transformation of monastic life in this area. Centering on the impact of digital technology on the daily and spiritual practices of Tibetan Buddhist monks, the study further delves into how they construct and understand their monastic identities from offline to online. Concurrently, the research explores the building of emotional trust between monks and devotees in digital social media, the authenticity of digital spiritual practices, and spiritual consumption.
Introduction 3
1 R&D and market sharing agreements 8
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3 Incentives for enlarging R&D alliances . . . . . . . . . . . . . . . . . . . . 16
1.4 Incentives for dissolving MS agreements . . . . . . . . . . . . . . . . . . . . 19
1.5 Stable R&D and MS Agreements . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.1 No stable structures without MS agreement . . . . . . . . . . . . . 23
1.5.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.5.3 Proof of the main result . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.4 Stable pairs of symmetric coalition structures . . . . . . . . . . . . 28
1.5.5 Policy implications and consumer surplus . . . . . . . . . . . . . . . 29
1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6.1 -stability versus -stability . . . . . . . . . . . . . . . . . . . . . . 30
1.6.2 Identical R&D alliance structure and MS structure . . . . . . . . . 31
1.6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2 Alliances and Technological Partnerships in Contests 54
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3 Stabilisation of the grand alliance . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.1 Stability with linear costs . . . . . . . . . . . . . . . . . . . . . . . 63
2.3.2 Stability with quadratic costs . . . . . . . . . . . . . . . . . . . . . 73
2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.4.1 -stability versus
stability . . . . . . . . . . . . . . . . . . . . . . 74
2.4.2 Harshness of the contest . . . . . . . . . . . . . . . . . . . . . . . . 75
2.4.3 Implications of the results . . . . . . . . . . . . . . . . . . . . . . . 76
2.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3 On the existence of setwise stable hypergraphs of relationships 100
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3 Formation of one hypergraph . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.1 Existence of Nash-setwise stable profiles . . . . . . . . . . . . . . . 105
3.3.2 Applications to formalisms in coalition theory . . . . . . . . . . . . 111
3.3.3 Relationship with others equilibrium concepts . . . . . . . . . . . . 115
3.4 Formation of two hypergraphs . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.4.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.4.2 Existence results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.1. Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
A.2. Proof of Corollary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
A.3. Setwise stability under subgroups decision rules . . . . . . . . . . . . 127
A.4. Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
A.5. Proof of Corollary 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138