As wireless communication systems are flourishing and operating frequencies are progressively increasing, there exists nowadays a strong demand for RF devices at millimeter wavelengths. Nonmetallic ferromagnetic materials, also called ferrites, have found wide applications in RF technology as they possess the combined properties of a magnetic material and an electrical insulator. The remarkable flexibility in tailoring the magnetic properties, the very high resistivity, price and performance considerations make ferrites the first choice materials for microwave applications. However, the frequency range of operation, the bandwidth, and the aptitude to be integrated in MMICs should be improved.
In this work, a new class of magnetic materials which could overcome the main disadvantages encountered when using ferrites in RF devices operating at millimeter wavelengths is studied. This material, called magnetic nanowired substrate (MNWS), is composed of an array of ferromagnetic nanowires embedded in a polymer substrate. First, the ferromagnetic nature of nanowires yields very high saturation magnetizations, thus operating frequencies higher than 40 GHz. Next, the nanometric wire diameter allows an easy penetration of electromagnetic waves inside the MNWS. Moreover, due to the high aspect ratio of nanowires the desired magnetic properties are obtained without an external magnetic field. This leads to a considerable potential increase of the compactness and ease of integration in MMICs. Various potential applications, such as filters and circulators, of this new material are presented.
Scientific publications iv
Introduction ix
1 FMR Theory in Magnetic Nanowires 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Susceptibility tensor of infinite medium . . . . . . . . . . . . . . . . . . 4
1.2.1 Magnetization equation of motion . . . . . . . . . . . . . . . . . . 5
1.2.2 Resonance condition . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.3 Susceptibility tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.4 Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.5 Resonance linewidth . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Susceptibility tensor of finite medium . . . . . . . . . . . . . . . . . . . 12
1.3.1 Shape anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.2 Crystalline anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.4 Permeability tensor of partially magnetized materials . . . . . . . . . . 16
1.5 Permeability tensor of MNWS . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.5.1 Fabrication process of the MNWS . . . . . . . . . . . . . . . . . . 19
1.5.1.1 Realization of PC track-etched templates . . . . . . . . 19
1.5.1.2 Electrodeposition of nanowires . . . . . . . . . . . . . . 19
1.5.1.3 Synthesis of microwave devices . . . . . . . . . . . . . . 22
1.5.2 Isolated wires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.3 Dipolar interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.5.4 Magneto-crystalline anisotropy . . . . . . . . . . . . . . . . . . . . 28
1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2 RF modeling and Characterisation of MNWS 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Theoretical modeling of MNWS . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2.1 Effective electromagnetic properties of MNWS . . . . . . . . . . 35
2.2.1.1 Magnetic properties . . . . . . . . . . . . . . . . . . . . . 35
2.2.1.2 Dielectric properties . . . . . . . . . . . . . . . . . . . . . 38
2.2.2 Variational and transmission line model . . . . . . . . . . . . . . 47
2.2.2.1 Variational formulation for propagation constant . . . 47
2.2.2.2 Transmission line model . . . . . . . . . . . . . . . . . . 50
2.3 Experimental validations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.1 Measurement procedure and calibration methods . . . . . . . . 54
2.3.1.1 LL method . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
2.3.1.2 OL method . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.2 Validation of permittivity model . . . . . . . . . . . . . . . . . . . 60
2.3.3 MNWS permeability and permittivity extraction . . . . . . . . . 61
2.3.4 Validation of transmission line model . . . . . . . . . . . . . . . 62
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3 Microwave Filters Based on a New MPBG Material 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Magnetic photonic band-gap materials: state-of-the-art . . . . . . . . . 70
3.3 Role of impedance in PBG creation . . . . . . . . . . . . . . . . . . . . . . 71
3.3.1 Topology under scope . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3.2 Experimental characterization . . . . . . . . . . . . . . . . . . . . 74
3.4 Description of the MPBG topology . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Modeling planar MPBG devices . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.1 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.5.2 Variational-chain matrix model . . . . . . . . . . . . . . . . . . . . 81
3.5.3 Comparison between the two analytical models . . . . . . . . . 83
3.6 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.1 MPBG at the remanent state . . . . . . . . . . . . . . . . . . . . . . 85
3.6.2 MPBG under static magnetic field . . . . . . . . . . . . . . . . . . 88
3.7 Filter Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.7.1 Simple expressions of filter characteristics versus MPBG parameters . . 89
3.7.2 Table synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
3.8 Comparison of MPBG filter with Chebyshev stopband filters . . . . . . 97
3.9 Investigation of defect modes . . . . . . . . . . . . . . . . . . . . . . . . . 101
3.9.1 Defect modes in MPBG material . . . . . . . . . . . . . . . . . . . 101
3.9.2 Effect of the defect position . . . . . . . . . . . . . . . . . . . . . . 101
3.9.3 Effect of the defect length . . . . . . . . . . . . . . . . . . . . . . . 105
3.9.4 Effect of the applied static magnetic field . . . . . . . . . . . . . 107
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4 Remanent State Microwave Circulators 111
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Remanent state circulators . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3 Theoretical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.3.1 Maxwell's equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
4.3.2 Wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.3.3 Simplified boundary problem . . . . . . . . . . . . . . . . . . . . . 118
4.4 Resolution of wave equation . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.4.1 Circulation mechanism and field distribution . . . . . . . . . . . 121
4.4.1.1 Circulator disc resonances . . . . . . . . . . . . . . . . . 121
4.4.1.2 Electric and magnetic field distributions . . . . . . . . . 123
4.4.2 Scattering matrix and matching network . . . . . . . . . . . . . . 129
4.5 Numerical and experimental validation . . . . . . . . . . . . . . . . . . . 131
4.5.1 Numerical validation for an unmagnetized circulator . . . . . . 131
4.5.2 Green's function order . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.5.3 Experimental validation for a magnetized circulator . . . . . . . 134
4.6 Role of the remanent magnetization . . . . . . . . . . . . . . . . . . . . . 135
4.6.1 influence of the magnitude . . . . . . . . . . . . . . . . . . . . . . 135
4.6.2 Influence of the orientation . . . . . . . . . . . . . . . . . . . . . . 137
4.7 Prospective designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5 Conclusion 145
A Conversion from MKS to CGS system of units I
B Evaporation of metallic layers on PC membranes III
B.1 Sample preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
B.1.1 Cleaning of samples and magnets . . . . . . . . . . . . . . . . . . III
B.1.2 Cleaning of masks . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV
B.1.3 Mounting the samples on the masks . . . . . . . . . . . . . . . . V
B.2 Optimization of evaporation conditions . . . . . . . . . . . . . . . . . . VI
B.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII
C Validity of MNWS Permittivity Expression XV
D Magnetic Field Modeling inside MNWS XVII
E Green’s function expression for circulators XXI