Application of Magnetic Nanostructures to the Design of Microwave Circuits


Première édition

The growing interest in integrated microwave devices for automotive and wireless communication demands new innovative concepts. Reducing device dimension by increasing bandwidth and operating frequency is a major challenge. This thesis presents the design of such devices using arrays of ferromagnetic nanowired substrate (MNWS) embedded in insulating templates of polycarbonate or alumina. Due to the magnetic character of the nanowires, reciprocal as well as non-reciprocal devices can be obtained that are tunable in frequency by applying external magnetic fields. Circulators, isolators, phase shifters, inductors and leaky-wave antennas have been developed on MNWS. For their design, the effective parameters of the composite material have to be known precisely. Therefore analytical models have been developed for determination of permittivity and permeability on MNWS, since these parameters are influenced by the ferromagnetic inclusions. Furthermore the fact that MNWS materials contain nanoscale zones five times smaller than their wavelength, places a severe limitation on the calculation capability of commercially available simulators regarding simulation time and convergence. The accuracy of these models has been verified by transmission line measurements. A special focus has been given to the development of metamaterials on MNWS. In this thesis a single negative material, which has negative permeability, has been successfully measured on such a substrate for the first time.


Livre broché - En anglais 16,10 €

InfoPour plus d'informations à propos de la TVA et d'autres moyens de paiement, consultez la rubrique "Paiement & TVA".
Info Les commandes en ligne se font via notre partenaire i6doc.

Spécifications


Éditeur
Presses universitaires de Louvain
Partie du titre
Numéro 224
Auteur
Judith Spiegel,
Collection
Thèses de l'École polytechnique de Louvain | n° 224
Langue
anglais
BISAC Subject Heading
TEC000000 TECHNOLOGY & ENGINEERING
Code publique Onix
06 Professionnel et académique
CLIL (Version 2013-2019 )
3069 TECHNIQUES ET SCIENCES APPLIQUEES
Date de première publication du titre
01 novembre 2009
Subject Scheme Identifier Code
Classification thématique Thema: Technologie, ingénierie et agriculture, procédés industriels
Type d'ouvrage
Thèse
Avec
Bibliographie

Livre broché


Date de publication
01 novembre 2009
ISBN-13
978-2-87463-196-2
Ampleur
Nombre de pages de contenu principal : 180
Dépôt Légal
D/2009/9964/56 Louvain-la-Neuve, Belgique
Code interne
81657
Format
16 x 24 x 1 cm
Poids
300 grammes
Prix
16,10 €
ONIX XML
Version 2.1, Version 3

Google Livres Aperçu


Publier un commentaire sur cet ouvrage

Si vous avez une question, utilisez plutôt notre formulaire de contact

Sommaire


Scientific Publications v
List of Abbreviations vii
Introduction 1
1 Ferromagnetism in metallic nanowires 5
1.1 Magnetic materials . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Microscopic scale for infinite medium . . . . . . . . . . . . 7
1.2.1 Equation of motion with static field . . . . . . . . 8
1.2.2 Equation of motion with additional RF field . . . . 10
1.2.3 Susceptibility tensor . . . . . . . . . . . . . . . . . 12
1.2.4 Losses . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.5 Resonance linewidth . . . . . . . . . . . . . . . . . 14
1.2.6 Permeability tensor for saturated materials . . . . 15
1.3 Microscopic scale for finite material . . . . . . . . . . . . . 16
1.4 Permeability tensor for ferromagnetic NWs . . . . . . . . . 20
1.5 Permeability tensor of unsaturated materials . . . . . . . . 23
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2 Modeling of nanowired templates 29
2.1 Topology of nanowired substrate . . . . . . . . . . . . . . 30
2.2 Permittivity model . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Permeability model . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Volumetric approach . . . . . . . . . . . . . . . . . 37
2.3.2 Variational approach . . . . . . . . . . . . . . . . . 39
2.4 Magneto-inductive model . . . . . . . . . . . . . . . . . . 45
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
i
3 Model validation using transmission lines 53
3.1 Fabrication process of nanowired substrates . . . . . . . . 53
3.2 Device realisation using masking techniques . . . . . . . . 55
3.3 Transmission lines on PC . . . . . . . . . . . . . . . . . . 57
3.3.1 Validation of permittivity model . . . . . . . . . . 57
3.3.2 Validation of permeability models . . . . . . . . . . 61
3.3.2.1 Variational Approach . . . . . . . . . . . 62
3.3.2.2 Volumetric Approach . . . . . . . . . . . 64
3.3.3 Discussion of permeability models . . . . . . . . . 64
3.3.3.1 Tunability . . . . . . . . . . . . . . . . . 66
3.4 Transmission lines on alumina . . . . . . . . . . . . . . . . 67
3.4.1 Coplanar waveguide . . . . . . . . . . . . . . . . . 67
3.4.2 Metallic rectangular waveguide . . . . . . . . . . . 74
3.5 LH TLs using ferromagnetic nanowired substrate . . . . . 79
3.5.1 Concept of left-handed devices . . . . . . . . . . . 80
3.5.2 Simulations of tunable LH device . . . . . . . . . . 83
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4 Applications of nanowired substrates 91
4.1 Integrated inductor . . . . . . . . . . . . . . . . . . . . . . 91
4.1.1 Inductor samples . . . . . . . . . . . . . . . . . . . 93
4.1.2 Validation . . . . . . . . . . . . . . . . . . . . . . . 93
4.1.3 Improvements . . . . . . . . . . . . . . . . . . . . . 97
4.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 99
4.2 Circulator . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.2.1 Analytical modeling . . . . . . . . . . . . . . . . . 101
4.2.2 Model verification . . . . . . . . . . . . . . . . . . 104
4.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . 106
4.3 Non-reciprocal microstrip lines . . . . . . . . . . . . . . . 107
4.3.1 Operating principle . . . . . . . . . . . . . . . . . . 108
4.3.2 State-of-the-art . . . . . . . . . . . . . . . . . . . . 109
ii
4.3.3 Field distribution . . . . . . . . . . . . . . . . . . . 110
4.3.4 Topology of ferromagnetic nanowired concept . . . 116
4.3.5 Fabrication process . . . . . . . . . . . . . . . . . . 118
4.3.6 Simulations . . . . . . . . . . . . . . . . . . . . . . 119
4.3.6.1 Influence of permittivity in zone 2 . . . . 120
4.3.6.2 Influence of permittivity in zone 3 . . . . 123
4.3.6.3 Influence of ferromagnetic zone width . . 126
4.3.6.4 Conclusion . . . . . . . . . . . . . . . . . 128
4.3.7 Experimental verification . . . . . . . . . . . . . . 128
4.3.7.1 Non-reciprocal lines on Co nanowired
substrate . . . . . . . . . . . . . . . . . . 128
4.3.7.2 Discussion . . . . . . . . . . . . . . . . . 132
4.3.7.3 Non-reciprocal lines on Ni nanowired
substrate . . . . . . . . . . . . . . . . . . 134
4.3.8 Additional verifications . . . . . . . . . . . . . . . . 136
4.3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . 139
4.4 Leaky-wave antenna . . . . . . . . . . . . . . . . . . . . . 141
4.4.1 LH antenna on ferromagnetic nanowired substrate 142
4.4.2 Frequency tuning . . . . . . . . . . . . . . . . . . . 145
4.4.3 Magnetic field tuning . . . . . . . . . . . . . . . . . 146
4.4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . 147
Conclusion 152
A Unit conversion from MKS to CGS system I
B Verification of trial fields III
C Process Flow of Alumina Membranes V
D Conversion S-Parameter in ABCD VII